
55AUGUST 2009Published by the IEEE Computer Society0018-9162/09/$26.00 © 2009 IEEE

COVER FE ATURE

SE data concerns the 3Ps: people, processes, and prod-
ucts. People include software developers, testers, project
managers, and users. Processes include various develop-
ment phases and activities such as requirements, design,
implementation, testing, debugging, maintenance, and
deployment. Products can be structured, such as source
code (including production and test code), or nonstruc-
tured, such as documentation and bug reports.

As the first column of Table 1 shows, SE data can be
broadly categorized into

sequences•	 such as execution traces collected at run-
time, static traces extracted from source code, and
co-changed code locations;
graphs•	 such as dynamic call graphs collected at run-
time and static call graphs extracted from source
code; and
text•	 such as bug reports, e-mails, code comments, and
documentation.

To improve both software productivity and quality,
software engineers are increasingly applying data mining
algorithms to various SE tasks. For example, such algo-
rithms can help engineers figure out how to invoke API
methods provided by a complex library or framework with
insufficient documentation. In terms of maintenance, such
algorithms can assist in determining what code locations

B
ecause software plays a critical role in busi-
nesses, governments, and societies, improving
software productivity and quality is an impor-
tant goal of software engineering. Mining SE
data has recently emerged as a promising

means to meet this goal due to two main trends: the
increasing abundance of such data and its demonstrated
helpfulness in solving numerous real-world problems.

Popular software version control systems such as the
Concurrent Version System and Subversion let engineers
not only capture current snapshots of a project code base
but also maintain full version histories. Complete life-cycle
bug management is also possible through systems such as
Bugzilla. Moreover, rich execution data is available thanks
to powerful instrumentation tools such as Microsoft’s Dr.
Watson technology, used by software developers and light-
weight monitoring tools optimized for end users.

To improve software productivity and qual-
ity, software engineers are increasingly
applying data mining algorithms to vari-
ous software engineering tasks. However,
mining SE data poses several challenges.
The authors present various algorithms to
effectively mine sequences, graphs, and text
from such data.

Tao Xie and Suresh Thummalapenta, North Carolina State University

David Lo, Singapore Management University

Chao Liu, Microsoft Research

DATA MINING
FOR SOFTWARE
ENGINEERING

COVER FE ATURE

compUTer 56

call sequences or call graphs from source
code, dynamic method-call sequences or
call graphs from execution traces, or word
sequences from bug report summaries.
This data is further preprocessed by clean-
ing and properly formatting it for the mining
algorithm. For example, the input format for
sequence data can be a sequence database
where each sequence is a series of events.

The next step produces a mining algo-
rithm and its supporting tool, based on the
mining requirements derived in the first two
steps. In general, mining algorithms1 fall into
four main categories:

frequent pattern mining•	 —finding com-
 monly occurring patterns;

pattern matching•	 —finding data instances
 for given patterns;

clustering•	 —grouping data into clusters;
 and

classification•	 —predicting labels of data
 based on already-labeled data.

The final step transforms the mining al-
gorithm results into an appropriate format
required to assist the SE task. For example,
in the preprocessing step, a software en-
gineer replaces each distinct method call
with a unique symbol in the sequence da-
tabase being fed to the mining algorithm.
The mining algorithm then characterizes
a frequent pattern with these symbols. In
postprocessing, the engineer changes each

symbol back to the corresponding method call. When ap-
plying frequent pattern mining, this step also includes
finding locations that match a mined pattern—for exam-
ple, to assist in programming or maintenance—and finding
locations that violate a mined pattern—for example, to
assist in bug detection.

Mining Challenges
Mining SE data presents several challenges.

Requirements unique to se
Most SE data mining studies rely on well-known, pub-

licly available tools such as association-rule mining and
clustering. Such black-box reuse of mining tools may
compromise the requirements unique to SE by fitting
them to the tools’ undesirable features. Further, many
such tools are general purpose and should be adapted to
assist the particular task at hand. However, SE researchers
may lack the expertise to adapt or develop mining algo-
rithms or tools, while data mining researchers may lack

must be changed when another code location is changed.
Software engineers can also use data mining algorithms
to hunt for potential bugs that can cause future in-field
failures as well as identify buggy lines of code (LOC) re-
sponsible for already-known failures. The second and third
columns of Table 1 list several example data mining algo-
rithms and the SE tasks to which engineers apply them.

