
1

MODEL CHECKING FOR VERIFICATION OF MANDATORY ACCESS
CONTROL MODELS AND PROPERTIES

VINCENT C. HU, D. RICHARD KUHN

National Institute of Standards and Technology
Gaithersburg, MD 20899-8930, USA

vhu, kuhn@nist.gov

TAO XIE, JEEHYUN HWANG

Department of Computer Science, North Carolina State University
Raleigh, NC 27695-8206, USA

xie, jhwang4 @csc.ncsu.edu

Mandatory access control (MAC) mechanisms control which users or processes have access to
which resources in a system. MAC policies are increasingly specified to facilitate managing and
maintaining access control. However, the correct specification of the policies is a very challenging
problem. To formally and precisely capture the security properties that MAC should adhere to, MAC
models are usually written to bridge the rather wide gap in abstraction between policies and
mechanisms. In this paper, we propose a general approach for property verification for MAC
models. The approach defines a standardized structure for MAC models, providing for both property
verification and automated generation of test cases. The approach expresses MAC models in the
specification language of a model checker and expresses generic access control properties in the
property language. Then the approach uses the model checker to verify the integrity, coverage, and
confinement of these properties for the MAC models and finally generates test cases via
combinatorial covering array for the system implementations of the models.

Keywords: Access Control; Policy; Model; Testing.

1. Introduction

Mandatory access control (MAC) [1] is concerned with determining the allowed
activities of legitimate users, mediating every attempt by a user to access a resource in a
system. A given information technology (IT) infrastructure can implement MAC systems
in many places and at different levels. Operating systems use MAC to protect files and
directories. Database management systems (DBMS) apply MAC to regulate access to
tables and views. Most commercially available application systems implement MAC,
often independent of the operating systems and/or DBMSs on which they are installed.

The objectives of a MAC system are often described in terms of protecting system
resources against inappropriate or undesired user access. From a business perspective,
these objectives could just as well be described in terms of optimal sharing of
information. After all, the main objective of IT is to make information available to users
and applications. A greater degree of sharing may get in the way of resource protection;
in reality, a well-managed and effective MAC system actually facilitates sharing. A
sufficiently fine-grained MAC mechanism can enable selective sharing of information
where in the absence of MAC, sharing may be considered too risky altogether [2].

2 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

When planning a MAC system, three abstractions of controls should be considered:
MAC policies, models, and mechanisms. MAC policies are high-level requirements that
specify how access is managed and who, under what circumstances, may access what
information. While MAC policies can be application-specific and thus taken into
consideration by the application vendor, policies are just as likely to pertain to user
actions within the context of an organizational unit or across organizational boundaries.
For instance, policies may pertain to resource usage within or across organizational units
or may be based on need-to-know, competence, authority, obligation, or conflict-of-
interest factors. Such policies may span multiple computing platforms and applications.

At a high level, MAC policies are enforced through a mechanism that translates a
user’s access request, often in terms of a structure that a system provides. There are a
wide variety of structures; for example, a simple table lookup can be performed to grant
or deny access. Although no well-accepted standard yet exists for determining their
policy support, some MAC mechanisms are direct implementations of formal MAC
policy concepts [2].

Rather than attempting to evaluate and analyze MAC systems exclusively at the
mechanism level, security models are usually written to describe security properties of a
MAC system. A model is a formal presentation of a security policy enforced by the MAC
system, and is useful for proving theoretical limitations of a system. MAC models are of
general interest to both users and vendors. They bridge the rather wide gap in abstraction
between policies and mechanisms. MAC mechanisms can be designed to adhere to the
properties of the model. Users see a MAC model as an unambiguous and precise
expression of requirements. Vendors and system developers see MAC models as design
and implementation requirements. On one extreme, a MAC model may be rigid in its
implementation of a single policy. On the other extreme, a MAC model allows for the
expression and enforcement of a wide variety of policies and policy classes [2, 3].

It is common that a system’s privacy and security are compromised due to the faulty
MAC model and mechanism of MAC policies instead of the failure of cryptographic
primitives or protocols. Such faults can result in serious vulnerabilities, especially when
different MAC models and rules are combined. This problem becomes increasingly
severe as systems become more and more complex, and are deployed to manage a large
amount of sensitive information and resources that are organized into sophisticated
structures. Identifying discrepancies between policy, model, and implementation is
crucial because correct implementation and enforcement of policies by applications is
based on the premise that the policy specifications are correct, therefore the policy
specification must undergo rigorous verification and validation through systematic
verification and testing to ensure that they truly encapsulate the desired MAC properties
from the policy authors.

To the best of our knowledge, no techniques exist for verifying whether the
properties of a MAC policy are correctly expressed in a model as well as whether the
policy is satisfied in the implementation. In practice, the same MAC policies may express
multiple different MAC models or express a single model in addition to extra access

Model Checking for Verification of Mandatory Access Contol Models and Properties 3

control (AC) constraints outside of the model. Verifying the conformance of MAC
models and policies is a non-trivial and critical task. One important aspect of such
verification is to formally check the inconsistency and incompleteness [4, 5, 6, 7] of the
model and properties because a MAC model and its implementation do not necessarily
explicitly expressed the policy, which can also be implicitly embedded by mixing with
direct access constraints or other MAC models.

2. Access Control Model Checking

There are two levels of verification steps. First, the correct specification of a MAC model
needs to be verified. To achieve this goal, the scheme of our approach includes a black-
box model checking method that allows the users to specify AC properties and then
verifies the MAC model against these properties. Since the confidence of the model’s
correctness depends on the quality of the specified properties, our scheme also includes a
white-box property assessment method that applies mutation analysis [8] on entities in the
model and properties to assess the sufficiency of the covering and confinement of the
properties for the model. Second, the correct implementation of the policy needs to be
tested. Our scheme includes a test generation method that generates test cases (both test
inputs and expected outputs) from the AC variables in the model and specified properties
using a combinatorial testing technique [9]. The approach then runs these test cases on
the MAC implementation to verify whether the actual test outputs are the same as the
expected outputs. We next provide the formal definition of MAC model checking in
terms of AC attributes:

Let S, O, and A denote respectively the set of all the subjects, objects, and actions in
a MAC system. Each subject, object, or action is associated with a set of attributes that
may be used for AC decisions. For example, a subject’s attributes may include a user’s
role, rank, and security clearance. An object’s attributes may include a file’s type, a
document’s security class, and a printer’s location.

