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Abstract
Machine learning techniques, especially deep neu-
ral networks (DNNs), have been widely adopted in
various applications. However, DNNs are recently
found to be vulnerable against adversarial exam-
ples, i.e., maliciously perturbed inputs that can mis-
lead the models to make arbitrary prediction errors.
Empirical defenses have been studied, but many of
them can be adaptively attacked again. Provable
defenses provide provable error bound of DNNs,
while such bound so far is far from satisfaction. To
address this issue, in this paper, we present our ap-
proach named Robustra for effectively improving
the provable error bound of DNNs. We leverage the
adversarial space of a reference model as the feasi-
ble region to solve the min-max game between the
attackers and defenders. We solve its dual prob-
lem by linearly approximating the attackers’ best
strategy and utilizing the monotonicity of the slack
variables introduced by the reference model. The
evaluation results show that our approach can pro-
vide significantly better provable adversarial error
bounds on MNIST and CIFAR10 datasets, com-
pared to the state-of-the-art results. In particular,
bounded by `∞, with ε = 0.1, on MNIST we re-
duce the error bound from 2.74% to 2.09%; with
ε = 0.3, we reduce the error bound from 24.19% to
16.91%.

1 Introduction
In recent years, machine learning techniques, especially deep
neural networks (DNNs), have been widely adopted in var-
ious applications, such as image classification and machine
translation. However, DNNs are recently found to be vul-
nerable against adversarial examples, i.e., maliciously per-
turbed inputs that can mislead the models to make arbi-
trary prediction errors [Szegedy et al., 2014]. Such mali-
cious perturbations are usually imperceptible to human eyes,
but allow attackers to easily mislead the behavior of DNNs.
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The existence of adversarial examples impedes application
of DNNs in domains where the safety is highly sensitive,
such as autonomous driving and access control systems. Al-
though a series of heuristic defenses [Papernot et al., 2016;
Samangouei et al., 2018] have been proposed to defend
against existing adversarial examples, many of these defenses
can be adaptively attacked again [Carlini and Wagner, 2017b;
Athalye et al., 2018]. How to train DNNs that are guaranteed
to be robust to any attack serves as an open problem to the
community.

Recently, provable defenses [Wong and Kolter, 2018;
Wong et al., 2018] have been proposed to train DNNs with
low provable error bound, which refers to the fraction of test
set inputs for which there is provably no adversarial exam-
ple within allowed perturbations. However, provable error
bounds of DNNs so far are far from satisfaction. For exam-
ple, on CIFAR10, the state-of-the-art provable error bound
is still as high as 46.11%, when bounded by `∞, with ε =
2/255 [Tjeng et al., 2019].

To address the issue, in this paper, we present our approach
named Robustra for effectively improving the provable er-
ror bound of ReLU-based DNNs. We formalize the target
task as a min-max game between the attackers and defend-
ers. Different from previous work [Wong and Kolter, 2018]
that solves the min-max optimization over the whole norm-
bounded space, we additionally leverage the adversarial space
of a reference model as the feasible region. Specifically, given
a reference model, our formalized problem seeks to train a
model that is robust in the adversarial space of the reference
model, i.e., the adversarial examples cannot transfer to the
model that we train.

Solving such a non-convex problem is non-trivial. We use
linear approximation for ReLU activations in the DNNs, and
solve its dual problem. The constraint related to the refer-
ence adversarial space introduces a family of slack variables
in the dual problem, causing no existing approach to effec-
tively solve it. To address the problem, by leveraging the
monotonicity and boundedness of the slack variables’ gra-
dients, only querying the gradients once, our approach di-
rectly calculates out the solution for slack variables. Thus,
we solve the problem in the same order of time as the previ-
ous work [Wong et al., 2018]. Furthermore, by using simi-
lar techniques introduced in the previous work [Wong et al.,
2018], Robustra is scalable to be applied to large models such



as ResNet. Moreover, we train a pair of models mutually, i.e.,
iteratively using one as training model and the other as refer-
ence, and thus we obtain a pair of robust models at the same
time, without requiring external reference.