Mining Methodology
Figure 1 shows an overview of the five main steps in

mining SE data. Software engineers can start with either a
problem-driven approach (knowing what SE task to assist) or
a data-driven approach (knowing what SE data to mine), but
in practice they commonly adopt a mixture of the first two
steps: collecting/investigating data to mine and determining
the SE task to assist. The three remaining steps are, in order,
preprocessing data, adopting/adapting/developing a mining
algorithm, and postprocessing/applying mining results.

Preprocessing data involves first extracting relevant
data from the raw SE data—for example, static method-

SE data

Collect/
investigate

SE data

Determine
SE task

Preprocess
data

Adopt/adapt/
develop
mining

algorithm

Postprocess/
apply

mining
results

SE task

1

2

3

4

5

Figure 1. The methodology for mining software engineering data involves
five basic steps. In practice, software engineers adopt a mixture of the first
two steps.

Table 1. example software engineering data, mining algorithms, and Se tasks.

example se data example mining algorithms example se tasks

Sequences:
execution/static
traces, co-changes

Frequent itemset/sequence/
partial-order mining,
sequence matching/
clustering/classification

Programming,
maintenance,
bug detection,
debugging

Graphs: dynamic/
static call graphs,
program dependence
graphs

Frequent subgraph mining, graph
matching/clustering/classification

Bug detection,
debugging

Text: bug reports,
e-mails,
code comments,
documentation

Text matching/clustering/
classification

Maintenance,
bug detection,
debugging

57AUGUST 2009

Common types of mining algorithms include fre-
quent pattern mining—for example, frequent itemset,
sequence, or partial-order mining—as well as sequence
matching, clustering, and classification. Frequent pattern
mining can be used to mine for API call usage patterns
to help in programming or for specifications to help in
bug detection.2 Different algorithms produce patterns
that reflect different levels of information, and which
algorithm to choose depends on the specific SE task’s
mining requirements. For example, association rules
or frequent itemsets do not reflect sequential order in-
formation among the elements in the mined patterns,
whereas frequent sequence or partial orders do. Se-
quence matching can be used to detect potential bugs
by finding locations for almost, but not exactly, matching
mined sequence patterns.

We have developed new mining algorithms that address
the unique characteristics of SE data. These algorithms
include mining iterative patterns, temporal rules, sequence
diagrams, finite-state machines (FSMs), and sequence as-
sociation rules.

iterative pattern mining
Existing sequential-pattern-mining algorithms ignore

repetitions of items (method calls) in a trace (sequence)
and are agnostic to the rich semantics of property speci-
fication languages in SE. To address this problem, we
have developed an algorithm that captures repetitive oc-
currences of the patterns within each trace and across
multiple traces.3

Consider the following sequence database:

1 A B C D E A X B C
2 A G X B C
3 A X B C

Our algorithm mines the set of frequent closed iterative
subsequence patterns, at the minimum support threshold
of 4, which is {〈A B C〉}. Current frequent subsequence
mining algorithms would ignore the second occurrence
or repetition of this pattern in sequence 1 and thus cannot
mine this pattern.

We have applied iterative pattern mining to traces
collected from the transaction component of the JBoss
application server. The mined patterns range from small,
frequently occurring patterns such as “lock must be

the background to understand mining requirements in
the SE domain. One promising way to reduce this gap is
to foster close collaborations between the SE community
(requirement providers) and the data mining community
(solution providers). Our research efforts represent one
such instance.

Complex data and patterns
SE researchers typically mine individual data types

alone to accomplish a certain SE task. However, SE tasks
increasingly demand the mining of multiple correlated
data types, including both sequence and text data, together
to achieve the most effective result. Even for a single data
type, rich information is commonly associated not only
with an individual data item but also with the linkage
among multiple data items.

