
30	 IEEE Software  | published by the IEEE computer societ y � 074 0 -74 5 9 /13 / $ 31. 0 0  ©  2 013  I E E E

Software 
Analytics  
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and Haidong Zhang, Microsoft Research Asia
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// The StackMine project produced a software analytics 

system for Microsoft product teams. The project provided 

several lessons on applying software analytics technologies 

to make an impact on software development practice. //

The software development 
process produces various types of data 
such as source code, bug reports, check-
in histories, and test cases. Over the past 
few decades, researchers have used ana-
lytics techniques on such data to better 
understand software quality (for some 
examples, see the sidebar). Also during 
that period, Internet access has become 
widely available, and software services 
now play an indispensable role in ev-
eryday life. Much richer types of data 
at much larger scales now help practi-
tioners better understand how software 
and services perform in real-world set-
tings and how end users employ them.1

To address the increasing impor-
tance and abundance of data in the 

software domain, we formed Micro-
soft Research Asia’s Software Analyt-
ics Group (http://research.microsoft.
com/groups/sa) in 2009. We proposed 
the concept of software analytics to ex-
pand the scope of analyzing software 
artifacts. Software analytics aims to 
obtain insightful and actionable in-
formation from software artifacts that 
help practitioners accomplish tasks 
related to software development, sys-
tems, and users.

Although much research has cov-
ered software analytics, little work has 
covered its impact on software develop-
ment practice.2,3 Software analytics can 
affect software development practice in 
different ways.4–6 For example,

•	 software practitioners could 
conduct software analytics by 
themselves,

•	 researchers from academia or in-
dustry could collaborate with soft-
ware practitioners from software 
companies or open source commu-
nities and transfer their analytics 
technologies to real-world use, or

•	 practitioners could organically 
adopt analytics technologies devel-
oped by researchers.

However, no matter how this is pur-
sued, it remains a huge challenge.

We’ve worked on a number of soft-
ware analytics projects that have had a 
high impact on software development 
practice.7–10 To illustrate the lessons 
we’ve learned from them, we describe 
our experiences developing StackMine, 
a scalable system for postmortem per-
formance debugging.7

The Promise and 
Challenges of Software 
Analytics
As we mentioned before, software an-
alytics aims to obtain insightful and 
actionable information. Insightful in-
formation conveys knowledge that’s 
meaningful and useful for practitioners 
performing a specific task. Actionable 
information is information with which 
practitioners can devise concrete ways 
(better than any existing way) to com-
plete that task.

For example, ranked performance 
bottlenecks represented by sequences 
of function calls can help performance 
analysts focus the investigation scope 
of the underlying performance issues. 
This information also provides guid-
ance on where to investigate. So, it’s 
both insightful and actionable.

Software analytics focuses on the 
trinity of software development, sys-
tems, and users, with the ultimate goal 
of improving development productivity, 
software quality, and user experience 

FOCUS: The Many Faces of Software analytics



	 September/October 2013  | IEEE Software � 31

(see Figure 1).11–13 Obviously, improve-
ments in the software development 
process will improve development pro-
ductivity. Software quality focuses 
on issues such as reliability, perfor-
mance, and security, whereas assess-
ment of the user experience focuses on 
the user’s perspective. In general, soft-
ware analytics employs these primary 
technologies:

•	 large-scale computing to handle 
large-scale datasets,

•	 machine-learning-based and data-
mining-enabled analysis algo-
rithms, and

•	 information visualization to help 
with data analysis and presenting 
insights.

The target audience of practitioners 
is broad, including developers, testers, 
program managers, software manage-
ment personnel, designers, usability en-
gineers, service engineers, and support 
engineers.

Software analytics has the poten-
tial to impact practice for two main 
reasons. First, the data sources under 
study come from real-world settings. 
For example, open source communities 
naturally provide a huge data vault of 
source code, bug reports, check-in his-
tory, and so on. Better yet, the vault is 
active and evolving, which makes the 
data sources fresh and live. Second, as 
Figure 1 illustrates, the discipline of 
software analytics spreads across the 
areas of system quality, user experi-
ence, and development productivity, in-
dicating a wide scope and huge poten-
tial for impact on practice.

Despite these opportunities, putting 
software analytics technologies into 
real-world use involves significant chal-
lenges. How do you ensure the analy-
sis output is insightful and actionable? 
How do you know you’re using the ap-
propriate data to answer the questions 
practitioners care about? How do you 

evaluate your analysis techniques in 
real-world settings?