We evaluate Robustra on the MNIST and CIFAR10
datasets. The evaluation results show that our approach
can provide significantly better provable adversarial error
bounds on both datasets, compared to the state-of-the-art re-
sults. Specifically, we reduce the error bound from 24.19% to
16.91% with `∞ norm ε = 0.3 on MNIST, and from 46.11%
to 43.68% with `∞ norm ε = 2/255 on CIFAR10.

In summary, this paper makes the following main contri-
butions:

• We propose Robustra, a novel approach for training ro-
bust ReLU-based DNNs. Robustra formalizes the prob-
lem of robust training as a min-max optimization over
the adversarial space of a reference model.

• We propose an algorithm that leverages the monotonic-
ity and boundedness of the slack variables in the dual
problem to efficiently solve the optimization problem.

• We evaluate Robustra on both MNIST and CIFAR10
datasets. The evaluation results show that Robustra pro-
duces DNNs with significantly better provable adversar-
ial error bounds compared to the state-of-the-art results.

Our code and model weights are available at
https://github.com/llylly/Robustra.

2 Preliminaries
In this work, we consider a pair of ReLU-based DNNs f
and g, where f is the trainable model, and g is the reference
model. We refer to f as fθ in some places to explicitly em-
phasize the trainable parameters θ.

Let n denote the dimension of input vector, and m denote
the number of classes. The ReLU function is ReLU(x) =
max(x, 0). f and g are formally defined as follows:z0 = x ∈ Rn,

zi = ReLU(Wizi−1 + bi), 1 ≤ i ≤ k1
f(x) = zk1 ∈ Rm.w0 = x ∈ Rn,
wi = ReLU(Uiwi−1 + di), 1 ≤ i ≤ k2
g(x) = wk2 ∈ Rm.

Namely, f (resp. g): Rn → Rm is a k1 (resp. k2)-layer neural
network with parametersWi, bi, 1 ≤ i ≤ k1 (resp. Ui, bi, 1 ≤
i ≤ k2). All activations functions are ReLU functions in f
and g.

Given an input x, we have f(x), g(x) ∈ Rm, representing
the predicted probability for each class. Let

(
f(x)

)
i

(resp.(
g(x)

)
i
) represent the ith dimension of f(x) (resp. g(x)),

i.e., the predicted probability of class i.
In this paper, we use `∞ norm to measure the adversarial

perturbation. We also support to work on `1 norm or `2 norm
by applying the techniques introduced in [Wong et al., 2018].
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Figure 1: A heuristic training approach that aims at reducing the
overlap of adversarial space to a reference model can make the
model internally robust (see red curve).

3 Related Work and Background
Attacks and Empirical Defenses. Szegedy et al. [2014]
discover the broad existence of adversarial examples in neu-
ral networks. From then on, various attack approaches have
been proposed, such as FGSM [Goodfellow et al., 2015],
CW [Carlini and Wagner, 2017b; Carlini and Wagner, 2017a],
and PGD [Madry et al., 2018]. At the same time, heuristic
defenses have been proposed, such as Distillation [Papernot
et al., 2016] and Defense-GAN [Samangouei et al., 2018].
Although these heuristic defenses have empirically shown ef-
fectiveness against existing attacks, they can be adaptively
attacked again after being proposed [Athalye et al., 2018;
Carlini, 2019].
Provable Defenses. Provable defenses train DNNs with
low provable error bound, i.e., they can provably guarantee
robustness for a fraction of test set inputs against any attacks
for the trained DNNs. Existing provable defenses use the up-
per bound of loss function as (part or all of) the training ob-
jective. Existing upper-bound derivation approaches include
SDP [Raghunathan et al., 2018], LP-dual [Wong and Kolter,
2018; Wong et al., 2018], and LP [Mirman et al., 2018;
Singh et al., 2018]. Besides, concurrent work by Xiao et
al. [2019] combines PGD adversarial training with regular-
ization for weight sparsity and ReLU stability. However,
provable error bounds of DNNs obtained from these existing
approaches are far from satisfaction.
DNN Verification. DNN verification approaches determine
provable error bound for trained DNNs. Reluplex [Katz
et al., 2017] pioneers the field but is not scalable to ver-
ify DNNs with more than a thousand neurons. By using
Mixed Integer Programming, Tjeng et al. [2019] provide
a much faster approach for DNN verification. Other ap-
proaches provide relaxed provable error bound by using LP-
based relaxations [Weng et al., 2018; Singh et al., 2019;
Salman et al., 2019] or SDP-based relaxations [Fazlyab et
al., 2019].