In addition, pattern representation in the SE domain
can be complex. There might be no existing mining algo-
rithms that produce desired pattern representations, and
developing new algorithms for such representations can be
difficult. Overall, ensuring a scalable yet expressive mining
solution is difficult.

large-scale data
SE researchers often mine only a few local repositories.

However, there may be too few relevant data points in
these repositories to support the mining of desirable pat-
terns, such as ones among API methods of interest. One
way to address this problem is to mine Internet-scale soft-
ware repositories—for example, via a code search engine.
Mining can then be applied to the entire open source world
or to many software repositories within an organization
or across organizations. Further, execution traces collected
from even an average-sized program can be very long,
and dynamically or statically extracted call graphs can be
enormous. Analyzing such large-scale data poses a chal-
lenge to existing mining algorithms.

Just-in-time mining
SE researchers usually conduct offline mining of

data already collected and stored. However, in modern
integrated SE environments, especially collaborative en-
vironments, software engineers must be able to collect
and mine SE data on the fly to provide rapid just-in-time
feedback. Stream data mining algorithms and tools could
be adapted or developed to satisfy such challenging mining
requirements.

Mining sequenCes
Example SE sequence data include method-call

sequences, either dynamically collected during program
execution or statically extracted from program source
code. Dynamically collected method-call sequences are
in the form of execution traces.

In modern integrated SE environments,
software engineers must be able to
collect and mine SE data on the fly to
provide rapid just-in-time feedback.

COVER FE ATURE

compUTer 58

We have applied the algorithm on traces from multiple
open source applications to mine both short and long rules
characterizing the applications’ behaviors. Figure 2b shows
some examples of temporal rules.

sequence-diagram and FsM mining
We have developed algorithms to mine other forms of

API specifications, including sequence diagrams and FSMs
(or automata)7,8 from sequences. These specifications cap-
ture constraints that are difficult to express using patterns
and rules. For example, a UML sequence diagram contains
not only method calls but also caller and callee informa-
tion shown as lifelines. Moreover, rules and patterns do not
express disjunctions and thus cannot capture the branch-
ing and loop behaviors expressible with FSMs. Rules and
patterns are often used to express strongly observed prop-
erties in the traces—those that appear with high support
and confidence—while FSMs tend to be used to capture
the overall view of event transitions in the traces, ignoring
both support and confidence.

Figure 2c shows examples of sequence diagrams mined
from the Jeti instant messaging application, while Figure
2d shows a mined FSM corresponding to a protocol of the
Xlib and XToolkit routines of the X11 windowing system.

followed by unlock” to longer patterns exceeding 30
method calls, as shown in Figure 2a. We have also shown
that mined iterative patterns could be used as high-level
features to classify program behaviors.4

temporal rule mining
A rule captures a constraint between its precondition

and postcondition. To find common temporal rules such
as “Whenever a series of events (for example, method calls)
occurs, eventually another series of events will occur,” we
developed an algorithm to mine rules of arbitrary lengths
(pre- and postconditions of the rules could be composed
of multiple events).5 We apply the algorithm on traces to
find candidate temporal invariants, which could later be
used to detect bugs.

The algorithm first locates frequent preconditions and
then, for each one, mines a set of significant rules obey-
ing the minimum confidence threshold. An example of a
significant rule mined from the sequence database is 〈A〉
→ 〈B C〉, with min_sup set to 4 and min_conf set to 100
percent. Using an extension, the algorithm finds rules of
the format “Whenever a series of events occurs, another
series of events must have happened before”—known as
past-time temporal rules.6

4

1

5

2

Start
3

A

E
D F

H

G

C
B

End

E
D

A - XNextEvent (time=X21_0)
B - XNextEvent (time = X21_0)
 or B = XtDispatchEvent (time = X21_0)
 or B = XIfEvent (time = X21_0)
C - XtDispatchEvent (time = X21_0)
 or C = XtEventHandler (time=X21_0)
 or C = XtLatTimeStampProcessed (time = X21_0)
D - XGetSelectionOwner
E - XSetSelectionOwner (time = X21_0)
F - XtOwnSelection (time = X21_0)
G - XtActionHookProc (time = X21_0)
H - XInternAtom

Resource allocation:
“Whenever a resource is allocated, eventually it

needs to be released.”

