
 42 computer Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE

Cover Fe ature

For example, the OASIS Web Services Business Process
Execution Language (WS-BPEL) supports selecting one
of several functionally equivalent candidate services for
composition; it also supports selecting one of several
interaction styles from those services.

However, in the Internet computing environment, re-
quirements are often unclear or undetermined before
collaboration occurs. For example, handling a swine flu
epidemic requires cooperation among numerous orga-
nizations and individual software and services, such as
airlines, hotels, hospitals, and mobile phone service provid-
ers. Similar scenarios arise in both emergency situations
(such as earthquakes, typhoons, or snow disasters) and
during major international or national events (such as the
Olympic Games or the National Day celebration).

The requirements involved in handling these types of
situations call for new technologies that can support on-
demand collaborations among software entities. Chinese
researchers have proposed Internetware,1-5 a software
paradigm that provides a set of technologies for develop-
ing applications to meet computing requirements in the
Internet environment. The “China’s National Research and
Development Framework” sidebar offers more information
on the current status of projects related to the development
of Internetware.

INTERNET COMPUTING REQUIREMENTS
Software on the Internet differs from traditional

software in terms of its form, structure, and behavior.
Consequently, software applications (including software
entities and their interactions) for Internet computing

D ue to its open, dynamic, constantly changing
nature, the Internet computing environment
exhibits characteristics that call for new soft-
ware development technologies, reflecting the

pattern of ever-evolving paradigms throughout comput-
ing history.

A software paradigm (also called a programming para-
digm) describes a software model and its construction from
the perspective of software engineers or programmers.1 A
software model specifies the forms, structures, and be-
haviors of software entities as well as their collaborations.

As Figure 1 shows, software collaborations typically
occur via predefined or dynamic interactions among
software entities. In a structured paradigm, these enti-
ties are procedures, and their interactions occur through
predefined procedural calls. In an object-oriented para-
digm, object interactions occur through message passing.
In a component-based paradigm, component interactions
occur through connectors.

In a service-oriented paradigm, different services can
interact with each other to support the same requirement.

To meet the needs of computing in the Inter-
net environment, the Internetware software
paradigm provides a set of technologies that
support the development of applications
with characteristics that are autonomous,
cooperative, situational, evolvable, emer-
gent, and trustworthy.

Hong Mei, Gang Huang, and Tao Xie, Peking University, China

Internetware:
A Software
Paradigm
for Internet
Computing

 JuNe 2012 43

should be autonomous, cooperative, situational, evolvable,
emergent, and trustworthy.1

Autonomous
Software entities are usually distributed, relatively

self-contained, and independent. They usually perform
according to provider-defined composition or deploy-
ment strategies and strive continuously to satisfy provider
requirements. A software entity can adapt itself when
necessary by sensing and collecting information on envi-
ronment changes. For example, in the swine flu epidemic
scenario, the Centers for Disease Control (CDC), airports,
hotels, and hospitals are all autonomous entities and would
need to participate in on-demand collaboration with each
other.

Cooperative
A set of software entities can collaborate for the purpose

of business or management.6 Often, the collaboration is
dynamic rather than static to adapt to on-demand user
requirements and environments. The collaboration mecha-
nisms between software entities can be of various types
and can change if necessary.

Situational
Software applications can be aware of runtime contexts

and scenarios, including the underlying devices, operating
platforms, networking conditions, application contexts,7
or changes in other dependent applications. Hence, both
software entities and their operating platforms need to be
capable of exposing their runtime states and behaviors in
some way.

Evolvable
The structures and behaviors of software applications

might change dynamically. Internet software applications
usually consist of autonomous entities that provide con-
tinuous online services 24/7 for numerous users. Hence,

software applications cannot be shut down during evo-
lution. They must perform what amounts to an online
evolution to accommodate new user requirements and
environments. Possible evolutions can include the addi-
tion or removal of software entities; just-in-time, on-the-fly
changes in functionalities; and changes in interaction
styles and topologies among entities.

Emergent
Software applications can exhibit random behaviors

or undesired effects at runtime. Such behaviors might it-
eratively result in more changes in software-application
structures and behaviors to accommodate emergent
requirements.

Trustworthy
Software applications should promise comprehensive

tradeoffs among various quality attributes. As software
applications serve many online users, those applications’
trustworthiness should cover a wide spectrum, including
reliability, security, performance, and user experience.
Quality assurance can stretch to include autonomous
entities, interaction styles, network environments, usage
patterns, malicious attacks, and software evolution.