Definition 1. A MAC rule r is a statement: “if c then d”, where constraint c is a predicate
expression on AC attributes (subjects, objects, or actions) and system states (global
system events) for the permission decision d.

Definition 2. An AC property p is a proposition: “b d” where the result of the access
permission d depends on quantified predicate b on AC attributes and system states.

An access request q is a tuple (s, o, a), where s S, o O and a A. A request (s, o,
a) means that subject s requests to take action a on object o. Note that each of s, a, or o
may have multiple attributes. A MAC model is a sequence of rules, each of which is of
the form (sCond, oCond, aCond, decision, gCond, s) in the logic expression of c in
Definition 1. sCond, oCond and aCond are constraints over the attributes of a subject,
object, and action, respectively. gCond is a general constraint that may potentially be
over all the attributes of subjects, objects, actions, and other properties of a system (e.g.,

4 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

the current time and the load of a system), and s is the current state recorded from the
previous access event of the MAC system. Given a request (s, o, a), if sCond, oCond,
aCond, gCond, and s are all evaluated to be TRUE, then the request is either permitted or
denied according to the decision d as described in the rule of Definition 1. Thus, each
rule’s applicability to a request is of the form: If (sCond oCond aCond gCond s)
then (d). We can specify more complex constraint structures in a rule. For example, we
can specify rules that can be applicable to multiple-attributes requests.

A deterministic finite state transducer of a MAC model corresponding to a Finite
State Machine (FSM) with a five-tuple M = (, S, s0, , F), where:
 = {sCond1, …, sCondn, aCond1, …, aCondn, oCond1, …, oCondn, gCond1, …,
gCondn} is the input alphabet that represents the attribute constraints associated with
subject s, access a, object o, and global event g.
S = {s0, s2, ……sn,Grant, Deny} is a finite, non-empty set of recorded MAC system
states and permissions. s0 is the initial state.
 is the state-transition function, where : S S
F = {Grant, Deny}is the set of final states.

For static MAC models [10] such as Multi-Level AC (MLS) [11], Role-Based AC
(RBAC) [12], and Rule-Based AC policies (RuBAC), the FSM Mstatic does not require
intern states s to reach the permission state, thus F = S = {Grant, Deny}, i.e., Mstatic is
just a straightforward FSM model without state transitions. For dynamic MAC models
such as N-Person Control [13], and Limited_Number_of_Access policies, the input
alphabets of FSM Mdynamic are dynamic = {gCond1, …, gCondn}, where gCondi is the
threshold indicator of the access limitation, such as the number of persons have to access
at the same time in a N-Person control policy, or the maximum number of access allowed
for Limited_Number_of_Access policy. For historical MAC models such as Chinese
Wall [14] and Workflow policies [15], the input alphabets of the FSM Mhistorical are
historical = -{gCond1, …, gCondn}, where sCondi, aCondi, and oCondi contribute to a
historical recording that is used as determining factors for the next permission decision.
Note that it is possible for different types of MAC models to combine into one model
such that Mcombine = {Mstatic Mdynamic Mhistorical}

2.
An AC property p in Definition 2 as expressed by the proposition p: S 2 S of

FSM, which can be collectively translated in terms of logical formula such that p =
(si*sCond1*…*sCondn* aCond1*…* aCondn* oCond1* …* oCondn*gCond1*
…*gCondn) d, where p P is a set of properties, and * is a Boolean operator in terms
of logical formulas of temporal logic such as computational tree logic (CTL) [16, 17] and
linear-time temporal logic (LTL) [18]. The purpose of model checking is to verify the set
S in M in which p is true according to an exhaustive state space search. In addition, by
verifying the set of states in which the negation of p is true, we can obtain the set of
counterexamples to make the assertion that p is true. The satisfaction of a MAC model M
to the AC properties P by model checking is composed of two requirements:

Model Checking for Verification of Mandatory Access Contol Models and Properties 5

(1) Safety, where M satisfies P in description of safety. That is, there is no violation of
rules to the logic specified in P, and it is assured that M will eventually be in a desired
state after it takes actions in compliance with a user access request. Thus,

Axiom 1. AC safety verification is to verify Macp satisfies Pacp of MAC policy acp.

(2) Liveness, where M will not have unexpected complexities. That is, there is neither a
deadlock in which the system waits forever for system events, nor a livelock in which the
model repeatedly executes the same operations forever. Thus,

Axiom 2. Liveness check on M calculates the complexity to prove that the model is
practical, i.e., liveness of Macp is that Pacp will be satisfied within finite states (a
permission decision of AC request will be eventually made) for policy acp.

Figure 1 shows the relations between M and P in a model checking framework.

Figure 1. Mandatory Access Control model and property

The AC rules define the system behaviors that function as the transition relation in

M. Then when the AC property is represented by temporal logic formula p, we can
represent the assertion that model M satisfies p by M |= Ab Ed from Definition 2 using
temporal logic quantifier A to represent “always”, and logic quantifier E to represent
“eventually”. The purpose of safety verification (Axiom 1) and liveness verification
(Axiom 2) using model checking is to determine whether these assertions are true, and to
identify a state in which the assertions are not true as a counterexample for the assertions.
Since the behavior of the MAC system can be represented by FSM M, and the properties
that M must satisfy can be represented by temporal logic formulas, we can define the
correctness of policies more precisely as that the model can be led from every possible
state that is reachable from initial states to the defined final state while complying with
the properties [19].

3. Generic Access Control Properties

Policy:

(rules,

constraints)

Access control model: M

= (S, s0, , F)
AC properties:

P ={p1…pn}
Verify the

safety and

liveness of P

6 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

This section demonstrates the three fundamental (static, dynamic, and historical) MAC
models and properties from the separation of duty and safety point of view [10, 20]. We
also illustrate how a model and its properties can be specified in a model checking
environment.