Windows WDK CancelSpinLock rule:
“A device driver needs to call

IoAcquireCancelSpinLock before calling

IoReleaseCancelSpinLock and it needs to call

IoReleaseCancelSpinLock before any subsequent

calls to IoAcquireCancelSpinLock.”

(a)

(b)

(d)(c)

Co
nn

ec
tio

n
se

tu
p

Tx
M

an
ag

er
se

tu
p

Tr
an

sa
ct

io
n

se
tu

p

Tr
an

sa
ct

io
n

co
m

m
it

Tr
an

sa
ct

io
n

di
sp

os
al

LSC Start chat

0:Chat
Windows

0:
Roster
Tree

0:Jeti 0:
JID

1:
JID

0:
Backend

0:
Connect

0:
Output

send(Packet)

getResource ()chat(..)chat(..)

createThread ()
getMyJID ()
getUser ()

send(Packet)

Learner k-len = 1 k-len = 3
 Recall Precs. PS Recall Precs. PS

k-tails 1.000 0.000 N/A 0.998 0.313 N/A
sk-strings 1.000 0.654 0.692 0.998 0.883 0.758
SMArTIC 1.000 0.820 0.910 0.998 0.987 0.956

TransactionManagerLocator.getInstance
TransactionManagerLocator.locate
TransactionManagerLocator.tryJNDI
TransactionManagerLocator.usePrivateAPI

TxManager.begin
XidFactory.newXid
XidFactory.getNextId
XidImpl.getTrulyGlobalId

TxManager.commit
TransactionImpl.commit
TransactionImpl.beforePrepare
TransactionImpl.checkIntegrity
TransactionImpl.checkBeforeStatus
TransactionImpl.endResources
TransactionImpl.completeTransaction
TransactionImpl.cancelTimeout
TransactionImpl.doAfterCompletion
TransactionImpl.instanceDone

TransactionImpl.associateCurrentThread
TransactionImpl.getLocalId
XidImpl.getLocalId
LocalId.hashCode
TransactionImpl.equals
TransactionImpl.getLocalIdValue
XidImpl.getLocalIdValue
TransactionImpl.getLocalIdValue
XidImpl.getLocalIdValue

TxManager.releaseTransactionImpl
TransactionImpl.getLocalId
XidImpl.getLocalId
LocalId.hashCode
LocalId.equals

Figure 2. Examples of mined API specifications: (a) A frequent pattern from the transaction component of the JBoss application
server; (b) temporal rules; (c) sequence diagrams from the Jeti instant messaging application; (d) a finite state machine from the
Xlib and XToolkit routines of the X11 windowing system.

59AUGUST 2009

Mining gRaphs
Example SE graph data includes static or dynamic call

graphs as well as program dependence graphs,10 where
edges represent data or control dependence, and nodes
represent statements. Program executions are directed by
the evaluations of various predicates throughout a program
(for example, in if and while statements), so the executions
can be modeled as traversals on static call graphs, leading
to dynamic call graphs.

Common types of graph mining algorithms include
frequent subgraph mining, graph matching, graph clas-
sification, and graph clustering. Frequent subgraph mining
can be used to find programming rules, which manifest
as frequent subgraphs in program dependence graphs that
are extracted from code bases, while graph matching can
be used to find locations for almost, but not exactly, match-
ing mined subgraphs corresponding to potential bugs.10

We have developed new graph mining algorithms
including discriminative graph mining and graph clas-
sification to assist in debugging.

discriminative graph mining
Running a set of test cases over an instrumented pro-

gram would produce two sets of traces: one corresponding
to correct executions of passing test cases and the other
to erroneous executions of failing test cases. Each of the
traces could be “coiled” to form dynamic call graphs. A
node in the call graph corresponds to method calls, and
a transition in the graph corresponds to the various rela-
tionships among the method calls—for example, a method
is immediately called after another method returns, and
one method invokes another. Such coiling would produce
two sets of dynamic call graphs. We could also build a
similar graph from executions of basic blocks—a sequence
of statements without any jump—in a program. Figure 4

sequence association
rule mining

Applying existing association-
rule mining algorithms can help
find rules of the form “FC

a
 ⇒ FC

e
”

as specif icat ions, where both
FC

a
 and FC

e
 are method calls that

share the same receiver object in
object-oriented programs. These
specifications can be used to find
exception-handling bugs: if FC

e
 does

not follow FC
a
 in all exception paths.