INTERNET COMPUTING PARADIGMS
A software paradigm usually includes four main as-

pects: what to be, how to do, how torun, and how well.1
The what-to-be aspect refers to what is being

constructed and executed—say, a software or program-
ming model. How to do refers to how to develop the
required software applications, including programming
languages, engineering approaches, and supporting
tools. How to run refers to the tools for running software
applications, including entities such as runtime systems,
operating systems, and middleware platforms. How well
refers to how well the constructed and executed software
applications can perform—their promised qualities,

Dynamic service �owjee: jndi-lookup Service �ow
Labor-based emergent
cooperation can be
observed such as
mashups and end
user programming

Loosely-coupled
(un�xed partners,
�xed interaction)

Hardwired
(�xed partner,

�xed interaction)

Flexible
(�xed partners,

un�xed interaction)

Goal-driven
(un�xed partners,

un�xed interaction)

Loosely-coupled
(induced goal)

Object- oriented

SW
entity

SW
entity

SW
entity

SW
entity

Figure 1. Paradigms enabling software collaborations. Such collaborations typically occur via predefined or dynamic interac-
tions among software entities.

 44 computer

Cover Fe ature

correctness, performance, reliability, and anticipated
user experiences.

A software paradigm’s main objective is to better lever-
age the underlying runtime environment while offering a
computing model that is sufficiently expressive and natural
to characterize the application domain. Put another way,
a software paradigm evolves with its underlying runtime
environment and its target application domains. For a soft-
ware paradigm, the what-to-be and how-to-do/how-to-run
aspects are typically the first set of concerns that develop-
ers address, with how well becoming a concern when they
broadly apply the software paradigm in practice.

Every shift in a software paradigm typically brings
significant challenges as well as tremendous oppor-
tunities—think of the shift from the structured to the
object-oriented paradigm, followed by the shift to the
component-based/service-oriented paradigm. After more
than a decade of development and growth, the expanded
Internet computing environment and application domains
call for a new shift in software paradigms.

In particular, an Internet computing software paradigm
must satisfy the following requirements, some of which are
general to any software paradigm and some of which are
specific to this evolving environment.5

chiNa’s NatioNal research aNd developmeNt Framework

c hina’s National Long-Term Science and Technology Development
Plan (2006-2020) documents the following national research and

development (R&D) strategies: independent innovation, infra-
structure technology, future technology, and leap-forward develop-
ment. Based on these four strategies, the Chinese government has
initiated the development of a national R&D framework. As Figure A
shows, the government uses this framework to plan the R&D roadmap
and attract funding investment. Industry proposes business trends
and technical requirements, while academia proposes technical
trends and provides strategic consulting.

The R&D framework includes five major national programs. To sat-
isfy current domestic market needs, the National Science and
Technology Major Projects focus on products or systems such as air-
planes and infrastructure products. The National Key Technology
R&D Program focuses on technologies that are critical to the country’s
economy. The NSFC supports fundamental research. In addition to
fundamental research, the National Basic Research Program (or 973)
supports technology R&D that makes research results practical. The
National High Technology R&D Program (or 863) focuses on advanced
technology R&D.

In the national R&D framework, the components related to soft-
ware technologies focus on two categories: domestic production of
infrastructure software and innovation in future Internet-related soft-
ware technologies.

Based on worldwide technical trends and increasing Chinese
informational demands, five types of infrastructure software are the
major targets in domestic technology development: operating sys-
tems, database management systems, embedded systems software,
middleware, and office suites. Infrastructure software technologies
have been mature for many years, but domestic infrastructure soft-
ware has a long way to go to meet the needs of the domestic market.
For example, operating systems occupied no more than 5 percent of
the domestic market share in 2005, and most of those purchases were
through government procurement.

Because of its rapid pervasiveness and wide application, the Inter-
net is becoming open, global, ubiquitous, and smarter. This trend
calls for disruptive innovations in most aspects of the development of
software technologies.

In the past decade, the Chinese National Basic Research Program
(known as 973) has funded two consecutively executed projects to
support the development of Internetware: Research on Theory and
Methodology of Agent-Based Middleware on Internet Platform
(2002-2008) and Research on Networked Complex Software: Quality
and Confidence Assurance, Development Method, and Runtime
Mechanism (2009-2013).

