
30	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Software
Analytics
in Practice
Dongmei Zhang, Shi Han, Yingnong Dang, Jian-Guang Lou,
and Haidong Zhang, Microsoft Research Asia

Tao Xie, University of Illinois at Urbana-Champaign

// The StackMine project produced a software analytics

system for Microsoft product teams. The project provided

several lessons on applying software analytics technologies

to make an impact on software development practice. //

The software development
process produces various types of data
such as source code, bug reports, check-
in histories, and test cases. Over the past
few decades, researchers have used ana-
lytics techniques on such data to better
understand software quality (for some
examples, see the sidebar). Also during
that period, Internet access has become
widely available, and software services
now play an indispensable role in ev-
eryday life. Much richer types of data
at much larger scales now help practi-
tioners better understand how software
and services perform in real-world set-
tings and how end users employ them.1

To address the increasing impor-
tance and abundance of data in the

software domain, we formed Micro-
soft Research Asia’s Software Analyt-
ics Group (http://research.microsoft.
com/groups/sa) in 2009. We proposed
the concept of software analytics to ex-
pand the scope of analyzing software
artifacts. Software analytics aims to
obtain insightful and actionable in-
formation from software artifacts that
help practitioners accomplish tasks
related to software development, sys-
tems, and users.

Although much research has cov-
ered software analytics, little work has
covered its impact on software develop-
ment practice.2,3 Software analytics can
affect software development practice in
different ways.4–6 For example,

•	 software practitioners could
conduct software analytics by
themselves,

•	 researchers from academia or in-
dustry could collaborate with soft-
ware practitioners from software
companies or open source commu-
nities and transfer their analytics
technologies to real-world use, or

•	 practitioners could organically
adopt analytics technologies devel-
oped by researchers.

However, no matter how this is pur-
sued, it remains a huge challenge.

We’ve worked on a number of soft-
ware analytics projects that have had a
high impact on software development
practice.7–10 To illustrate the lessons
we’ve learned from them, we describe
our experiences developing StackMine,
a scalable system for postmortem per-
formance debugging.7

The Promise and
Challenges of Software
Analytics
As we mentioned before, software an-
alytics aims to obtain insightful and
actionable information. Insightful in-
formation conveys knowledge that’s
meaningful and useful for practitioners
performing a specific task. Actionable
information is information with which
practitioners can devise concrete ways
(better than any existing way) to com-
plete that task.

For example, ranked performance
bottlenecks represented by sequences
of function calls can help performance
analysts focus the investigation scope
of the underlying performance issues.
This information also provides guid-
ance on where to investigate. So, it’s
both insightful and actionable.

Software analytics focuses on the
trinity of software development, sys-
tems, and users, with the ultimate goal
of improving development productivity,
software quality, and user experience

FOCUS: The Many Faces of Software analytics

	 September/October 2013 | IEEE Software � 31

(see Figure 1).11–13 Obviously, improve-
ments in the software development
process will improve development pro-
ductivity. Software quality focuses
on issues such as reliability, perfor-
mance, and security, whereas assess-
ment of the user experience focuses on
the user’s perspective. In general, soft-
ware analytics employs these primary
technologies:

•	 large-scale computing to handle
large-scale datasets,

•	 machine-learning-based and data-
mining-enabled analysis algo-
rithms, and

•	 information visualization to help
with data analysis and presenting
insights.

The target audience of practitioners
is broad, including developers, testers,
program managers, software manage-
ment personnel, designers, usability en-
gineers, service engineers, and support
engineers.

Software analytics has the poten-
tial to impact practice for two main
reasons. First, the data sources under
study come from real-world settings.
For example, open source communities
naturally provide a huge data vault of
source code, bug reports, check-in his-
tory, and so on. Better yet, the vault is
active and evolving, which makes the
data sources fresh and live. Second, as
Figure 1 illustrates, the discipline of
software analytics spreads across the
areas of system quality, user experi-
ence, and development productivity, in-
dicating a wide scope and huge poten-
tial for impact on practice.