4 Motivation: An Empirical Observation
Our approach is inspired by an empirical observation: during
training, merely limiting overlap of the adversarial space with



a reference model can make the model internally robust. This
observation indicates that the adversarial space of one model
should be defended against with high priority.

Specifically, given an input x and its true label y, a natu-
rally trained reference model g(·), we train a model f(·) by
modifying the training objective from original loss function

`f
def
= ` (f(x), y) to `f + λ| cos〈Ox`f ,Ox`g〉|, where λ is

a tunable hyper parameter, being set to 0.1; g, the reference
model, is a naturally trained model. Our intuitive approach
aims at guiding the local gradients between two models to
be diverse (orthogonal) in terms of their cosine angle, hence
reducing the overlap of their adversarial spaces.

Figure 1 shows the error curves by training epochs. The
error rate is measured by the success rate of untargeted PGD
attack bounded by `∞ with ε = 0.1. The blue curve repre-
sents the natural trained model g, where as the natural training
goes, the error rate slightly increases. The two dashed curves
represent the transfer attack’s success rate, where adversarial
examples are generated from f /g model and used to attack
the other model. The curves show that the transfer error rate
is reduced as expected. The red curve represents the error rate
of model f . We find that, after a few epochs, the error rate of
model f decreases below 20% although we never deliberately
train the model to be self-robust.

This observation inspires us to train a robust model con-
strained on the adversarial space of another model.

5 Robustra
In this section, we introduce Robustra in detail.

5.1 Min-Max Problem Formulation
We formalize our target task as a min-max game.

Given an input sample x∗, the true label y∗, and some tar-
get label ytarg 6= y∗, we define Aε(x∗), the adversarial space
of g bounded by `∞ norm with ε, as follows:

Aε(x∗) =
{
x :
(
‖x− x∗‖∞ ≤ ε

)
∧
((
g(x)

)
ytarg −

(
g(x)

)
y∗
≥ t
)}

,

(1)
where t measures the margin between the decision boundary
of adversarial examples in Aε(x∗). Particularly, when t = 0,
Aε(x∗) is the exact adversarial space of g; when t decreases,
Aε(x∗) becomes larger, vice versa.

We want the model f to be robust to adversarial examples
of the reference model g. Specifically, for each input in the
adversarial spaceAε(x∗), the output of f has a larger value at
y∗ than at ytarg. We formalize the objective as the following
optimization problem:

∀ytarg 6= y∗, min
θ

(
max
x

(
fθ(x)

)
ytarg −

(
fθ(x)

)
y∗

)
,

s.t. x ∈ Aε(x∗).
(2)

Let c = eytarg − ey∗ , and let FA denote the value space of
Aε(x∗), i.e.,

FA(x∗) = {fθ(x) : x ∈ Aε(x∗)} . (3)

Then, the optimization (Eqn. 2) can be rewritten as follows:

∀ytarg 6= y∗, min
θ

max
v

c>v,

s.t. v ∈ FA(x∗).
(4)

Relaxation on g(·)

Relaxation on f(·)

A Space

FA Space

Figure 2: Visual illustration of approximation by linear convex re-
laxation. From the exact space Aε(x∗), the relaxation of model g
brings convex space Âε(x∗). Then, the relaxation of model f brings
convex space F̂Â(x

∗).