3.1. Static models

Static policies regulate the access permission by static system states or conditions such as
rules, attributes, and system environments (times and locations for access). Popular MAC
models with these types of properties include RBAC, MLS, and RuBAC. These types of
models can be specified by asynchronous or direct specification expressions of an FSM.
The transition relation of authorization states is directly specified as a propositional
formula in terms of the current and next values of the state variables. Any current
state/next state pair is in the transition relation if and only if it satisfies the formula, as
demonstrated in the following direct specification of an FSM:
{

 VARIABLES

 access_state : boolean; /* 1 as grant, 0 as deny*/

 ……….

 INITIAL

 access_state := 0;

 TRANS /* transit to next access state */

 next (access_state) :=

 ((constraint_1 & constraint_2 & …… constraint_n) |

 (constraint_a & constraint_b & …… constraint_m) ……..);

 }

where the system state of access authorization is initialized as the deny state and moved
to the grant state for any access request that complies with the constraints of the rule
corresponding with each constraint predicate (i.e., constraint_1….& constraint_n) in a
rule, and stay in the deny state otherwise. The properties of the static constraints can be
verified using the properties expressed in the following temporal logic formulae:
AG (constraint_1 & constraint_2 & …. constraint_n) AX (access_state = 1)

AG (constraint_a & constraint_b & …. constraint_m) AX (access_state = 1) ……

AG ! ((constraint_1 & ….constraint_n) | (constraint_a & …. constraint_m) |…) AX

(access_state = 0)

which simply means that all access requests that comply with specified constraints for the
rules should be granted, and all non-compliant ones should be denied. Specifications of
the form “AG (b) AX (d)” (Definition 2) indicate essentially that for all paths (the “A”
in “AG”) for all states globally (the “G”), if b holds then (“”) for all paths, in the next
state (the “X” in “AX”) d will hold.

Model Checking for Verification of Mandatory Access Contol Models and Properties 7

3.2. Dynamic models

Dynamic policies regulate the access permission by dynamic system states or conditions
such as specified events or system counters or N-person AC policy. A MAC model with
these types of properties specifies that accesses are permitted only by a certain subject to
a certain object with certain limitations (e.g., object x can be accessed only no more than i
times simultaneously by user group y). For example, if a user’s role is a cashier, he or she
cannot be an accountant at the same time when handling a customer’s checks. This type
of model can be specified with asynchronous or direct specification expressions of an
FSM, which uses a variable semaphore to express the dynamic properties of the
authorization decision process. Another example of dynamic constraint states is enforcing
a limited number of concurrent accesses to an object. The authorization process for a user
thus has four states: idle, entering, critical, and exiting. A user is normally in the idle
state. The user is moved to the entering state when the user wants to access the critical
object. If the limited number of access times is not reached, the user is moved to the
critical state, and the number of the current access is increased by 1. When the user
finishes accessing the critical object, the user is moved to the exiting state, and the
number of the current access is decreased by 1. Then the user is moved from the exiting
state to the idle state. The authorization process can be modeled as the following
asynchronous FSM specification:
{

 VARIABLES

 count, access_limit : INTEGER;

 request_1 : process_request (count);

 request_2 : process_request (count);

 …….

 request_n: process_request (count);

 /*max number of user requests allowed by the system*/

 access_limit := k; /*max number of concurrent access*/

 count := 0; act {rd, wrt}; object {obj};

 process_request (access_limit) {

 VARIABLES

 permission : {start, grant, deny};

 state : {idle, entering, critical, exiting};

 INITIAL_STATE (permission) := start;

 INITIAL_STATE (state) := idle;

 NEXT_STATE (state) := CASE {

 state == idle : {idle, entering};

 state == entering & ! (count > access_limit): critical;

 state == critical : {critical, exiting};

 state == exiting : idle;

 OTHERWISE: state};

 NEXT_STATE (count) := CASE {

8 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

 state == entering : count + 1;

 state == exiting : count -1;

 OTHERWISE: DO_NOTHING };

 NEXT_STATE (permission) := CASE {

 (state == entering)& (act == rd) & (object == obj): grant;

 OTHERWISE: deny;

 }

 }

}

The state variables of the preceding example are used as the asynchronous states for the
concurrent access of the limited number of access requests. The specification of the
dynamic constraints is verified through the following properties expressed in temporal
logic formula:
AG (state == entering) & (act == rd) & (object == obj) AX (access = grant)

AG (state == idle | state == critical | state == exiting) AX (access = deny)

where temporal logic formula AG (b) AX(d) (Definition 2) indicates that “if
condition p is true at time t, condition d is true at all times later than t.

3.3. Historical models

Historical policies regulate the access permission by historical access states or recorded
and predefined series of events. The representative MAC policies for this type of AC
model are Chinese Wall and Workflow AC policies. This type of model can be best
described by synchronous or direct specification expressions of an FSM. For example,
the following synchronous FSM specification specifies a Chinese Wall AC model where
there are two Conflict of Interest groups COI1, COI2 of objects:
{

 VARIABLES

 access {grant, deny};

 act {rd, wrt};

 o_state {none, COI1, COI2};

 u_state {1, 2, 3};

 INITIAL_STATE(u_state) := 1;

 INITIAL_STATE(o_state) := none;

 NEXT_STATE(state) := CASE {

 u_state == 1 & act == rd & o_state == COI1: 2;

 u_state == 1 & act == rd & o_state == COI2: 3;

 u_state == 2 & act == rd & o_state == COI1: 2;

 u_state == 2 & act == rd & o_state == COI2: 2;

 u_state == 3 & act == rd & o_state == COI1: 3;

 u_state == 3 & act == rd & o_state == COI2: 3;

 OTHERWISE: 1; };

 NEXT_STATE(access) := CASE {

Model Checking for Verification of Mandatory Access Contol Models and Properties 9

 u_state == 2 & act == rd & o_state == COI1: grant;

 u_state == 3 & act == rd & o_state == COI2: grant;

 OTHERWISE: deny; };

 NEXT_STATE (act) := act;

 NEXT_STATE (o_state) := object;

}

The properties of the dynamic constraints can be verified by verifying the following
temporal logic formula:
AG ((u_state == 2 & act == rd & o_state == COI1) | (u_state == 3 & act == rd & o_state ==

COI2)) AX (access = grant)

AG ! ((u_state == 2 & act == rd & o_state == COI1) | (u_state == 3 & act == rd & o_state

== COI2)) AX (access = deny)

where temporal logic AG(b) AX(d) indicates that the access event d is invocated by
historical events in b.