Despite these opportunities, putting
software analytics technologies into
real-world use involves significant chal-
lenges. How do you ensure the analy-
sis output is insightful and actionable?
How do you know you’re using the ap-
propriate data to answer the questions
practitioners care about? How do you

evaluate your analysis techniques in
real-world settings?

Experiences with
StackMine
Performance debugging in the large has
recently emerged, owing to available
infrastructure support for collecting

execution traces with performance is-
sues from a huge number of users at
deployment sites.7 One example of
such infrastructure support at Micro-
soft is PerfTrack (http://channel9.msdn.
com/Blogs/Charles/Inside-Windows-7
- R e l i a b i l i t y - P e r f o r m a n c e - a n d
-PerfTrack), which measures system

Related Work in
Software Analytics
Techniques

A plethora of research exists on predicting software reliability in terms of the defect
count at different levels of software systems.1 Recent examples of using software ar-
tifacts to improve software development are software intelligence2 and analytics for
software development.3 They both offer pertinent information to support developers’
decision making.

References
	 1.	 T.L. Graves et al., “Predicting Fault Incidence Using Software Change History,” IEEE Trans. Software

Eng., vol. 26, no. 7, 2000, pp. 653–661.
	 2.	 A.E. Hassan and T. Xie, “Software Intelligence: The Future of Mining Software Engineering Data,”

Proc. FSE/SDP Workshop Future of Software Eng. Research (FoSER 10), ACM, 2010, pp. 161–166.
	 3.	 R.P.L. Buse and T. Zimmermann, “Information Needs for Software Development Analytics,” Proc. Int’l

Conf. Software Eng. (ICSE 12), IEEE, 2012, pp. 987–996.

Technology pillarsResearch topics

Productivity

Information
visualization

Analysis
algorithms

Large-scale
computing

Qu
al
ity

Productivity

ExperienceSoftware
system

Software
users

Software
development
process

(a) (b)

Figure 1. (a) The trinity of software development, systems, and users, with the ultimate

goal of improving development productivity, software quality, and user experience. (b) There

are three key technology pillars employed: information visualization, data analysis algorithms,

and large-scale computing.

32	 IEEE Software | www.computer.org/software

FOCUS: The Many Faces of Software analytics

responsiveness to user actions on oper-
ating systems. Consider a user clicking
on a Windows Explorer menu item to
create a folder. PerfTrack measures how
long it takes for the user to receive a re-
sponse from the system. If the response
time exceeds a predefined threshold,
PerfTrack sends execution traces (con-
taining call stacks collected during the

preceding time interval) back to Mi-
crosoft for debugging. All the collected
traces in total could contain more than
1 billion call stacks, which greatly ex-
ceed what performance analysts can af-
ford to investigate.

Performance debugging can be re-
duced to a software analytics problem.
Given enormous call stacks collected at
the deployment sites, how can analytics
help performance analysts effectively
discover high-impact performance bugs
(such as those causing long response
delays for many users)? To tackle this
problem, we developed StackMine.

Solving Essential Problems
Before the project started, a member
of a Windows product team met with
the Software Analytics Group. He in-
troduced the team’s tools and the state
of the practice in inspecting a stream
of system-event traces for Windows
performance analysis. He also de-
scribed the challenges the team faced
in inspecting a large number of trace
streams. We then took the usual re-
search route of looking for existing re-
search on state-of-the-art techniques
for OS performance analysis. We found
that analysis based on large sets of
real-world trace data was an emerging

topic with little published research. We
found this exciting because of the po-
tential opportunity to pursue pioneer-
ing research.

As researchers with machine learn-
ing backgrounds, we started the project
in a way with which we were familiar.
On the basis of our understanding of
the product team’s analysis records and

our discussion with a Windows perfor-
mance analyst, we quickly decided to
study the high CPU consumption ex-
hibited in traces. We then formulated
issue detection as a classification prob-
lem and issue correlation as a cluster-
ing problem (both at the granularity of
trace streams). After a few months, we
got promising results from a machine
learning perspective—for example, high
accuracy for classification, and high pu-
rity and completeness for clustering.