However, association rules of this
form are often insufficient to cap-
ture common exception-handling
rules. In some situations, FC

a
 is not

necessarily followed by FC
e
 when

FC
a
 raises exceptions, although

both method calls share the same
receiver object.

Consider the two code samples shown in Figure 3,
which are extracted from real applications. The code
example in Figure 3a attempts to modify the contents
of a database through the method call Statement.ex-
ecuteUpdate (line 1.9), whereas the code example in
Figure 3b attempts to read the contents of a database
through the method call Statement.executeQuery (line
2.8). A simple specification in the form of an associa-
tion rule “Connection creation ⇒ Connection rollback”
indicates that a rollback method call should occur in
exception paths whenever an object of Connection is
created. However, this form of specification is not a real
rule since the rollback method call should be invoked
only when changes are made to the database.

We propose sequence association rules9 of the form
“(FC

c
1 ... FC

c
n) ∧ FC

a
 ⇒ (FC

e
1 ... FC

e
m),” which prescribes

that method-call sequence FC
e
1 ... FC

e
m should follow FC

a

in exception paths only when method-call sequence
FC

c
1 ... FC

c
n precedes FC

a
. Thus, the sequence associ-

ation rule for the code samples shown in Figure 3 is
expressed as “(FC

c
1 FC

c
2) ∧ FC

a
 ⇒ (FC

e
1),” where FC

c
1 is

OracleDataSource.getConnection, FC
c
2 is Connection.

createStatement, FC
a
 is Statement.executeUpdate, and

FC
e
1 is Connection.rollback.
We have developed an algorithm that annotates

items in sequences, mines the frequent subsequences
of these sequences, and postprocesses the mined fre-
quent subsequences to produce sequence association
rules. We applied the new algorithm on static sequences
extracted from code examples (found on the Inter-
net) that use third-party APIs found in five real-world
applications (including 285 KLOC), mining 294 real
exception-handling rules and detecting 160 exception-
handling defects.

2.1: Connection conn = null;
2.2: Statement stmt = null;
2.3: BufferedWriter bw = null; FileWriter fw = null;
 try {
2.4: fw = new FileWriter("output.txt");
2.5: bw = BufferedWriter(fw);
2.6: conn = DriverManager.getConnection("jdbc:pl:db", "ps", "ps");
2.7: Statement stmt = conn.createStatement();
2.8: ResultSet res = stmt.executeQuery("SELECT Path FROM Files");
2.9: while (res.next()) {
2.10: bw.write(res.getString(1));
2.11: }
2.12: res.close();
2.13: } catch (IOException ex) { logger.error("IOException occurred");
2.14: } finally {
2.15: if(stmt != null) stmt.close();
2.16: if(conn != null) conn.close();
2.17: if(bw != null) bw.close();
2.18: }

1.1: ...
1.2: OracleDataSource ods = null; Session session = null;
 Connection conn = null; Statement statement = null;
1.3: logger.debug("Starting update");
1.4: try {
1.5: ods = new OracleDataSource();
1.6: ods.setURL("jdbc:oracle:thin:scott/tiger@192.168.1.2:1521:catfish");
1.7: conn = ods.getConnection();
1.8: statement = conn.createStatement();
1.9: statement.executeUpdate("DELETE FROM table1");
1.10: connection.commit(); }
1.11: catch (SQLException se) {
1.12: if (conn != null) {conn.rollback(); }
1.13: logger.error("Exception occurred"); }
1.14: finally {
1.15: if(statement != null) statement.close();
1.16: if(conn != null) conn.close();
1.17: if(ods != null) ods.close();
1.18: }

(a) (b)

Figure 3. Two code samples from real applications. (a) This code attempts
to modify the contents of a database through the method call Statement.
executeUpdate (line 1.9). (b) This code attempts to read the contents of a database
through the method call Statement.executeQuery (line 2.8).