4. Coverage and Confinement Checking

Although the integrity of logic in MAC model can be checked by the safety and liveness
verification (Section 2), the MAC models are still not fault-proof because the temporal
logic in the properties might not be thorough in covering all possible values of all rules or
all conditions in rules. For example, an extra permit rule may be added to a list of rules
specified for a MAC model, and the constraint of this rule may not be included in any of
the properties; therefore, the unauthorized access allowed by this extra rule cannot be
exposed by only the safety and liveness verification, thus leading to a fault due to
insufficient properties (i.e. coverage fault). Further, even if the properties cover all the
rules in the model, it is possible that the properties do not completely confine to intended
properties: the complement of a specified predicate does not guarantee results to the
complement of the permission of a property, thus risking exceptional permissions despite
the constraints enforced by the property. The rules in the model, properties, and confined
properties may each describe its own space of permission conditions, and may not be
congruent in one space as the initial relation illustrated examples in Figure 2. The safety
and liveness check can assure only the logic integrity of some rules against some
properties. The complete satisfaction of a model to its properties requires fixing of
coverage and confinement faults if any spotted by additional Coverage and Confinement
Check (CCC), the second line of defense against such semantic faults.

10 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

Figure 2. Model, confined properties, and specified properties

CCC requires mutant versions of the model [21], and extra modified properties for

additional model checking. As illustrated in Figure 2, the goal of CCC is to ensure that
the rules in the model are completely covered by the properties, and to confirm that no
exceptional access permissions are granted unless intentionally allowed. The first step of
CCC is to discover the rules, which are seeped through the specification of the properties
by applying model checking on mutated versions of rules. The second step is to detect
unexpected access permission that might not be the intention of the policy author by
applying model checking on modified properties extracted from the original properties.
The preceding steps are described in Sections 4.1 and 4.2 after the following formal
definitions.

Axiom 3. A MAC rule r is covered by an AC property p when the access decision d of p
depends on r of the MAC model, verified through safety and liveness checking without
counterexamples of r against p. Function CM(…ri…pi...) = TRUE | FALSE decides if rule
ri in the model M is covered by property pi, where ri is a member of rule set R, and pi is a
member of property set P.

Definition 3. The negation of a MAC rule r, ~r = “if c then ¬d” from Definition 1.

 Specified

properties

Confined

properties

Specified

properties

Model

Confined

properties

Confined

properties /

Confined

properties

Model

Model/

specified

properties

specified

properties

Model /

Coverage fault
fixing

Confinement
fault fixing

Initial relation

or

All rules and all

properties verified

All rules and properties

are verified and

confined

Some rules and

some properties

verified

Model Checking for Verification of Mandatory Access Contol Models and Properties 11

Definition 4. The confinement of an AC property p= b d, p’ = ¬b ¬d, is the
complement expression of p, i.e., the negation of b causes the negation of d. For example,
p = (xyz) grant, p’ = (xyz) deny.

4.1. Rule coverage checking

The key notion of rule coverage checking is to synthesize a version of the given model in
such a way that the permission of its rules is mutated such that rule r is changed to ~r. If
property set P is satisfied by both mutated and original models of M through model
checking, then some of the rules and their mutants would never applied to P; in other
words, P does not cover all the rules in model M. Formally:

Theorem 1. If (CM(r, p) CM(~r, p)) then “r is not applied to properties p”.

Proof. CM (r, p) = TRUE says that p depends on rule r to reach the access decision
(Axiom 1). CM (~r, p) = TRUE says that p depends on rule ~r to reach the access
decision d, since r = “if c then d” and ~r = “if c then ¬d”(Definitions 1 and 3), which
leads to CM (r, ~r, p) = TRUE, i.e., p depends on both r and ~r for d. The only condition
for this result to hold is when r is a “don’t care” variable in the Boolean predicate of p;
in other words, r is not covered by p.

As an example in Figure 3, the safety and liveness checking verify that p conforms to
the model without counterexamples; however, by applying the CCC by mutating the rule
u == j :grant to u == j : deny for the coverage checking, the result shows that the
property satisfies the mutated rules as well (without counterexamples), indicating that the
variable u in the rule r was never applied to the property p.

NEXT_STATE(q):= CASE {

 x :i

 ….

}

NEXT_STATE(access):= CASE {

 u == j :grant

 g == I : grant

OTHERWISE: deny

 ……

}

NEXT_STATE(access):= CASE {

u == j :deny

g == I : deny

OTHERWISE: grant

 ……

}

Mutant

…….

AG (q == i) access = grant

c

d

r

d

b d

~r

p

12 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

Figure 3. Example of uncovered rules in a MAC model

This result shows that the rule u == j : grant is not verified with the property AG (q

== i) access = grant. One way for addressing this insufficiency is adding a new
property that describes proper control of u. Note that it is necessary to check every r in M
against the set of all properties P to achieve thorough verification.

4.2. Property confinement checking

Property confinement checking ensures that there is no exceptional permission allowed in
addition to the specified properties; this checking requires a confined property p’
(Definition 4) modified from the original property p to be added for the next run of model
checking. Confinement check should discover the discrepancy of the specified properties
and the properties the MAC policy author intend. The rationale is that if model M does
not satisfy p’, then there are exceptional access permissions that leak through p, formally:

Theorem 2. If (CM (r, p) CM (r, p’)) then there is no exceptional permission allowed
from p in model M against rule r.

Proof. CM(r, p) says that p is covered by model M with rule r, and CM (r, p’) says that
p’ is covered by rule r (Axiom 3), since CM (r, p) CM (r, p’) equaling to CM (r, p, p’)
implies that r is covered by both p and p’, such that p: r d and p’: r d, which
means any rule that is a negation of r will cause permission d changes to d.

Figure 4 shows a transition to an unspecified state for a certain range of data values
that allow exceptional permission not covered by a specified property because the value
of access when u value is different than i (such as u = j) also grants access permission
by the rule otherwise : grant. This fault can be caught by a counterexample AG (u ==
j) access = grant when checking the model M against the additional confinement
property AG (u == i) access = deny derived from original property AG (u == i)
 access = grant. The additional model checking for confinement verification
informs the MAC policy authors which property is not confined so that the MAC policy
author can add new rules to enforce the safety of the model. As in this case, changing the
rule otherwise : grant to otherwise : deny and adding all granted rules in the state
will correct the problem.