We then presented the promising re-
sults to the Windows performance ana-
lysts. Aside from making a few polite
comments such as “interesting” and
“good,” they didn’t provide much en-
couragement for us to continue along
this direction. From further feedback,
we learned we weren’t solving the es-
sential problems they cared about.
First, we missed the most important
problem category—“wait,” represent-
ing delays owing to various reasons,
including synchronization, resource
contention, power state, and so on.
Second, automatic detection and lo-
calization of high-CPU-consumption
intervals didn’t help the analysts solve
the real problems. Tasks such as iden-
tifying the region of interest (ROI)
should and could be handled well by

instrumentation together with reliable
domain-specific heuristics. Third, the
trace stream wasn’t the right granular-
ity level for similarity modeling and
clustering; it was too high a level to
help performance analysts locate root
causes of issues.

So, we refocused the project on iden-
tifying essential problems. We worked
closely with the performance analysts
on this throughout the rest of the proj-
ect life cycle. Ultimately, we used Stack-
Mine to identify high-impact program-
execution patterns from a large number
of trace streams. We selected call stack
patterns—sequences of function calls
that happen during program execu-
tion (abbreviated as stack patterns for
this article)—as the pattern representa-
tion and formulated the pattern discov-
ery problem as a mining and clustering
problem against hundreds of millions
of call stacks.

The Need for Domain Knowledge
Deep domain knowledge is embed-
ded in trace streams, in which more
than 400 event types can appear. We
couldn’t afford to study all of them,
and we didn’t need to. We started with
more than 10 key event types. After
we presented our initial algorithms
based on these event types, the analysts
pointed out the missing event types that
could compromise our algorithms’ cor-
rectness. We learned those event types
and revised our algorithms accordingly.
Overall, learning the domain knowl-
edge underlying these event definitions
took more than a week.

Domain knowledge can often help
scope relevant data for study, especially
with large-scale data. Given the time in-
terval of a trace stream, we first mined
and clustered stack patterns against all
the CPU-sampling and thread-context-
switch events. The computation was
expensive and the result wasn’t sat-
isfactory. To address these issues, we
designed appropriate ROI-extraction

Performance debugging can be
reduced to a software analytics problem.

	 September/October 2013 | IEEE Software � 33

algorithms to properly scope the anal-
ysis and reduce computation cost.7 We
wouldn’t have come up with such algo-
rithms without observing the analysts’
existing practices to more fully under-
stand how the data relates to the tar-
geted problem.

Removing noise in data is impor-
tant, because noisy data can compro-
mise an algorithm’s overall effective-
ness, regardless of how you improve the
algorithm. One example from Stack-
Mine was that noisy data remarkably
disturbed candidate algorithms’ evalu-
ation results. Such noisy data could
mislead the algorithm selection or,
even worse, mislead the entire project
direction.

In StackMine, we used coverage of
performance bottlenecks to measure
identified patterns’ effectiveness. We
defined the coverage as the ratio of pat-
tern-affected time periods to the total
time periods of all ROIs. The higher
the coverage, the higher the probability
of discovering real high-impact bugs.

Our first coverage came back with
extremely low results, regardless of how
we improved the algorithms to discover
more patterns. We found that a number
of abnormally long trace streams nega-
tively affected the coverage results. We
verified that these streams were from
computers that had experienced long
periods of sleep. That is, the streams
started before a long sleep and ended
after the computer woke up. After fil-
tering out these streams, we got reason-
able coverage results.

Iterative Feedback
R&D of analytics technologies is usu-
ally an iterative process in which timely
feedback from the target audience is
important. We certainly benefited from
the feedback loop we constructed when
the project started.

One of the feedback loop’s benefits
involved defining the similarity model
for clustering stack patterns, sequences

of function calls shared by a set of call
stacks. We used these patterns to rep-
resent performance issues. Typically, a
performance issue can exhibit multiple
stack patterns that share common ma-
jor parts of bottlenecks and vary in mi-
nor parts. So, to better prioritize per-
formance bottlenecks, these patterns
should be clustered based on the simi-
larity of the stack patterns. The generic
sequence-edit-distance model was a
natural choice for calculating the simi-
larity of a pair of stack patterns.