Since the set FA(x∗) is consecutive and highly non-convex,
solving such optimization problem is computationally in-
tractable.

5.2 Linear Convex Relaxation
In order to solve the optimization problem, we approximate
the optimization space FA(x∗) of the problem by using re-
laxation of the ReLU function. A convex space F̂Â(x∗) is
obtained from the approximation.

Since both f(·) and g(·) are ReLU-based DNNs, we use
the linear relaxation for ReLU function. Let o = ReLU(i)
denote the ReLU function and [l, u] denote the range of input
i, i.e., l ≤ i ≤ u. The approximation of ReLU function
corresponds to its convex outer space:

1. When l ≤ u ≤ 0, o = 0;
2. When 0 ≤ l ≤ u, o = i;
3. When l < 0 < u, (u− l)o ≤ u(i− l) ∧ o ≥ 0 ∧ o ≥ i.

We replace each ReLU function in the problem with corre-
sponding linear constraints according to the range of the in-
put.

We apply the relaxation to both f(·) and g(·) models, as
shown in Figure 2.

First, we apply the relaxation to the ReLU neurons in
model g(·). Let Ĝ(·) denote the output space after apply-
ing the relaxation. Note that Ĝ(x) ⊆ Rm, while g(x) ∈ Rm.
Accordingly, the adversarial space Aε(x∗) is replaced with
its approximation subspace Âε(x∗):

Âε(x∗) =
{
x :
(
‖x− x∗‖∞ ≤ ε

)
∧
(
∀v′ ∈ Ĝ(x) : c>v′ ≥ t

)}
.

(5)
Note that Âε(x∗) is a convex subspace of Aε(x∗), because
Ĝ(x) is a convex outerspace of g(x). Then, we obtain an
approximated optimization subspace FÂ(x∗) (shown in Fig-
ure 2).

Second, we similarly apply the relaxation to the ReLU
neurons in model f(·). Let F̂ (·) denote the output space
after applying the relaxation. Then, we obtain F̂Â(x∗) =



⋃
x∈Âε(x∗) F̂ (x), which is a convex approximation space of
FA(x∗).

After the two-step relaxation, the optimization problem
that we would like to address is as follows:

∀ytarg 6= y∗, min
θ

max
v

c>v,

s.t. v ∈ F̂Â(x
∗).

(6)

It is an approximation of the original optimization prob-
lem (Eqn. 4).

Figure 2 illustrates the procedure of the relaxation. At the
beginning, the optimization space FA(x∗) is non-convex; af-
ter relaxation of model g, we obtain a subspace FÂ(x∗); after
relaxation of model f , we obtain F̂Â(x∗), which is a convex
approximation of the original space. We address the opti-
mization problem over this approximation convex space.

5.3 Duality
Training on the outer minimization in Eqn. 6 requires to cal-
culate the gradient of model parameter θ w.r.t. the inner max-
imization problem: 5θmaxv c

>v = 5θc>v∗, where v∗ is
the solution to the inner problem. In order to calculate the
gradient, efficiently solving the inner problem, i.e., finding
v∗, is desirable.

Since the inner maximization is an optimization over lin-
ear convex space F̂Â(x∗), the minimum of its dual problem
corresponds to the solution due to strong duality. Inspired by
previous work [Wong and Kolter, 2018; Wong et al., 2018],
we formulate the dual problem by a feedforward network as
follows:

max
v

c>v ≤ min
η≥0

hc(η), (7)

where hc(η)

= x>(ν̂1 + ηq̂1) + ε‖ν̂1 + ηq̂1‖1 − ηt

+

k1−1∑
i=1

ν>i+1bi + η

k2−1∑
i=1

q>i+1di

−
k1−1∑
i=2

∑
j∈Ii

li,j [νi,j ]+ − η
k2−1∑
i=2

∑
j∈Qi

l′i,j [qi,j ]+.