Model Checking for Verification of Mandatory Access Contol Models and Properties 13

Figure 4. Unconfined rule in a property

Note that it is possible the MAC policy author intentionally allowed the exception

for a specified property, and it is necessary to check every p against the set of rules R =
{r1 … rn} to achieve thorough verification.

5. Test Suite Generation

As testing must always be conducted once a policy is implemented to assure correct
implementation, automated generation of test cases can reduce total costs, thus making
formal specification easier to integrate into the development process in addition to
supporting property verification. Model checking is ideal for this integration because it
can solve the oracle problem for testing (determining expected results for a particular set
of test input data). A case study of this technique for software is given by [22]. Even with
highly automated tools, real-world development budgets rarely allow the development
and exploration of formal models, because the cost must be balanced against the cost of
releasing code with faults that would not be caught in testing. But testing typically
consumes 50% or more of a development budget. Generating test cases from formal
specifications makes it cost-effective to allocate a portion of the testing budget to produce
a formal specification, which can then be used to confirm desired properties and generate
test cases.

Combinatorial testing is a methodology that tests all t-way [23] combinations of
input parameter values. For n variables with v values, t-way combinations, combinatorial
testing requires a number of tests proportional to vt log n, which is enormous to be
practical if t is a large enough number; however, the most common form is pairwise
testing, in which all pairs of input values are covered in at least one test. Higher strength

…….

AG (u == i) access = grant

NEXT_STATE(u):= CASE {

 x==s :i

 x==t :j

NEXT_STATE(access):= CASE {

 u== k : deny

 ……

Otherwise grant

}

AG (u == i) access = deny Addition

r d

b d
b d p p’

14 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

versions of this method cover 3-way, 4-way, or more interactions at least once. The
advantage of combinatorial testing for verifying MAC policies is that AC often relies on
a small number of discrete values for most parameters. For example, an MLS policy (i.e.,
standard military classification policy) may have levels unclassified, confidential, secret,
top secret, plus a small number of categories, all applied to a collection of resources such
as files and programs. While real-world MAC is likely to have far too many variables for
exhaustive testing, it will probably be possible to test, for example, all 5-way
combinations of variable values. Thus a failure that results from the interaction of five or
fewer variables is likely to be caught. The number of tests required to provide 5-way
coverage may be large, but if complete tests are fully automated, then this form of testing
is practical even for large systems.

The first step in combinatorial testing of the policy is to find a set of tests that will
cover all t-way combinations of parameter values for the desired combinatorial
interaction strength t. This collection of tests is known as a covering array. The covering
array specifies test data, where each row of the array can be regarded as a set of
parameter values for an individual test. Collectively, the rows of the array cover all t-
way combinations of parameter values. An example is given in Figure 5, which shows a
3-way covering array for 10 variables with two values each. The interesting property of
this array is that any three columns contain all eight possible values for three binary
variables. For example, taking columns F, G, and H, we can see that all eight possible 3-
way combinations (000,001,010,011,100,101,110,111) occur somewhere in the rows of
the three columns. In fact, this is true for any three columns. Collectively, therefore, this
set of tests will exercise all 3-way combinations of input values in only 13 tests, as
compared with 1024 for exhaustive coverage. Similar arrays can be generated to cover up
to all 6-way combinations. A non-commercial research tool called Automated
Combinatorial Testing Suite (ACTS) [24] developed by NIST and the University of
Texas at Arlington makes this possible with much greater efficiency than previous tools.
For example, a commercial tool required 5400 seconds to produce a less optimal test set
than ACTS generated in 4.2 seconds.

 A B C D E F G H I J
1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 0 1 0 0 0 0 1
4 1 0 1 1 0 1 0 1 0 0
5 1 0 0 0 1 1 1 0 0 0
6 0 1 1 0 0 1 0 0 1 0
7 0 0 1 0 1 0 1 1 1 0
8 1 1 0 1 0 0 1 0 1 0
9 0 0 0 1 1 1 0 0 1 1
10 0 0 1 1 0 0 1 0 0 1
11 0 1 0 1 1 0 0 1 0 0

Model Checking for Verification of Mandatory Access Contol Models and Properties 15

12 1 0 0 0 0 0 0 1 1 1
13 0 1 0 0 0 1 1 1 0 1

Figure 5. 3-way covering array for 10 parameters with 2 values each

To produce test cases that guarantee combinatorial coverage to an interaction level t,

we produce a t-way covering array [22] for input parameters used in the policy.
Informally, a covering array can be viewed as a table of input data where each column is
an input parameter and values in each column are parameter values, so that each row
represents a test. All possible t-way combinations of parameter values are guaranteed to
be covered at least once. If t = 2, this procedure results in the familiar “pairwise” testing,
but using new algorithms, we are able to produce covering arrays up to strength t = 6.

Two specification claims in forms of properties are generated for each covering array
row, one for result grant and one for result deny. Values vij are taken from row i, column j
of the covering array, for all rows.

AG (p1 = v11 & ... & pn = v1n) AX !(access_state = grant)

AG (p1 = v21 & ... & pn = v2n) AX !(access_state = grant)

……

AG (p1 = vn1 & ... & pn = vnn) AX !(access_state = grant)

AG (p1 = v11 & ... & pn = v1n) AX !(access_state = deny)

AG (p1 = v21 & ... & pn = v2n) AX !(access_state = deny)

……

AG (p1 = vn1 & ... & pn = vnn) AX !(access_state = deny)

For a covering array with n rows, a total of 2n specification claims will thus be
produced, one grant and one deny for each row of the covering array. In the claims,
possible results grant or deny are negated. For each claim, if this set of values cannot in
fact lead to the particular result, the model checker indicates that this is true. If the claim
is false, the model checker indicates so and provides a counterexample with a trace of
parameter input values and states that will prove it to be false. The model checker thus
filters the claims that we have produced so that a total of n test inputs are generated. In
effect, each one is a test case, i.e., a set of input parameter values and expected result. It is
then simple to map these values into test cases in the syntax needed for the system under
test. When interaction testing is done today, t is nearly always 2 (i.e., pairwise testing)
because higher strength interactions require exponentially more test cases. Thus, higher
strength interaction testing requires fully automated generation of test input data and
expected results, which is made possible through model checking.