Experiences with 
StackMine
Performance debugging in the large has 
recently emerged, owing to available 
infrastructure support for collecting 

execution traces with performance is-
sues from a huge number of users at 
deployment sites.7 One example of 
such infrastructure support at Micro-
soft is PerfTrack (http://channel9.msdn.
com/Blogs/Charles/Inside-Windows-7 
- R e l i a b i l i t y - P e r f o r m a n c e - a n d 
-PerfTrack), which measures system 

Related Work in 
Software Analytics 
Techniques

A plethora of research exists on predicting software reliability in terms of the defect 
count at different levels of software systems.1 Recent examples of using software ar-
tifacts to improve software development are software intelligence2 and analytics for 
software development.3 They both offer pertinent information to support developers’ 
decision making.
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Figure 1. (a) The trinity of software development, systems, and users, with the ultimate 

goal of improving development productivity, software quality, and user experience. (b) There 

are three key technology pillars employed: information visualization, data analysis algorithms, 

and large-scale computing.



32	 IEEE Software  | www.computer.org/software

FOCUS: The Many Faces of Software analytics

responsiveness to user actions on oper-
ating systems. Consider a user clicking 
on a Windows Explorer menu item to 
create a folder. PerfTrack measures how 
long it takes for the user to receive a re-
sponse from the system. If the response 
time exceeds a predefined threshold, 
PerfTrack sends execution traces (con-
taining call stacks collected during the 

preceding time interval) back to Mi-
crosoft for debugging. All the collected 
traces in total could contain more than 
1 billion call stacks, which greatly ex-
ceed what performance analysts can af-
ford to investigate.

Performance debugging can be re-
duced to a software analytics problem. 
Given enormous call stacks collected at 
the deployment sites, how can analytics 
help performance analysts effectively 
discover high-impact performance bugs 
(such as those causing long response 
delays for many users)? To tackle this 
problem, we developed StackMine.

Solving Essential Problems
Before the project started, a member 
of a Windows product team met with 
the Software Analytics Group. He in-
troduced the team’s tools and the state 
of the practice in inspecting a stream 
of system-event traces for Windows 
performance analysis. He also de-
scribed the challenges the team faced 
in inspecting a large number of trace 
streams. We then took the usual re-
search route of looking for existing re-
search on state-of-the-art techniques 
for OS performance analysis. We found 
that analysis based on large sets of 
real-world trace data was an emerging 

topic with little published research. We 
found this exciting because of the po-
tential opportunity to pursue pioneer-
ing research.

As researchers with machine learn-
ing backgrounds, we started the project 
in a way with which we were familiar. 
On the basis of our understanding of 
the product team’s analysis records and 

our discussion with a Windows perfor-
mance analyst, we quickly decided to 
study the high CPU consumption ex-
hibited in traces. We then formulated 
issue detection as a classification prob-
lem and issue correlation as a cluster-
ing problem (both at the granularity of 
trace streams). After a few months, we 
got promising results from a machine 
learning perspective—for example, high 
accuracy for classification, and high pu-
rity and completeness for clustering.

We then presented the promising re-
sults to the Windows performance ana-
lysts. Aside from making a few polite 
comments such as “interesting” and 
“good,” they didn’t provide much en-
couragement for us to continue along 
this direction. From further feedback, 
we learned we weren’t solving the es-
sential problems they cared about. 
First, we missed the most important 
problem category—“wait,” represent-
ing delays owing to various reasons, 
including synchronization, resource 
contention, power state, and so on. 
Second, automatic detection and lo-
calization of high-CPU-consumption 
intervals didn’t help the analysts solve 
the real problems. Tasks such as iden-
tifying the region of interest (ROI) 
should and could be handled well by 

instrumentation together with reliable 
domain-specific heuristics. Third, the 
trace stream wasn’t the right granular-
ity level for similarity modeling and 
clustering; it was too high a level to 
help performance analysts locate root 
causes of issues.

So, we refocused the project on iden-
tifying essential problems. We worked 
closely with the performance analysts 
on this throughout the rest of the proj-
ect life cycle. Ultimately, we used Stack-
Mine to identify high-impact program-
execution patterns from a large number 
of trace streams. We selected call stack 
patterns—sequences of function calls 
that happen during program execu-
tion (abbreviated as stack patterns for 
this article)—as the pattern representa-
tion and formulated the pattern discov-
ery problem as a mining and clustering 
problem against hundreds of millions 
of call stacks.