(8)

ν and q are defined as follows:
νk1 =− c
ν̂i =W

>
i νi+1, for i = k1 − 1, . . . , 1

νi,j =


0 j ∈ I−i
ν̂i,j j ∈ I+i
(ui,j/(ui,j − li,j))ν̂i,j j ∈ Ii,

for i = k1 − 1, . . . , 2

qk2 =− c
q̂i =U

>
i qi+1, for i = k2 − 1, . . . , 1

qi,j =


0 j ∈ Q−i
q̂i,j j ∈ Q+

i

(u′i,j/(u
′
i,j − l′i,j))q̂i,j j ∈ Qi,
for i = k2 − 1, . . . , 2

(9)

In Eqn. 8 and 9, ui,j and li,j represent the upper and lower
bound of the ReLU function input for the jth neuron in layer
i of network f(·). Similarly, u′i,j and l′i,j represent the up-
per and lower bounds of the ReLU function input for the jth

neuron in layer i of network g(·).
For layer i in model f and g, I+i and Q+

i represent the
sets of neurons where the inputs are always positive, respec-
tively (0 ≤ l ≤ u); similarly, I−i and Q−i are the sets of neu-
rons where the inputs are always negative (l ≤ u ≤ 0); and
Ii and Qi are the sets of neurons spanning zero (l < 0 < u).
ν, ν̂, q, q̂, and η are newly introduced dual variables. We

transform the original problem to an optimization problem
over the new variable η.

5.4 Gradient Monotonicity and t selection
In order to solve the dual problem minη≥0 hc(η), we turn to
the gradient5ηhc(η), which can be written as follows:

5η hc(η)
= ε5η ‖ν̂1 + ηq̂1‖1 − t

+ x>q̂1 +

k2−1∑
i=1

q>i+1di −
k2−1∑
i=2

∑
j∈Qi

l′i,j [qi,j ]+

def
= εγ(η)− t+ C,

(10)

where γ(η) =
∑n
j=1 sgn(v̂1,j + ηq̂1,j) · q̂1,j and C is a con-

stant independent of η and t. Note that γ(η) is the analytic
form of5η‖ν̂1 + ηq̂1‖1.

Theorem 1 (Property of γ(η)) γ(η) is a bounded non-
decreasing step-function, and the transition points are
{−ν̂1,j/q̂1,j : 1 ≤ j ≤ n}.

The theorem can be proved by case discussion over sign
of q̂1,j . Since γ(η) is the only η-dependent term in Eqn. 10,
5ηhc(η) has the same property, i.e., 5ηhc(η) is a bounded
non-decreasing step-function. Thus, we can obtain the value
range of the gradient of hc(η). Specifically, we have

Theorem 2 (Property of hc(η)) When the domain of hc(η)
is [0,∞), let ηl = 0, ηr = maxj(−ν̂1,j/q̂1,j), the gradient

value5ηhc(η) ∈ [l, r]
def
= [5ηhc(η)|η=ηl ,5ηhc(η)|η=ηr ].

Let us define adversarial space constraints to be con-
straints imposed by the reference model, i.e., those corre-
sponding to

((
g(x)

)
ytarg −

(
g(x)

)
y∗
≥ t
)

in Eqn. 1. We can
relate the solution for minη≥0 hc(η) to sign of l and r:

• If l ≤ r ≤ 0, when η → +∞, hc(η)→ −∞. According
to the duality theorem, there is no solution to the original
problem maxv c>v, indicating that the space F̂Â(x∗)
is empty. In this situation, we regard adversarial space
constraints to be infeasible. We need to decrease t, i.e.,
enlarge adversarial space Âε(x∗).
• If l < 0 < r, a positive η solution exists. In this situa-

tion, we regard adversarial space constraints to be tight.