This technique makes it possible to produce two complementary types of test cases.
In addition to combinatorial test cases, fault-based testing can be automated. By inserting
particular faults in the specification, then generating counterexamples using the model
checker, we can produce test cases that will detect these faults or faults that are subsumed
by them.

16 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

Model

Checking

Test Case

Generator

Access control

model

Test cases Access control

properties

Access control policy

implementation
Covering array

Counterexamples

Covering

Array

Generator

Coverage and

Confinement

Mutation

6. Test Scheme

A generic test scheme for MAC models and properties verification can be constructed.
The scheme starts by expressing MAC models in the specification language of a model
checker, and the AC properties in temporal logic formula. Then the system verifies these
properties by exploiting the verification process of the model checker. Next, another run
of model checking with mutated rules and modified properties guarantees that the rules
are covered and confined by the properties. Finally, test cases consisting of input data and
expected results are created by applying the covering array generated from the
combinatorial array generation function to model checking with the sufficient properties.
One goal of the techniques in this approach is to reduce overall software assurance costs
by integrating verification with test generation.

The scheme in Figure 6 contains four major functions implementing the previously
described mechanisms. The function Model Checking checks the MAC model against the
specified AC properties, including three such checks. The first is phase safety and
liveness verification, which ensures that the specified properties are satisfied by the
model. The second is phase verification, which rectifies the differences between the
MAC rules and properties in terms of coverage and confinement through the Coverage
and Confinement Mutation function. When the results report uncovered entities, the users
further modify/add new properties or rules to amend the discrepancies. The last check,
phase of model checking takes the covering array generated by the Covering Array
generator and integrates the array variables into generic deny and grant properties for
detecting counterexamples against properties resulted from the second phase. The
counterexamples are then fed into the Test Case generator to produce the test cases (both
test inputs and their expected outputs). These test cases running on the MAC
implementation can comprehensively cover the behavior and verify whether the actual
test outputs are the same as the expected outputs.

Figure 6. Scheme for MAC model/AC properties testing

7. Case Study

Model Checking for Verification of Mandatory Access Contol Models and Properties 17

We developed a tool called Access Control Policy Testing System (ACPTS). The tool
helps a user specify policy models and their properties. ACPTS integrates NuSMV [25]
for symbolic model checking and ACTS for generating combinatorial tests. From ACTS,
the covering array specifies test data, where each row of the array can be regarded as a set
of parameter values for an individual test. Collectively, the rows of the covering array
cover all t-way combinations of parameter values for incorporating into Symbolic Model
Verifier (SMV) property specifications that can be processed by the NuSMV model
checker.

In this study, we used a simple grading RBAC access control policy model
composed by ACPTS. We also describe its property set for verification. The policy
model and its property set are converted into NuSMV model and verified whether its
property set is satisfied. We then perform covering array generation for combinatorial
tests, mutant rule verification for detecting for detecting insufficient rule coverage by a
specified property set, and mutant property verification to detect the discrepancy of the
specified properties and the properties that the MAC policy author intend.

7.1. Model Specification in ACPTS

A policy author can edit (i.e., add, delete, and modify) RBAC, Multi-Level security, and
Workflow policy models [26] and their properties using the tool. The top-left window in
Figure 7 shows specified policy models as a tree structure. The top-right window
provides a working area for the policy author to edit a selected model. In Figure 7, the
policy author specifies an RBAC policy with a set of roles (i.e., Faculty and Student),
user-role relations (i.e., Jane is Faculty and Jim is Student), and roles’ permissions (e.g.,
Faculty can write grades and Student cannot write grades).

View Policy
Workspace

Output Window

Policy Editor

Sets of Roles

User-Role
relations

Role
Permissions

•RBAC Model

View Policy
Workspace

Output Window

Policy Editor

Sets of Roles

User-Role
relations

Role
Permissions

•RBAC Model

18 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

Figure 7. An example RBAC policy model using ACPTS

As shown in Figure 8, the property describes the conditions for permitting a Faculty

to write grades. Note that the policy author does not need to specify some of NuSMV-
specific constraint symbols (i.e., AG and AX). However, such constraint symbols are
added by ACPTS when a property is converted to the NuSMV format shown in Figure 9.

Figure 8. An example property specified in ACPTS

For model and property verification, NuSMV takes the description of finite state

systems of the MAC model and specified properties as input; it then verifies finite state
systems against their properties. NuSMV produces verification reports on whether the
given properties are satisfied; when a property is violated, a counterexample will be
generated accordingly. Figure 9 shows a NuSMV input describing the example RBAC
model.

Property
Text

Property Editor
Property
Text

Property EditorProperty Editor

Model Checking for Verification of Mandatory Access Contol Models and Properties 19

Figure 9. A NuSMV input describing an example RBAC model and its property

7.2. Covering array generation

For covering array generation, ACTS takes the description of variables as input; it then
generates t-way covering arrays for given variables. The ACPTS generates 2-way and 3-
way covering array for combinatorial tests, and compare their size and rule coverage.

Figure 10 shows the generated 2-way and 3-way covering arrays for the given
subjects (e.g., Faculty, and Student), resources (e.g., grades and records), and actions
(e.g., write and view), and, 4 and 8 rows are generated, respectively. As an MAC policy
model is often composed of three attributes (subject, action, object), a 3-way covering
array can be considered as exhaustively includes all possible combinations of values in
each attribute. We can reduce the number of rows in a covering array by considering 2-
way combinations of these attributes for detecting a fault related to 2-way interactions.

MAC State
Descriptions

MAC State
Transitions

MAC
Properties

20 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

Figure10. 2-way (left) and 3-way (right) covering array of given subjects, resources, and actions by ACTS

7.3. Mutant Rules

We perform mutant rule verification to detect insufficient rule coverage by a specified
property set. When ACPTS detects any missing rule coverage, a policy author can
augment the existing properties with new properties to achieve high rule coverage.

r1: role_subject = Faculty & resource = grades & action = write : Deny ;

 r2: role_subject = Student & resource = grades & action = write : Permit ;

Figure 11. mutant rules

In order to check whether a given property set in Figure 9 is satisfied, we mutate the
first and second rules one at a time to produce two mutant rules as shown in Figure 11..
where r1 and r2 represent mutant rules of the first and second rules, respectively by
negating their decisions (Definition 3) in Figure 9. As a verification result, the property
set is not satisfied and a counterexample is reported as follows.