The Need for Domain Knowledge
Deep domain knowledge is embed-
ded in trace streams, in which more 
than 400 event types can appear. We 
couldn’t afford to study all of them, 
and we didn’t need to. We started with 
more than 10 key event types. After 
we presented our initial algorithms 
based on these event types, the analysts 
pointed out the missing event types that 
could compromise our algorithms’ cor-
rectness. We learned those event types 
and revised our algorithms accordingly. 
Overall, learning the domain knowl-
edge underlying these event definitions 
took more than a week.

Domain knowledge can often help 
scope relevant data for study, especially 
with large-scale data. Given the time in-
terval of a trace stream, we first mined 
and clustered stack patterns against all 
the CPU-sampling and thread-context-
switch events. The computation was 
expensive and the result wasn’t sat-
isfactory. To address these issues, we 
designed appropriate ROI-extraction 

Performance debugging can be  
reduced to a software analytics problem. 



	 September/October 2013  | IEEE Software � 33

algorithms to properly scope the anal-
ysis and reduce computation cost.7 We 
wouldn’t have come up with such algo-
rithms without observing the analysts’ 
existing practices to more fully under-
stand how the data relates to the tar-
geted problem.

Removing noise in data is impor-
tant, because noisy data can compro-
mise an algorithm’s overall effective-
ness, regardless of how you improve the 
algorithm. One example from Stack-
Mine was that noisy data remarkably 
disturbed candidate algorithms’ evalu-
ation results. Such noisy data could 
mislead the algorithm selection or, 
even worse, mislead the entire project 
direction.

In StackMine, we used coverage of 
performance bottlenecks to measure 
identified patterns’ effectiveness. We 
defined the coverage as the ratio of pat-
tern-affected time periods to the total 
time periods of all ROIs. The higher 
the coverage, the higher the probability 
of discovering real high-impact bugs.

Our first coverage came back with 
extremely low results, regardless of how 
we improved the algorithms to discover 
more patterns. We found that a number 
of abnormally long trace streams nega-
tively affected the coverage results. We 
verified that these streams were from 
computers that had experienced long 
periods of sleep. That is, the streams 
started before a long sleep and ended 
after the computer woke up. After fil-
tering out these streams, we got reason-
able coverage results.

Iterative Feedback
R&D of analytics technologies is usu-
ally an iterative process in which timely 
feedback from the target audience is 
important. We certainly benefited from 
the feedback loop we constructed when 
the project started.

One of the feedback loop’s benefits 
involved defining the similarity model 
for clustering stack patterns, sequences 

of function calls shared by a set of call 
stacks. We used these patterns to rep-
resent performance issues. Typically, a 
performance issue can exhibit multiple 
stack patterns that share common ma-
jor parts of bottlenecks and vary in mi-
nor parts. So, to better prioritize per-
formance bottlenecks, these patterns 
should be clustered based on the simi-
larity of the stack patterns. The generic 
sequence-edit-distance model was a 
natural choice for calculating the simi-
larity of a pair of stack patterns. 

However, some of the resulting clus-
ters were huge and included many per-
formance bottlenecks. Furthermore, 
some highly important performance 
bottlenecks weren’t clustered and were 
distributed across many small clus-
ters. In reviewing the results with the 
analysts, we quickly realized that the 
similarity model without appropriate 
domain knowledge couldn’t reflect the 
true relationships of stack patterns.

After that, we redesigned the simi-
larity model to incorporate essential do-
main knowledge. After a few iterations 
of experiments and discussion, we ob-
tained an appropriate similarity model 
with satisfactory clustering results.

Another of the feedback loop’s 
benefits involved selecting the evalua-
tion criteria for StackMine. When we 

presented the preliminary results (a 
ranked list of stack pattern clusters) to 
the analysts, we used purity and com-
pleteness metrics as the evaluation cri-
teria, which are common. However, 
the analysts couldn’t easily relate these 
metrics to their practice; they cared 
about the coverage of performance 

bottlenecks provided by the top pattern 
clusters against all performance bottle-
necks in stack traces in terms of total 
wait time from the user perspective. 
We learned that their primary interest 
was to quickly achieve high coverage 
against all performance bottlenecks in 
a given trace stream set. High cover-
age would indicate that stack patterns 
from top clusters could identify and 
explain most of the performance bot-
tlenecks captured in the trace stream 
set. On the basis of this feedback, we 
designed the performance-bottleneck-
coverage metric to measure the stack 
pattern clusters.7

A third benefit involved using Stack-
Mine to simultaneously help analysts 
and improve algorithms. When ana-
lyzing a new dataset, the analysts first 
used StackMine to obtain the worst 
performance bottlenecks from the top 
clusters. They quickly went through 
the top clusters to verify the bottle-
necks and provided feedback. They 
then used their traditional workflow 
to study the trace streams’ not-covered 
parts. By leveraging the analyzed da-
tasets and feedback as partial labels, 
we improved our algorithms. In this 
way, we weren’t blocked or limited by 
a lack of labeled data. Meanwhile, the 
practitioners could benefit from the 

improved solutions. This interactive, 
iterative model helped the StackMine 
project make steady progress.