However, some of the resulting clus-
ters were huge and included many per-
formance bottlenecks. Furthermore,
some highly important performance
bottlenecks weren’t clustered and were
distributed across many small clus-
ters. In reviewing the results with the
analysts, we quickly realized that the
similarity model without appropriate
domain knowledge couldn’t reflect the
true relationships of stack patterns.

After that, we redesigned the simi-
larity model to incorporate essential do-
main knowledge. After a few iterations
of experiments and discussion, we ob-
tained an appropriate similarity model
with satisfactory clustering results.

Another of the feedback loop’s
benefits involved selecting the evalua-
tion criteria for StackMine. When we

presented the preliminary results (a
ranked list of stack pattern clusters) to
the analysts, we used purity and com-
pleteness metrics as the evaluation cri-
teria, which are common. However,
the analysts couldn’t easily relate these
metrics to their practice; they cared
about the coverage of performance

bottlenecks provided by the top pattern
clusters against all performance bottle-
necks in stack traces in terms of total
wait time from the user perspective.
We learned that their primary interest
was to quickly achieve high coverage
against all performance bottlenecks in
a given trace stream set. High cover-
age would indicate that stack patterns
from top clusters could identify and
explain most of the performance bot-
tlenecks captured in the trace stream
set. On the basis of this feedback, we
designed the performance-bottleneck-
coverage metric to measure the stack
pattern clusters.7

A third benefit involved using Stack-
Mine to simultaneously help analysts
and improve algorithms. When ana-
lyzing a new dataset, the analysts first
used StackMine to obtain the worst
performance bottlenecks from the top
clusters. They quickly went through
the top clusters to verify the bottle-
necks and provided feedback. They
then used their traditional workflow
to study the trace streams’ not-covered
parts. By leveraging the analyzed da-
tasets and feedback as partial labels,
we improved our algorithms. In this
way, we weren’t blocked or limited by
a lack of labeled data. Meanwhile, the
practitioners could benefit from the

improved solutions. This interactive,
iterative model helped the StackMine
project make steady progress.

Making an Impact
StackMine resulted from two years’
continuous development and improve-
ment. In December 2010, a Microsoft

By leveraging the analyzed datasets
and feedback as partial labels,
we improved our algorithms.

34	 IEEE Software | www.computer.org/software

FOCUS: The Many Faces of Software analytics

team first applied StackMine in per-
formance debugging. Since then, the
team’s performance analysts have used
it to analyze hundreds of millions of call
stacks. The team estimated that Stack-
Mine has reduced human investigation
effort by 90 percent. They stated,

We believe that the StackMine tool
is highly valuable and much more
efficient for mass trace streams [more
than 100 trace streams] analysis. For
1,000 trace streams, we believe the
tool saves us four to six weeks to cre-
ate new performance signatures [rep-
resentations of performance issues],
which is quite a significant productiv-
ity boost.

Lessons Learned
Ultimately, we learned five main les-
sons from StackMine.

Identify Essential Problems
It’s often easy to grab some datasets,
apply certain data analysis techniques,
and make some observations. However,
these observations, even with good
evaluation results from a data analysis
perspective, might not help practitio-
ners accomplish their tasks. We made

such a mistake at the beginning of
StackMine. It’s important to first iden-
tify essential problems for accomplish-
ing the task and then obtain the right
datasets to help solve the problems.
These problems are those whose solu-
tion would substantially improve the
overall effectiveness of the task, such
as improving practitioner productivity,
software quality, or user experience.

As the StackMine project demon-
strated, one way to identify essential
problems is through close collaboration
between researchers and practitioners,
interactively and iteratively. Sometimes,
practitioners might not be able to ar-
ticulate essential problems when they’re
emerged in various challenges from
daily work. Researchers should work in
an agile way to construct a quick feed-
back loop to identify essential problems
early. Such loops will help avoid de-
tours or wasting time during a software
analytics project.

Understand the Domain Semantics
Software artifacts often carry seman-
tics specific to a software domain.
Understanding artifacts’ semantics is
a prerequisite for data analysis. The
StackMine project might be an ex-
treme example of this; there was a steep
learning curve for us to understand the
performance traces before we could
conduct any analysis.