-> State: 1.1 <-
 decision = NA
 role_subject = Faculty
action = write

 resource = grades
 …
-> State: 1.2 <-
 decision = Deny

This counterexample indicates that the property set can cover at least one of the two
mutated rules. The counterexample illustrates that the property (Faculty is permitted to
write grades) is violated because a request that a Faculty is denied to write grades.

To determine which rule is not covered by the property set, we mutate a rule (one at
a time) in the original policy. When only the first rule is mutated, the counterexample is
generated in the process of verification. This counterexample indicates that the first rule

Model Checking for Verification of Mandatory Access Contol Models and Properties 21

is covered by the property set. However, when the second rule is mutated, no
counterexample is generated. This verification result indicates that the second rule is not
covered by the property set. Therefore, the existing property set achieves insufficient rule
coverage not covering the second rule coverage. We manually generate and augment the
following property derived from the second rule.

SPEC AG ((role_subject = Student) & (resource = grades) & (action = write) ->
AF decision = Deny)

With the addition of this property, the new property set is sufficient in achieving full rule
coverage and NuSMV reports counterexamples in the verification of all the mutants.

7.4. Mutant Property

We conduct property confinement checking to detect security problems caused by
allowing exceptional permission. We generate and add a property’s mutant property to
the NuSMV model for the next run of model checking. Figure 12 shows a mutant
property derived from the property set described in Figure 9.

SPEC AG (! ((role_subject = Faculty) & (resource = grades) & (action =
write)) -> AF decision = Deny)

Figure 12. mutant property

The model in Figure 9 is verified against the mutated property, and a counterexample
is reported as follows.

-> State: 1.1 <-
 decision = NA
 role_subject = Student
 action = view

resource = records

This counterexample illustrates that the mutated property is violated because
NuSMV found that non-applicable decision (denoted as “NA”) is returned for a request
that a Student view records. This checking detects the discrepancy of the specified
properties by the counterexample, which is derived from otherwise : decision (which
is specified as “1 : decision; ” in Figure 9). Therefore, we change otherwise : decision
to otherwise : Deny (which is specified as “1 : Deny; ” in Figure 9) to remove such
discrepancy. Our confinement checking technique helps detect such discrepancy and the
policy author can increase their confidence for policy correctness by fixing the
discrepancy or confirming the discrepancy to be intended.

8. Related Work

22 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

There exist several verification techniques for applying model checking on MAC policies
but few general verification techniques for applying model checking on MAC models
and generating test cases as our proposed approach. Zhang et al. [27] present a model-
checking algorithm that evaluates if a MAC policy can satisfy a user’s access request as
well as prevent intruders from reaching their malicious goals. Instead of generic model
language, policies of the MAC system and goals of agents must be described in the AC
description and specification language introduced as RW in their earlier work. The
language does not provide the flexibility for the specification of dynamic or historical
types of MAC model nor for the descriptions of the general properties of access
constraints. Kikuchi et al. [19] proposed the policy verification and validation framework
based on model checking that exhaustively verifies a policy’s validity by considering the
relations between system characteristics and policies. Their approach defines the validity
of policies and the information needed to verify them from the viewpoint of model
checking as well as constructs the policy verification framework based on the definition.
Besides rule-based system policies, there is no demonstration that shows the proposed
framework is proper for generic MAC policies. Schaad et al. [28] presented a model-
checking approach to analyze the delegation and revocation functionalities of workflow-
based enterprise resource management (ERP) systems. Their approach is done in the
context of a real-world banking workflow requiring static and dynamic separation of duty
properties. The approach derived information about the workflow from Business Process
Execution Language (BPEL) specifications and ERP business object repositories. This
was captured in an SMV specification together with a definition of possible delegation
and revocation scenarios. Their focus was on how to capture the workflow in an SMV
model amended by an LTL-based specification of the Separation of Duty properties
without much consideration of generic MAC models.

Different from these existing approaches, our proposed approach is targeted at MAC
models and their generic properties, and is more general and applicable in a larger scope
of models and properties. In addition to property verification, our approach provides
efficient test generation, which generates test cases that guarantee combinatorial coverage
for the input parameters used in the policy, thus a thorough verification of MAC
implementation.

9. Conclusion

To verify properties for MAC models, we propose a new general approach that expresses
MAC models in the specification language of a model checker and generic AC properties
in its property language as temporal logic formula. Then the approach exploits the
verification process of the model checker to verify the specified models against the
specified properties. Our approach is able to support the verification of three common
types of generic AC properties: static, dynamic, and historical constraints. In addition, the
approach also supports automated generation of test cases to check the conformance of
the models and their implementations.

Model Checking for Verification of Mandatory Access Contol Models and Properties 23

In future work, we plan to develop a tool for assisting the users in specifying MAC
models and properties in a more user friendly way. We also plan to investigate and
expand the scope of models and properties supported by our approach. Through our
research, we will gain understanding about testing and verifying MAC policies in policy
development, which should lead to better policy quality and higher security assurance in
general. Our research results related to fundamentally advancing knowledge and
understanding will be disseminated in software engineering and security conferences,
journals, and books in various forms (e.g., papers, tutorials, and book chapters). The
groundwork for the proposed work has been widely published [29-35], and we will
continue to widely disseminate the results produced by the proposed work.

The work of conformance verification of generic MAC properties brings benefits to
society in two aspects. First, it should lead the practices for testing and verifying MAC
policies in improving policy quality and security in general. Second, innovations in new
testing and verification algorithms and tools tend to propagate quickly across application
or task domains where MAC policies are used.

References

[1] C. P. Pfleeger, Security In Computing Second Edition, Prentice-Hall PTR, 1997.
[2] D. Ferraiolo, D. Kuhn, and R. Chandramouli, Role-Based Access Control, Artech House,

Computer Security Series, 2003.
[3] V. Hu, D. Frincke, and D. Ferraiolo, The Policy Machine For Security Policy Management, in

Proc ICCS Conference, San Francisco, May 2001.
[4] P. Bonatti, S. Vimercati, and P. Samarati, A modular approach to composing access control

policies, in Proc. ACM Conference on Computer and Communication Security, Athens,
Greece, November 2000.