• If 0 ≤ l ≤ r, the solution is η = 0. As seen from Eqn.
8, reference-model-related variables are all eliminated



from objective function hc(η), indicating that the adver-
sarial space constraints are loose. In this situation, we
would like to increase t, i.e., narrow adversarial space
Âε(x∗).

The ideal situation is that for all optimization objectives
hc(η), the adversarial space constraints are tight and the so-
lution exists, i.e., l < 0 < r. To guarantee so, we fix a reason-
able η as the solution and inversely obtain the corresponding
t.

Specifically, we set η to be the median number of γ(η)
transition points. Combining Theorem 1, Theorem 2,
and constraint η ≥ 0, we pick the median number in
{−ν̂1,j/q̂1,j : 1 ≤ j ≤ n,−ν̂1,j/q̂1,j > 0} as the solution for
η, denoted as ηmed.
ηmed being the solution indicates Oηhc(η)|η=ηmed = 0,

which yields t = t0 = εγ(ηmed) + C. Thus, the hyperpa-
rameter t is set to t0 according to ηmed.

As result, we effectively solve the inner maximization
problem minη≥0 hc(η) by forward passing c to the network
defined in Eqn. 9 and extracting the median number using v̂1
and q̂1. After that, we use t0 and ηmed to directly calculate
hc(η). Formally,

max
v

c>v ≤ min
η≥0

hc(η) = hc(η)|η=ηmed,t=t0 . (11)

5.5 Scaling

To scale up the training process, we find that Cauchy ran-
dom projection estimation of `1 norm [Wong et al., 2018]
can be directly applied in our approach. When a vector mul-
tiplies a standard Cauchy random matrix, the median num-
ber of the result vector is an estimation of `1 norm of the
vector. Using this property, we can approximately calcu-
late

∑k1−1
i=2

∑
j∈Ii li,j [νi,j ]+ and

∑k2−1
i=2

∑
j∈Qi l

′
i,j [qi,j ]+

of Eqn. 8 in linear complexity w.r.t neuron numbers [2018].
With this calculation, our approach has the same order of

complexity with [Wong et al., 2018]. This calculation enables
our approach to scale up to large datasets such as CIFAR10
and large DNN models such as ResNet.

5.6 Training

During the training process, we use the solution for each ytarg

as the probability of that class. Then we use cross-entropy
with softmax as the training loss to jointly minimize errors
for all ytarg 6= y∗.

We adopt a manual training scheme to optimize a pair of
models. Initially, f(·) and g(·) are randomly initialized inde-
pendently. When the model size is small, in each epoch, we
train model f(·) where model g(·) is the reference, and then
train model g(·) where model f(·) is the reference. When the
model size is large, we accelerate the process by distributing
model f(·) and model g(·) to two GPUs. By loading the last
epoch weights of the other model as the reference, two mod-
els are trained parallelly, both using the other model as the
reference at the same time. This training scheme optimizes
both models efficiently.

Table 1: Statistics of the models used in our experiments.

Dataset Model # Layers # Hidden # ParametersUnits

MNIST Small 4 4, 804 166, 406
Large 7 28, 064 1, 974, 762
Small 4 6, 244 214, 918

CIFAR10 Large 7 62, 464 2, 466, 858
ResNet 11 107, 496 4, 214, 850

6 Experiments
We evaluate Robustra on image classification tasks with
two datasets: MNIST [LeCun et al., 1998] and CI-
FAR10 [Krizhevsky and Hinton, 2009].

We use the same DNNs as used in [Wong et al., 2018] for
comparison. All DNNs are convolutional neural networks
with multiple layers, using only ReLU activations. Table 1
shows the statistics of DNNs that we use.