Making an Impact
StackMine resulted from two years’ 
continuous development and improve-
ment. In December 2010, a Microsoft 

By leveraging the analyzed datasets  
and feedback as partial labels,  
we improved our algorithms. 
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team first applied StackMine in per-
formance debugging. Since then, the 
team’s performance analysts have used 
it to analyze hundreds of millions of call 
stacks. The team estimated that Stack-
Mine has reduced human investigation 
effort by 90 percent. They stated,

We believe that the StackMine tool 
is highly valuable and much more 
efficient for mass trace streams [more 
than 100 trace streams] analysis. For 
1,000 trace streams, we believe the 
tool saves us four to six weeks to cre-
ate new performance signatures [rep-
resentations of performance issues], 
which is quite a significant productiv-
ity boost.

Lessons Learned
Ultimately, we learned five main les-
sons from StackMine.

Identify Essential Problems
It’s often easy to grab some datasets, 
apply certain data analysis techniques, 
and make some observations. However, 
these observations, even with good 
evaluation results from a data analysis 
perspective, might not help practitio-
ners accomplish their tasks. We made 

such a mistake at the beginning of 
StackMine. It’s important to first iden-
tify essential problems for accomplish-
ing the task and then obtain the right 
datasets to help solve the problems. 
These problems are those whose solu-
tion would substantially improve the 
overall effectiveness of the task, such 
as improving practitioner productivity, 
software quality, or user experience.

As the StackMine project demon-
strated, one way to identify essential 
problems is through close collaboration 
between researchers and practitioners, 
interactively and iteratively. Sometimes, 
practitioners might not be able to ar-
ticulate essential problems when they’re 
emerged in various challenges from 
daily work. Researchers should work in 
an agile way to construct a quick feed-
back loop to identify essential problems 
early. Such loops will help avoid de-
tours or wasting time during a software 
analytics project.

Understand the Domain Semantics
Software artifacts often carry seman-
tics specific to a software domain. 
Understanding artifacts’ semantics is 
a prerequisite for data analysis. The 
StackMine project might be an ex-
treme example of this; there was a steep 
learning curve for us to understand the 
performance traces before we could 
conduct any analysis.

In practice, understanding data is 
threefold: data interpretation, data se-
lection, and data filtering. To interpret 
data, researchers must understand ba-
sic definitions of domain-specific termi-
nologies and concepts. To select data, 

researchers must understand the con-
nections between it and the problem 
being solved. To filter data, researchers 
must understand its defects and limita-
tions to avoid incorrect inferences.

Data interpretation. Researchers need 
essential domain knowledge about 
data, including domain-specific terms, 
concepts, and principles. Typically, 

researchers don’t have such knowl-
edge at the beginning of a software 
analytics project; rather, they usually 
ask practitioners for such informa-
tion. The knowledge is often scattered 
among practitioners or undocumented, 
and few practitioners will instinctively 
know which portion of the knowledge 
will be important or not for a given 
problem. So, on the basis of our expe-
rience, we suggest that the learning or 
transferring of data knowledge should 
be driven by demand. It could be driven 
by either researchers or practitioners, 
interactively and iteratively.

Data selection. Some data will be ir-
relevant to solving a given problem. 
Researchers often must select an ap-
propriate subset of data to conduct ef-
fective analysis. Besides knowledge 
about data, practitioners’ experiences 
and skills can help researchers scope 
the data. Too large a scope might incur 
high computation cost and introduce 
noise; too small a scope might miss im-
portant information.

Data filtering. Data might contain de-
fects that could lead to incorrect 
analysis results. Example defects are 
data points with abnormal values that 
might indicate untrue situations. De-
tecting such defects might be difficult. 
Researchers should review analysis re-
sults and filter data to eliminate or re-
duce the defects’ impact.