Approximately 80 researchers from Chinese universities and insti-
tutes have participated in these projects, including participants from
Peking University, Nanjing University, Tsinghua University, the Insti-
tute of Software of the Chinese Academy Sciences, the Academy of
Mathematics and Systems Science of Chinese Academy Sciences, East
China Normal University, and IBM China Research Laboratory. The
annual Asia-Pacific Symposium on Internetware (www.internetware.
org), which debuted in 2009 in cooperation with ACM SIGSOFT,
attracts authors and attendees from China, the US, Europe, Australia,
Japan, and Korea.

In the past five years, the National Natural Science Foundation of
China (NSFC) has sponsored deep research into Internetware topics
such as trustworthiness and ontology development. The National
High Technology Research and Development Program (known as
863) has sponsored research into some technical challenges in prac-
tice, such as self-adaption and self-organization. Researchers are
introducing prototype Internetware operating platforms and devel-
opment tools in commercial products with support from the National
Science and Technology Major Projects.

Government

Academia

Leading Leading

Participating

Future
software

NSFC

National
natural science

foundation

973

National key
basic research

program

863

National high
technology

R&D program

Key

National key
technology

R&D program

Major

National S&T
major projects

Infrastructure
software

Fundamental researchTechnology R&DDomesticalization

Planning and funding

Industry

Business trends
and technical
requirements

Technical trends
and strategy
consulting

Figure A. China’s national research and development (R&D)
framework and its software technologies components.

 JuNe 2012 45

Software model (what to be)
The software model should specify the forms, struc-

tures, and behaviors of software entities as well as their
collaborations. These specifications determine the
principles and features of the corresponding software tech-
nologies, including programming languages, development
approaches, and runtime mechanisms. Developers can
build basic Internet software entities using current technol-
ogies, such as the object-oriented and service-computing
paradigms, but they should provide new capabilities to
enable on-demand collaborations among entities along
with context- and situation-aware capabilities.

Software operating platform (how to run)
The operating platform should provide a runtime space

for software entities and their collaborations. To ease the
migration to applications for Internet computing, the oper-
ating platform should conveniently equip legacy software
with new characteristics that satisfy the requirements
in this environment. In addition, the operating platform
should manage software applications and the platform
itself intelligently and automatically.

Engineering approach (how to do)
The engineering approach should systematically control

the entire life cycle of developing software for Internet
computing, including requirements specification, design,
implementation, deployment, and maintenance.

Quality assessment (how well)
Software applications on the Internet usually serve

a large number of online users simultaneously.8 Both
quantitative and qualitative assessment methods should
be developed for various quality attributes such as
performance, reliability, and usability, and to enable com-
prehensive tradeoffs among these attributes.

THE INTERNETWARE PARADIGM
The Internetware software model consists of a set of

autonomous software entities distributed over the Internet,
together with a set of connectors to enable collaborations
among these entities in various ways. Internetware soft-
ware entities can sense dynamic changes in the running
environment and continuously adapt to these changes
through structural and behavioral evolutions.

From the micro perspective, Internetware software enti-
ties can collaborate with each other on demand; from the
macro perspective, these entities can self-organize to form
an application or community of interest. Consequently, the
development of a software application with Internetware
can be viewed as a continuous and iterative composition
of various “disordered” resources into “ordered” software
applications. Thus, software development with Internet-
ware is a spiral process built bottom-up and inside-out.

In particular, the Internetware software paradigm
covers three main aspects.9

Software model (what to be)
The Internetware software model deals with enti-

ties, collaborations, and environments, as well as their
relationships. An Internetware software entity has basic
business functionality interfaces to enable collaboration—
it can expose its own states and behaviors, and it can also
monitor and capture environment information. Entity col-
laborations governed by a software architecture can be
globally planned and adapted.

Software operating platform (how to run)
In Internetware middleware, software entity containers

provide advanced capabilities and services. For example,
flexible connectors can mediate different protocols between
entities; the dynamic binding of policies satisfies the speci-
fied constraints.10 A runtime software architecture (RSA)

governs on-demand collaborations. Leveraging autonomic
computing for management, Internetware middleware sup-
ports the self-organization and self-adaptation of software
applications, and supports the delivery of high quality of
service (such as reliability and performance) at runtime. In
particular, the middleware is open and extensible, so it can
load or customize new capabilities and services on-demand.