In practice, understanding data is
threefold: data interpretation, data se-
lection, and data filtering. To interpret
data, researchers must understand ba-
sic definitions of domain-specific termi-
nologies and concepts. To select data,

researchers must understand the con-
nections between it and the problem
being solved. To filter data, researchers
must understand its defects and limita-
tions to avoid incorrect inferences.

Data interpretation. Researchers need
essential domain knowledge about
data, including domain-specific terms,
concepts, and principles. Typically,

researchers don’t have such knowl-
edge at the beginning of a software
analytics project; rather, they usually
ask practitioners for such informa-
tion. The knowledge is often scattered
among practitioners or undocumented,
and few practitioners will instinctively
know which portion of the knowledge
will be important or not for a given
problem. So, on the basis of our expe-
rience, we suggest that the learning or
transferring of data knowledge should
be driven by demand. It could be driven
by either researchers or practitioners,
interactively and iteratively.

Data selection. Some data will be ir-
relevant to solving a given problem.
Researchers often must select an ap-
propriate subset of data to conduct ef-
fective analysis. Besides knowledge
about data, practitioners’ experiences
and skills can help researchers scope
the data. Too large a scope might incur
high computation cost and introduce
noise; too small a scope might miss im-
portant information.

Data filtering. Data might contain de-
fects that could lead to incorrect
analysis results. Example defects are
data points with abnormal values that
might indicate untrue situations. De-
tecting such defects might be difficult.
Researchers should review analysis re-
sults and filter data to eliminate or re-
duce the defects’ impact.

Create Feedback Loops Early,
with Many Iterations
Creating software analytics solutions
for real-world problems is an iterative
process. It’s much more effective to start
a feedback loop with software practi-
tioners early on, rather than later. The
feedback is often valuable for formulat-
ing research problems and researching
appropriate analysis algorithms. In ad-
dition, software analytics projects can
benefit from early feedback in terms of

Creating software analytics solutions
for real-world problems
is an iterative process.

	 September/October 2013 | IEEE Software � 35

building trust between researchers and
practitioners, as well as evaluating re-
sults in real-world settings.

To provide end-to-end solutions,
software analytics projects typically
produce an analysis system, such as
StackMine, with researchers as solu-
tion providers and practitioners as end
users. Such a system should be both
effective and easy to use. If it’s not ef-
fective—that is, if it cannot help practi-
tioners solve their problem—they won’t
use it. If it’s difficult to use, they prob-
ably won’t adopt it.

Employ Scalability and Customization
Owing to the scale of data in real-
world settings, real-world problems
often require scalable analytics solu-
tions. Scalability can directly affect
the analysis algorithms used to solve
the problems.

Owing to variations in software and
services, another common requirement
is customization that incorporates do-
main knowledge. To be effective, such
customization involves

•	 filtering noisy and irrelevant data,
•	 specifying the intrinsic relation-

ships between data points that
cannot be derived from the data
itself, and

•	 providing empirical and heuristic
guidance to make the algorithms
robust against biased data.

This customization typically should
be conducted iteratively through close
collaboration between researchers and
practitioners.

The StackMine project demon-
strated the importance of scalability
and customization. Without the dis-
tributed computing system, it couldn’t
have handled the scale of call stacks
that the Windows team analyzed.
Without customization, it wouldn’t
have been able to incorporate the ana-
lysts’ knowledge.

Dongmei Zhang is a principal researcher at Microsoft Research
Asia and the founder and manager of its Software Analytics Group.
Her research interests include data-driven software analysis, machine
learning, information visualization, and large-scale computing
platforms. Zhang received a PhD in robotics from Carnegie Mellon
University. Contact her at dongmeiz@microsoft.com.

Shi Han is a researcher in Microsoft Research Asia’s Software Ana-
lytics Group. His research interests include software analytics, particu-
larly software performance analysis by leveraging machine learning and
data mining. Han received an MS in computer science from Zhejiang
University. Contact him at shihan@microsoft.com.