COVER FE ATURE

compUTer 60

To classify dynamic call graphs, we have developed a
closed graph mining algorithm to represent graphs by
a series of essential subgraphs.

Mining text
Example SE text data include bug reports, e-mails, code

comments, and documentation for API methods. A unit of
common concern is a text document similar to a sequence
in the sequence database for sequence data.

Common types of text mining algorithms include text
clustering, classification, and matching. Example text
clustering applications include clustering bug reports to
detect duplicate bug reports and thereby reduce inspec-
tion efforts, and assigning reports to specific developers
to fix the bugs. Example text classification applications
include recommending assignment of a new bug report to
a specific developer based on the past assignment of old
bug reports. Example text matching applications include
searching keywords in code comments, API documenta-
tion, or bug reports, and detecting duplicates of a given
bug report among old reports.

We have developed an approach for duplicate-bug-re-
port detection13 that helps avoid assigning duplicate bug
reports to different developers. We illustrate the approach
with two examples using reports from the Firefox bug
repository.

example 1
Consider the following bug summary documents:

Bug-219232: random “The Document contains no
 data.” Alerts

Bug-244372: “Document contains no data” message on
 continuation page of NY Times article

To detect Bug-244372 to be a duplicate of Bug-219232
among all existing reports, we represent the summary
document of each as an n-dimensional vector, where n
is the number of unique index terms (words) occurring
in all the documents and each index term has a weight,
being the vector value of that index, calculated based on
the following rationale: If the index term t occurs in more
documents, it receives less weight than that given to index
terms that occur in fewer documents since t is not a good
discriminator across documents.

Before transforming documents to vectors, we use
common natural-language processing (NLP) techniques
such as removing stop words—words that carry little
meaning such as “on” or “of” in the Bug-244372 sum-
mary. After transforming documents into vectors, we
calculate the similarity of the summary document of
each bug report in the existing bug repository with the
summary document of Bug-244372 through a formula
for defining the similarity of two vectors.

shows examples of such graphs recovered from executions
of Mozilla Rhino.

To extract features, in the form of subgraphs, that dis-
tinguish the two sets of dynamic call graphs, we have
developed an algorithm that mines the top-k most dis-
criminating graphs.11 These graphs serve as signatures
and context where bugs occur and could potentially help
software engineers to locate and fix them. Our empirical
results on benchmark datasets show an average of 74 per-
cent precision and 91 percent recall at method level and
an average of 59 percent precision and 73 percent recall
at basic block level.

graph classification
The dynamic call graph of an erroneous execution

can sometimes diverge from those of correct execu-
tions.12 Knowing at what time the divergence occurs
would shed light on the potential bug location. Given
that call graphs look roughly the same between correct
and erroneous executions until the buggy place is exe-
cuted, we use incremental classification to detect when
the buggy place is triggered. Specifically, we build a
support vector machine classifier at different execution
points based on the dynamic call graphs accumulated
so far from correct and erroneous executions; intui-
tively, the classification accuracy will stay low until the
buggy point has been executed. Therefore, by detecting
the accuracy boost, we can determine the bug location.

Parser.parse()

IRFactory.createScript()Parser.function()IRFactory.createLeaf()

IRFactory.createFunction()IRFactory.createName()

(a)

Parser.parse()

IRFactory.createScript()Parser.statementHelper()IRFactory.createLeaf()

Parser.function()

IRFactory.createFunction()IRFactory.createExpr
Statement()IRFactory.createName()

(b)

Figure 4. Examples of dynamic call graphs from executions
of Mozilla Rhino: (a) partial graph for a correct execution; (b)
partial graph for an erroneous execution.

61AUGUST 2009

goal does not come without obstacles. Currently, much
work needs to be done to further adapt general-purpose
mining algorithms or develop specific algorithms to sat-
isfy the unique requirements of SE data and tasks. Further,
the scope of SE tasks that can benefit from data mining
must be expanded as well as the range of SE data that
can be mined.