Engineering approach (how to do)
The Internetware engineering approach follows the core

principle of “software architecture for the whole life cycle.”
Essentially, the software architecture serves as a blue-
print and controls every stage of software development.
To support the online self-organization and self-adaptation
of Internetware software applications, the architecture
implements and governs software entities and their on-
demand collaborations. To better control the development
process, the architecture organizes heterogeneous distrib-
uted resources for a specific domain according to domain
modeling techniques.

INTERNETWARE TECHNOLOGIES AND
INFRASTRUCTURES

As Figure 2 shows, researchers in the Chinese software
community have developed various key technologies and
infrastructures to support Internetware.

Internetware software entities can
sense dynamic changes in the running
environment and continuously adapt
to these changes through structural
and behavioral evolutions.

 46 computer

Cover Fe ature

Software model
One recently proposed autonomous component model

is built on current software technologies, including EJB
or Web service components.11 The entities include the
metamodel component and reflective interfaces for adapt-
ing states and behaviors. The entities can further leverage
the environment metamodel and reflective interfaces
to capture contextual information.12 Entities with a rule
engine can reason about proper actions based on context
and defined rules to perform adaptations intelligently and
automatically.

Operating platform
The JavaEE-compliant Peking University Application

Server (PKUAS)13 is an architecture-based reflective com-
ponent operating platform that provides the Internetware
software container. PKUAS provides an open framework
to facilitate interaction by heterogeneous components with
different interoperability protocols, such as RMI, SOAP,
and HTTP. It also allows flexible binding of various ele-
ments such as security policies and database connections
for rule-based component self-adaptation.

Furthermore, PKUAS allows the dynamic addition or re-
moval of components as well as upgrading or downgrading
connectors, and supports online evolution of Internet-
ware applications. To support on-demand collaboration,
Internetware middleware employs an RSA and reflection
mechanisms on its own application server. Based on the
RSA, SM@RT (software model at runtime), an architecture-
based, model-driven, self-adaption technique, supports

autonomic management of the Internetware
middleware and the software applications
operating on it.

Engineering approach
Internetware’s engineering approach

leverages the architecture-based compo-
nent composition (ABC) methodology.11
ABC composes reusable components under
a single blueprint software architecture
and shortens the gap between high-level
design and low-level implementation. ABC’s
adaptation capability is crucial to satisfy-
ing Internet computing’s software require-
ments. We use a software architecture to
locate the entities to be adapted, then the
software architecture records what should
happen at runtime to adapt those entities.
Finally, the software architecture executes
the designed adaptation without stopping
the running system. We can also integrate
reasoning rules into the software architec-
ture to enable dynamic adaptation with a
rule engine.

R esearchers are investigating several issues related
to Internetware.

The Internet is playing an increasingly essential
role in connecting the cyber, physical, and social worlds.
Developers must extend Internetware to cope with the
complex, software-intensive cyberspace resulting from
the connections and collaborations between telecom,
mobile, sensor, and other ad hoc networks. Computing
devices, human society, and physical objects will soon
be seamlessly integrated together, and software systems
will orchestrate information, processes, decisions, and
interactions in this Internet environment. Internetware
must be ready to support the software systems that will
only continue to grow in scale and complexity in this
space.

Researchers also must extend Internetware to ac-
commodate the shifted focus on software quality. In
the evolving cyberspace, software systems will directly
serve millions or even billions of users accessing various
online services. The diversity of network environments,
devices, and user preferences make quality assurance
much more challenging and complex. Internetware
software applications and their operating platform
should offer good enough, cost-effective (rather than
best-effort) assurance.

In addition, the Internetware software paradigm must
accommodate emerging application domains and pro-
vide support for the Internet-of-Things environment. The

Internetware
software

model

Cooperative, situational, emergent,
evolvable, autonomous, trustworthy

Internetware characteristics

Bottom-up
knowledge-

driven
engineering

Architecture-
centric

On-demand
construction/
ccoperation

Self-
organizing

domain/
community

Agent-like
entity

Runtime
middleware

Internetware
engineering

approach

Internetware
middleware
framework

Internetware
platform
and tools

Internetware
demo and
case study

Figure 2. Internetware research and practice outcomes in China,

 JuNe 2012 47

Internetware middleware must leverage resource virtual-
ization and dynamic scheduling. A lightweight version of
the middleware must be based on Web browsers so that it
can run on both PCs and various mobile devices, such as
smartphones and tablets. Ultimately, Internetware must
support end user programming so that the users them-
selves can engage in the engineering process.