Yingnong Dang is a lead researcher in Microsoft Research Asia’s
Software Analytics Group. His research interests include software
engineering, software analytics, data analytics, and human-computer
interaction. Dang received a PhD in control science and engineering
from Xi’an Jiaotong University. He’s a member of ACM and the China
Computer Federation’s Software Engineering Technical Committee.
Contact him at yidang@microsoft.com.

Jian-Guang Lou is a lead researcher in Microsoft Research Asia’s
Software Analytics Group. His research interests include performance
analysis and diagnosis of online services as well as data mining for
software engineering. Lou received a PhD in pattern recognition from
the Chinese Academy of Sciences Institute of Automation. He’s a mem-
ber of IEEE and ACM. Contact him at jlou@microsoft.com.

Haidong Zhang is a principal software architect in Microsoft Re-
search Asia’s Software Analytics Group. His research interests include
software analytics and information visualization. Zhang received a PhD
in computer science from Peking University. Contact him at haizhang@
microsoft.com.

Tao Xie is an associate professor in the Department of Computer
Science at the University of Illinois at Urbana-Champaign. His research
interests include software testing, program analysis, and software
analytics. Xie received a PhD in computer science from the University
of Washington. He’s a senior member of IEEE and ACM. Contact him at
taoxie@illinois.edu.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

36	 IEEE Software | www.computer.org/software

FOCUS: The Many Faces of Software analytics

Correlate Evaluation Criteria
with Real Tasks in Practice
Because of the natural connection with
software development practice, soft-
ware analytics projects should be (at
least partly) evaluated using the real
tasks for which they’re targeted. Re-
searchers can use common evaluation
criteria for data analysis, such as preci-
sion and recall, to measure intermedi-
ate results. However, these often aren’t
the most appropriate criteria when real
tasks are involved. For example, in
StackMine, we used the coverage of de-
tected performance bottlenecks, which
was directly related to the Windows
analysts’ tasks. When conducting real-
world evaluations with practitioners,
researchers must be aware of both the
benefits and costs to practitioners.

In particular, a typical evaluation
of the solution has two aspects. First,
what do you evaluate? The evaluation

criteria could measure the solution’s
effectiveness or efficiency, or compare
it to alternatives. Second, how do you
evaluate? That is, what activities do
you perform to obtain the evaluation
criteria’s metric values? For software
analytics tasks, you must select evalu-
ation criteria based on practical needs
and design evaluation activities that
don’t distract practitioners from their
normal work.

Practical evaluation criteria are im-
portant for measuring a software ana-
lytics solution’s ultimate effectiveness
and efficiency, particularly in helping
practitioners with their daily work.
These practical criteria could dif-
fer considerably from the traditional
evaluation criteria of classic machine
learning or data mining tasks. The
latter are typically used for measur-
ing the effectiveness of intermedi-
ate steps (for example, accuracy for

classification, precision and recall for
information retrieval, and purity and
completeness for clustering). In con-
trast, practical evaluation criteria typ-
ically are based on practitioners’ daily
practices.

Evaluation criteria typically com-
prise a set of metrics calculated by
corresponding objective functions. Re-
searchers devise optimal solutions by
optimizing those functions and com-
paring alternative solutions. Among
a set of objective functions, a priority
might exist; the highest-priority func-
tion should relate to the top interest—
the practitioners’ biggest concern.

T hese valuable lessons learned
from the StackMine project help
increase researchers’ and prac-

titioners’ awareness of the issues and
practices of putting software analytics

17-22 November 2013
Denver, Colorado, USA

SC13, sponsored by IEEE Computer Society and ACM, is the premier international
conference on high-performance computing (HPC), networking, storage and
analysis. The 26th annual conference in the series, SC13 anticipates more than 10,000
supercomputing experts from around the world representing industry, academia
and government. HPC is the engine of innovation and invention that is vital to the
advancement of science, the development of new technologies, global security,
business efficiency and economic prosperity.