For each model and dataset, we run 100 epochs on the
training set. Adam optimizer is used for MNIST models, and
SGD optimizer (0.9 momentum, 5 × 10−4 weight decay) is
used for CIFAR10 models. The `∞ norm ε is initialized by
0.01, and then it linearly increases to the configured ε (0.1 or
0.3 for MNIST, 2/255 or 8/255 for CIFAR10) in the first 20
epochs. In the first 20 epochs, the learning rate is set to be
0.001; then, it decades by half every 10 epochs. The batch
size is set to 50. The scaling approximation (Section 5.5) is
applied for training ‘Large’ and ‘ResNet’ models, where the
projection dimension is 50. Note that no hyperparameter se-
lection or tuning is applied to guarantee the soundness of the
results. All experiments are run on Geforce GTX 1080 Ti
GPUs.

6.1 Provable Error Bound
We use two provable error bounds to evaluate the models
trained by Robustra: LP bound [Wong and Kolter, 2018] and
MILP bound [Tjeng et al., 2019]. The full test set is used in
our evaluation. We compare the error bounds of Robustra to
the state of the art on the same model structures [Wong et al.,
2018; Wong and Kolter, 2018].

The results in Table 2 show that on both the MNIST dataset
and CIFAR10 dataset, Robustra outperforms the state of the
art in most of the settings. Specifically, on the MNIST
dataset, with ε = 0.1, Robustra significantly improves the
MILP bound on ‘Large’ model from 2.74% to 2.09%; with
ε = 0.3, Robustra achieves 16.91% provable test error us-
ing ‘Small’ model and improves LP bound, from previous
43.10%/45.66% to 31.42%/34.59% for ‘Small’ and ‘Large’
models, respectively. On the CIFAR10 dataset, with ε =
2/255, Robustra exceeds the state of the art on all mod-
els. It reduces the previous bound from 46.11% to 43.68%.
With ε = 8/255, Robustra reduces the error bound from
77.60% (on ‘ResNet’, MILP bound) to 74.87% (on ‘Small’,
MILP bound).

Clean error represents the error rate of a model on a clean
(i.e., unperturbed) test set. The model trained by Robustra
has similar or smaller clean error rate compared to state-of-
the-art models. Furthermore, we find that a model with less
clean error usually has a tighter provable error bound.



Table 2: Provable error bound of Robustra and the state of the art (SOA) [Wong et al., 2018; Wong and Kolter, 2018]. Two bounds are used
for evaluation: LP bound [Wong and Kolter, 2018] and MILP bound [Tjeng et al., 2019]. For SOA models, we use the error bounds reported
in their papers. We mark a ‘-’ on an entry if there are no reported results in the corresponding paper. For our models that are too large for
MILP bound to be calculated in feasible time (i.e., 24 hours), we mark ‘/’ on the entry. In addition, we compare clean example test error
rate (Clean Err.) of SOA models and our models.

Dataset ε Model LP bound MILP bound Clean Err.
SOA Robustra SOA Robustra SOA Robustra

MNIST
0.1

Small 4.48% 4.84% 4.38% 2.55% 1.26% 1.01%
Large 3.67% 3.93% 2.74% 2.09% 1.08% 0.83%

0.3
Small 43.10% 31.42% 25.79% 16.91% 11.40% 7.37%
Large 45.66% 34.59% 24.19% 24.43% 11.16% 11.61%

CIFAR10

2

255

Small 52.75% 51.47% 50.20% 47.93% 38.91% 36.03%
Large 46.59% 43.68% - / 31.28% 28.48%

ResNet 46.11% 44.43% - / 31.72% 29.51%

8

255

Small 79.25% 76.29% - 74.87% 72.24% 66.34%
Large 83.43% 78.32% - 77.56% 80.56% 71.79%

ResNet 78.22% 79.57% 77.60% 78.10% 71.33% 72.10%

6.2 Training Progress
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Figure 3: Provable robust error bound and clean error curves of each
epoch, evaluated on the MNIST test set, with ε = 0.3. Provable
robust error bound represents LP bound. Clean error represents the
error rate on clean examples. f(·) and g(·) stand for the two mutu-
ally trained models.