Acknowledgments
This work is sponsored by the National Basic Research
Program of China under grant no. 2009CB320700; the Na-
tional Natural Science Foundation of China under grant no.
61121063, 91118004, 60933003; the European Commission
Seventh Framework Programme under grant no. 231167; and
the IBM University Joint Study.

References
 1. H. Mei, “Internetware: Challenges and Future Direction of

Software Paradigm for Internet as a Computer,” Proc. 34th
Ann. Conf. Computers, Software, and Applications (Comp-
sac 10), 2010, pp. 14-16.

 2. F. Yang, J. Lü, and H. Mei, “Some Discussion on the Devel-
opment of Software Technology,” Acta Electronica Sinica
(in Chinese), vol. 26, no. 9, 2003, pp. 1104-1115.

 3. J. Lü, X. Ma, and X-P. Tao, “Research and Progress of In-
ternetware,” Science in China, series F (in Chinese), vol. 36,
no. 10, 2006, pp. 1037-1080.

 4. H. Mei and X. Liu, “Internetware: An Emerging Software
Paradigm for Internet Computing,” J. Computer Science and
Technology, vol. 26, no. 4, 2011, pp. 588-599.

 5. J. Lü et al., “Internetware: A Shift of Software Paradigm,”
Proc. 1st Asia-Pacific Symp. Internetware, ACM, 2009;
doi:10.1145/1640206.1640213.

 6. T. Liu, Ying Li, and X. Li, “A Collaborative Management as
a Service Framework for Managing Distributed Systems,”
Proc. 1st Asia-Pacific Symp. Internetware, ACM, 2009;
doi:10.1145/1640206.1640218.

 7. C. Ye et al., “A Study on the Replaceability of Context-Aware
Middleware,” Proc. 1st Asia-Pacific Symp. Internetware,
ACM, 2009; doi:10.1145/1640206.1640210.

 8. H. Wang et al., “Trustworthiness of Internet-Based Soft-
ware,” Science in China, series F, vol. 49, no. 6, 2006, pp.
759-773.

 9. F. Yang, J. Lü, and H.Mei, Technical Framework for Inter-
netware: An Architecture Centric Approach,” Science in
China, series F, vol. 51, no. 6, 2008, pp. 610-622.

 10. C. Ye et al., “Middleware Support for Internetware: A
Service Perspective,” Proc. 2nd Asia-Pacific Symp. Inter-
netware, ACM, 2010; doi:10.1145/2020723.2020727.

 11. H. Mei et al., “A Software Architecture-Centric Engineering
Approach for Internetware,” Science in China, series F, vol.
49, no. 6, 2006, pp. 702-730.

 12. J. Lü et al., “An Environment-Driven Software Model for In-
ternetware,” Science in China, series F, vol. 51, no. 6, 2008,
pp. 683-721.

 13. H. Mei et al., “A Software Architecture-Centric Self-Adap-
tation Approach for Internetware,” Science in China, series
F, vol. 51, no. 6, 2008, pp. 722-742.

Hong Mei is a professor in the School of Electronics En-
gineering and Computer Science, Peking University. His
research interests include software engineering, software
reuse, distributed object technology and middleware, and
programming languages. Mei received a PhD in computer
science from Shanghai Jiaotong University. He is a senior
member of IEEE. Contact him at meih@pku.edu.cn.

Gang Huang is a professor in the School of Electronics En-
gineering and Computer Science, Peking University. His
research interests include software engineering, particu-
larly software architecture and middleware. Huang received
a PhD in computer science from Peking University. He is a
member of IEEE. Contact him at hg@pku.edu.cn.

Tao Xie is a visiting professor in the School of Electron-
ics Engineering and Computer Science, Peking University,
and an associate professor in the Department of Computer
Science at North Carolina State University. His research
interests include software engineering, particularly soft-
ware testing, program analysis, and software analytics. Xie
received a PhD in computer science from the University of
Washington, Seattle. He is a member of IEEE and a senior
member of ACM. Contact him at xie@csc.ncsu.edu.

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