Create Feedback Loops Early,  
with Many Iterations
Creating software analytics solutions 
for real-world problems is an iterative 
process. It’s much more effective to start 
a feedback loop with software practi-
tioners early on, rather than later. The 
feedback is often valuable for formulat-
ing research problems and researching 
appropriate analysis algorithms. In ad-
dition, software analytics projects can 
benefit from early feedback in terms of 

Creating software analytics solutions 
for real-world problems  
is an iterative process. 
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building trust between researchers and 
practitioners, as well as evaluating re-
sults in real-world settings.

To provide end-to-end solutions, 
software analytics projects typically 
produce an analysis system, such as 
StackMine, with researchers as solu-
tion providers and practitioners as end 
users. Such a system should be both 
effective and easy to use. If it’s not ef-
fective—that is, if it cannot help practi-
tioners solve their problem—they won’t 
use it. If it’s difficult to use, they prob-
ably won’t adopt it.

Employ Scalability and Customization
Owing to the scale of data in real-
world settings, real-world problems 
often require scalable analytics solu-
tions. Scalability can directly affect 
the analysis algorithms used to solve 
the problems.

Owing to variations in software and 
services, another common requirement 
is customization that incorporates do-
main knowledge. To be effective, such 
customization involves

•	 filtering noisy and irrelevant data,
•	 specifying the intrinsic relation-

ships between data points that 
cannot be derived from the data 
itself, and

•	 providing empirical and heuristic 
guidance to make the algorithms 
robust against biased data.

This customization typically should 
be conducted iteratively through close 
collaboration between researchers and 
practitioners.

The StackMine project demon-
strated the importance of scalability 
and customization. Without the dis-
tributed computing system, it couldn’t 
have handled the scale of call stacks 
that the Windows team analyzed. 
Without customization, it wouldn’t 
have been able to incorporate the ana-
lysts’ knowledge.
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Correlate Evaluation Criteria  
with Real Tasks in Practice
Because of the natural connection with 
software development practice, soft-
ware analytics projects should be (at 
least partly) evaluated using the real 
tasks for which they’re targeted. Re-
searchers can use common evaluation 
criteria for data analysis, such as preci-
sion and recall, to measure intermedi-
ate results. However, these often aren’t 
the most appropriate criteria when real 
tasks are involved. For example, in 
StackMine, we used the coverage of de-
tected performance bottlenecks, which 
was directly related to the Windows 
analysts’ tasks. When conducting real-
world evaluations with practitioners, 
researchers must be aware of both the 
benefits and costs to practitioners.

In particular, a typical evaluation 
of the solution has two aspects. First, 
what do you evaluate? The evaluation 

criteria could measure the solution’s 
effectiveness or efficiency, or compare 
it to alternatives. Second, how do you 
evaluate? That is, what activities do 
you perform to obtain the evaluation 
criteria’s metric values? For software 
analytics tasks, you must select evalu-
ation criteria based on practical needs 
and design evaluation activities that 
don’t distract practitioners from their 
normal work.

Practical evaluation criteria are im-
portant for measuring a software ana-
lytics solution’s ultimate effectiveness 
and efficiency, particularly in helping 
practitioners with their daily work. 
These practical criteria could dif-
fer considerably from the traditional 
evaluation criteria of classic machine 
learning or data mining tasks. The 
latter are typically used for measur-
ing the effectiveness of intermedi-
ate steps (for example, accuracy for 

classification, precision and recall for 
information retrieval, and purity and 
completeness for clustering). In con-
trast, practical evaluation criteria typ-
ically are based on practitioners’ daily 
practices.

Evaluation criteria typically com-
prise a set of metrics calculated by 
corresponding objective functions. Re-
searchers devise optimal solutions by 
optimizing those functions and com-
paring alternative solutions. Among 
a set of objective functions, a priority 
might exist; the highest-priority func-
tion should relate to the top interest—
the practitioners’ biggest concern.

T hese valuable lessons learned 
from the StackMine project help 
increase researchers’ and prac-

titioners’ awareness of the issues and 
practices of putting software analytics 
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technologies to real-world use. In addi-
tion to the StackMine project, Micro-
soft Research Asia’s Software Analytics 
Group has conducted a number of soft-
ware analytics projects (such as XIAO8 
and Service Analysis Studio9,10,13) with 
a high impact on software development 
practice. These projects both share com-
monalities and have their own unique 
characteristics in terms of offering les-
sons learned for the community, call-
ing for our future efforts in summariz-
ing and analyzing such lessons learned 
across various projects.
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