[5] S. Jajodia, P. Samarati, and V. S. Subrahmanian, A logical language for expressing
authorizations, in Proc. 1997 IEEE Symposium on Security and Privacy, pp 31–42, 1997.

[6] M. Kudo and S. Hada, XML document security based on provisional authorization, in Proc.
ACM Conference on Computer and Communication Security, Athens, Greece, November
2000.

[7] E. C. Lupu and M. Sloman, Conflict in policy-based distributed systems management, IEEE
Transaction on Software Engineering, 25(6):852–869, 1999.

[8] E. Martin, T. Xie, and V. C. Hu, Assessing Quality of Policy Properties in Verification of
Access Control Policies, North Carolina State University Department of Computer Science
Technical report TR-2007-25, September 16, 2007.

[9] D. R. Kuhn, R. Kacker Y. Lei, 22 CROSSTALK The Journal of Defense Software
Engineering, June 2008.

[10] V. C. Hu, R. D. Kuhn, T. Xie, Property Verification for Generic Access Control Models, in
Proc The 2008 IEEE/IFIP International Symposium on Trust, Security and Privacy for
Pervasive Application (TSP2008), Shanghai, China, December 17–20 2008.

[11] D. E. Bell and L. J. LaPadula, Secure computer systems: Mathematical foundations, MITRE
Corporation, 1973.

[12] D. Ferraiolo and R. Kuhn, Role based access control, in Proc. 15th NIST-NCSC National
Computer Security Conference, pp. 554–563, 1992.

[13] National Computer Security Center, Integrity in Automated information System, Technical
Report 79-91, Library No. S237,254, September. 1991.

24 Vincent C.Hu, D. Richard Kuhn, Tao Xie, JeeHyun Hwang

[14] D. F. C. Brewer and M. J. Nash, The Chinese wall security policy, in Proc. IEEE Symposium

on Security and Privacy, pp. 206–214, 1989.
[15] Workflow Management Coalition, Workflow Management Coalition Terminology &

Glossary, documentation number WFMC-TC-1011, February 1999. http://www.wfmc.org/.
[16] M. Ben-Ari, Z. Manna, and A. Pnueli, The temporal logic of branching time, Acta

Informatica 20, 1983.
[17] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of finite-state

concurrent systems using temporal-logic specifications, ACM Trans. on Programming
Languages and Systems, Vol.8, No.2, 1986.

[18] A. Pnueli, A temporal logic for concurrent programs, Theoretical Computer Science, Vol.13,
1980.

[19] S. Kikuchi, S. Tsuchiya, M. Adachi, and T. Katsuyama, Policy Verification and Validation
Framework Based on Model Checking Approach, in Proc. International Conference on
Autonomic Computing, pp. 1–9, 2007.

[20] T. Jaeger and E. T. Jonathon, Practical Safety in Flexible Access Control Model, ACM
Transitions on Information and System Security, Vol. 4, No.2, May 2001, pp. 158–190.

[21] E. Martin and T. Xie., A Fault Model and Mutation Testing of Access Control Policies, in
Proc the 16th International Conference on World Wide Web Banff, Alberta, Canada, pp. 667–
676, May 2007.

[22] D. R. Kuhn and V. Okun, Pseudo-exhaustive Testing For Software, in Proc. 30th NASA/IEEE
Software Engineering Workshop, April 25–27, 2006.

[23] Y. Lei et al. Efficient Test Generation for Multi-Way Combinatorial Testing, Software
Testing, Verification, and Reliability, Wiley InterScience, October 2007.

[24] http://csrc/nist/gov/acts
[25] NuSMV: NuSMV 2.2 Tutorial, a new symbolic model checker. http://nusmv.irst.itc.it/
[26] R. Sandhu, V. Bhamidipati, and Q. Munawer, The ARBAC97 model for role-based

administration of roles, ACM Transactions on Information and Systems Security, 2(1):105–
135, Feb. 1999.

[27] N. Zhang, M. D. Ryan, and D. Guelev, Evaluating Access Control Policies Through Model
Checking, in Proc. Information Security Conference, pp. 446–460, 2005.

[28] A. Schaad, V. Lotz, and K. Sohr, A model-checking approach to analysing organisational
controls in a loan origination process, in Proc ACM Symposium on Access Control Models
and Technologies, pp. 139–149, 2006.

[29] V. C. Hu, E. Martin, J. Hwang, and T. Xie, Conformance Checking of Access Control
Policies Specified in XACML, in Proc. 1st IEEE International Workshop on Security in
Software Engineering (IWSSE 2007), Beijing, China, pp. 275–280, July 2007.

[30] E. Martin and T. Xie, A Fault Model and Mutation Testing of Access Control Policies, in
Proc. 11th International Conference on World Wide Web (WWW 2007), Security, Privacy,
Reliability, and Ethics Track, Banff, Alberta, Canada, pp. 667–676, May 2007.

[31] E. Martin and T. Xie, Automated Test Generation for Access Control Policies via Change-
Impact Analysis, in Proc. 3rd International Workshop on Software Engineering for Secure
Systems (SESS 2007), Minneapolis, MN, pp. 5–11, May 2007.

[32] E. Martin, T. Xie, and T. Yu, Defining and Measuring Policy Coverage in Testing Access
Control Policies, in Proc. 8th International Conference on Information and Communications
Security (ICICS 2006), Raleigh, NC, pp. 139–158, December 2006.

[33] E. Martin and T. Xie, Automated Test Generation for Access Control Policies, in
Supplemental Proc. 17th IEEE International Conference on Software Reliability
Engineering (ISSRE 2006), Fast Abstracts, Raleigh, NC, November 2006.

Model Checking for Verification of Mandatory Access Contol Models and Properties 25

[34] E. Martin and T. Xie, Inferring Access-Control Policy Properties via Machine Learning, in

Proc. 7th IEEE Workshop on Policies for Distributed Systems and Networks (POLICY 2006),
London, Ontario Canada, pp. 235–238, June 2006.

[35] E. Martin, T. Xie, and V. C. Hu, Assessing Quality of Policy Properties in Verification of
Access Control Policies, North Carolina State University Department of Computer Science
Technical report TR-2007–25, September 16, 2007.