The training curves are shown in Figure 3. Provable error
is measured by LP bound. Clean error is measured by error
rate on clean (i.e., unperturbed) examples. Both are evaluated
on the test set.

In the first 20 epochs, ε used for training is linearly in-
creased to desired ε (0.3). The provable robust error keeps
being 100% for these first 20 epochs, and then a significant
drop occurs as the training ε reaches 0.3. The result reveals
that the model is not robust to larger perturbations unless it
is trained at that perturbation level. During these first 20
epochs, the clean error increases while the provable robust
error bound decreases. Then both provable errors and clean
errors decrease.

At each epoch, both models are trained mutually: we first
regard g(·) as the reference model and train the model f(·);
then, we set the trained f(·) as the reference model and train
the model g(·). Thus, at each epoch, the test error of g(·) is
slightly smaller than the test error of f(·), as shown in Fig-
ure 3.
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Figure 4: On MNIST with ε = 0.3: (a) curve of selected t; and
(b) tightness status of adversarial space constraints of each epoch
when t = 0.

6.3 t Selection Effectiveness

In our approach, we select some t to solve the inner maxi-
mization problem, as discussed in Section 5.4. Figure 4a plots
the curve of selected t. Larger t corresponds tighter reference
space, as shown in Eqn. 1. In the first 20 epochs, t is small and
sharply increases to around −3. This result indicates that our
approach dynamically tightens these constraints along with
increasing training ε. After 20 epochs, as the reference model
is trained more robust, its adversarial space becomes smaller.
The approach gradually decreases t to loosen the constraints.

In Figure 4b, on MNIST with ε = 0.3, we study the so-
lution status on test dataset if fixing t = 0. In the first 20
epochs, non-robust models make almost all constraints loose.
After 20 epochs, the robust models make almost all con-
straints infeasible. Thus, when t = 0, we are not able to
effectively solve the problem. Instead, we need to dynami-
cally select t as we propose in Section 5.4.

7 Conclusion
We have presented Robustra, an approach for training prov-
able robust neural networks. In particular, we formalize the
training procedure as a min-max game over the adversarial
space of the reference model, and effectively solve the min-
max game. The experimental results have shown that Robus-
tra significantly outperforms the state-of-the-art approach.



References
[Athalye et al., 2018] Anish Athalye, Nicholas Carlini, and

David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples.
In International Conference on Machine Learning, 2018.

[Carlini and Wagner, 2017a] Nicholas Carlini and David
Wagner. Adversarial examples are not easily detected: By-
passing ten detection methods. In ACM Workshop on Ar-
tificial Intelligence and Security, 2017.

[Carlini and Wagner, 2017b] Nicholas Carlini and David
Wagner. Towards evaluating the robustness of neural net-
works. In IEEE Symposium on Security and Privacy, 2017.

[Carlini, 2019] Nicholas Carlini. Is AmI (attacks meet inter-
pretability) robust to adversarial examples? arXiv preprint
arXiv:1902.02322, 2019.

[Fazlyab et al., 2019] Mahyar Fazlyab, Manfred Morari, and
George J Pappas. Safety verification and robust-
ness analysis of neural networks via quadratic con-
straints and semidefinite programming. arXiv preprint
arXiv:1903.01287, 2019.

[Goodfellow et al., 2015] Ian J. Goodfellow, Jonathon
Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In International Conference on
Learning Representations, 2015.

[Katz et al., 2017] Guy Katz, Clark Barrett, David L Dill,
Kyle Julian, and Mykel J Kochenderfer. Reluplex: An ef-
ficient SMT solver for verifying deep neural networks. In
International Conference on Computer Aided Verification,
2017.

[Krizhevsky and Hinton, 2009] Alex Krizhevsky and Geof-
frey Hinton. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua
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