SC13
26th IEEE/ACM International Conference for High Performance
Computing, Networking, Storage and Analysis

Register today!

http://sc13.supercomputing.org/

	 September/October 2013 | IEEE Software � 37

	 9.	 R. Ding et al., “Healing Online Service
Systems via Mining Historical Issue Reposi-
tories,” Proc. 27th IEEE/ACM Int’l Conf.
Automated Software Eng. (ASE 12), ACM,
2012, pp. 318–321.

	10.	 Q. Fu et al., “Performance Issue Diagnosis
for Online Service Systems,” Proc. 31st IEEE
Symp. Reliable Distributed Systems (SRDS
12), IEEE CS, 2012, pp. 273–278.

	11.	 D. Zhang et al., “Software Analytics as a
Learning Case in Practice: Approaches and
Experiences,” Proc. Int’l Workshop Machine
Learning Technologies in Software Eng. (MA-
LETS 11), ACM, 2011, pp. 55–58.

	12.	 D. Zhang and T. Xie, “Software Analytics
in Practice: Mini Tutorial,” Proc. Int’l Conf.
Software Eng. (ICSE 12), IEEE, 2012, p. 997.

	13.	 J.-G. Lou et al., “Software Analytics for
Incident Management of Online Services: An
Experience Report,” to appear in Proc. Int’l
Conf. Automated Software Eng. (ASE 13),
IEEE, 2013.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

Showcase Your
Multimedia Content
on Computing Now!

IEEE Computer Graphics and Applications
seeks computer graphics-related
multimedia content (videos, animations,
simulations, podcasts, and so on) to
feature on its Computing Now page,
www.computer.org/portal/web/
computingnow/cga.

If you’re interested, contact us at
cga@computer.org. All content will be
reviewed for relevance and quality.

technologies to real-world use. In addi-
tion to the StackMine project, Micro-
soft Research Asia’s Software Analytics
Group has conducted a number of soft-
ware analytics projects (such as XIAO8
and Service Analysis Studio9,10,13) with
a high impact on software development
practice. These projects both share com-
monalities and have their own unique
characteristics in terms of offering les-
sons learned for the community, call-
ing for our future efforts in summariz-
ing and analyzing such lessons learned
across various projects.

Acknowledgments
We thank the engineers from the Microsoft
product teams for collaborating with Mi-
crosoft Research Asia’s Software Analytics
Group on StackMine and other projects.

References
	 1.	 J. Czerwonka et al., “CRANE: Failure Predic-

tion, Change Analysis and Test Prioritization

in Practice—Experiences from Windows,”
Proc. IEEE 4th Int’l Conf. Software Testing,
Verification and Validation (ICST 11), IEEE
CS, 2011, pp. 357–366.

	 2.	 E. Shihab et al., “An Industrial Study on the
Risk of Software Changes,” Proc. ACM SIG-
SOFT 20th Int’l Symp. Foundations Software
Eng. (FSE 12), ACM, 2012, article 62.

	 3.	 K. Glerum et al., “Debugging in the (Very)
Large: Ten Years of Implementation and Ex-
perience,” Proc. ACM SIGOPS 22nd Symp.
Operating Systems Principles (SOSP 09),
ACM, 2009, pp. 103–116.

	 4.	 T. Gorschek et al., “A Model for Technology
Transfer in Practice,” IEEE Software, vol. 23,
no. 6, 2006, pp. 88–95.

	 5.	 A. Sandberg, L. Pareto, and T. Arts, “Agile
Collaborative Research: Action Principles for
Industry-Academia Collaboration,” IEEE
Software, vol. 28, no. 4, 2011, pp. 74–83.

	 6.	 C. Wohlin et al., “The Success Factors Power-
ing Industry-Academia Collaboration,” IEEE
Software, vol. 29, no. 2, 2012, pp. 67–73.

	 7.	 S. Han et al., “Performance Debugging in the
Large via Mining Millions of Stack Traces,”
Proc. Int’l Conf. Software Eng. (ICSE 12),
IEEE, 2012, pp. 145–155.

	 8.	 Y. Dang et al., “XIAO: Tuning Code Clones
at Hands of Engineers in Practice,” Proc. 28th
Ann. Computer Security Applications Conf.
(ACSAC 12), ACM, 2012, pp. 369–378.