In the pattern-mining domain, increased scalabil-
ity of mining algorithms and expressibility of mined
results are needed to obtain important nuggets of knowl-
edge that could later be fed to downstream SE tools to
perform various SE tasks. In the classification domain,
more-accurate classifiers for SE tasks are desirable. In the
pattern-matching domain, more-efficient approximate
matching algorithms could help analyze the gigantic scale
of SE data that extends to billions of LOC, documentations,
and bug reports accumulated over time and shared via the
Internet or intranets.

acknowledgment
This work is supported in part by NSF grant CCF-0725190

and ARO grant W911NF-08-1-0443.

References
 1. J. Han and M. Kamber, Data Mining: Concepts and Tech-

niques, Morgan Kaufmann, 2000.
 2. M. Acharya et al., “Mining API Patterns as Partial Orders

from Source Code: From Usage Scenarios to Specifica-
tions,” Proc. 6th Joint Meeting European Software Eng. Conf.
and ACM SIGSOFT Symp. Foundations of Software Eng.
(ESEC-FSE 07), ACM Press, 2007, pp. 25-34.

 3. D. Lo, S-C. Khoo, and C. Liu, “Efficient Mining of Itera-
tive Patterns for Software Specification Discovery,” Proc.
13th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD 07), ACM Press, 2007, pp. 460-469.

 4. D. Lo et al., “Classification of Software Behaviors for Fail-
ure Detection: A Discriminative Pattern Mining Approach,”
Proc. 15th ACM SIGKDD Int’l Conf. Knowledge Discovery and
Data Mining (KDD 09), ACM Press, 2009, pp. 557-566.

 5. D. Lo, S-C. Khoo, and C. Liu, “Mining Temporal Rules for
Software Maintenance,” J. Software Maintenance and Evo-
lution: Research and Practice, July 2008, pp. 227-247.

 6. D. Lo, S-C. Khoo, and C. Liu, “Mining Past-Time Temporal
Rules: A Dynamic Analysis Approach,” Artificial Intelligence
Applications for Improved Software Eng. Development: New
Prospects, F. Mezaine and S. Vadera, eds., IGI Global, 2009,
Chap. 13, pp. 259-277.

 7. D. Lo and S. Maoz, “Mining Scenario-Based Triggers and
Effects,” Proc. 23rd IEEE/ACM Int’l Conf. Automated Soft-
ware Eng. (ASE 08), IEEE Press, 2008, pp. 109-118.

 8. D. Lo and S-C. Khoo, “SMArTIC: Towards Building an Ac-
curate, Robust and Scalable Specification Miner,” Proc.
14th ACM SIGSOFT Int’l Symp. Foundations on Software
Eng. (FSE 06), ACM Press, 2006, pp. 265-275.

 9. S. Thummalapenta and T. Xie, “Mining Exception-Han-
dling Rules as Sequence Association Rules,” Proc. 31st
Int’l Conf. Software Eng. (ICSE 09), ACM Press, 2009, pp.
496-506.

Our approach determines that Bug-219232 has the
highest similarity with Bug-244372. Hence, it would mark
Bug-244372 as a potential duplicate of Bug-219232.

example 2
Now consider the following bug summary documents

from the Firefox bug repository:

Bug-260331: After closing Firefox, the process is still
 running. Cannot reopen Firefox after that, unless the
 previous process is killed manually.

Bug-239223: (Ghostproc) - [Meta] Firefox.exe doesn’t
 always exit after closing all windows; session-specific
 data retained.

Both documents use terms such as “Firefox” and “after
closing,” but these terms also commonly appear in other
unrelated bug reports in the Firefox bug repository. In ad-
dition, inherent NLP challenges are evident: “still running”
and “retained” should be treated as having the equivalent
meaning. Even if common synonym lists are used, how-
ever, it is still difficult for NLP techniques to treat these
two phrases as equivalent. Thus, using the technique of
comparing vectors would fail in this case. Fortunately, by
comparing the execution traces for the failing test cases
corresponding to these two bug reports, we can detect
that the execution traces are highly similar and are dis-
similar to the execution traces for other reports in the bug
repository.

This observation suggests that we should consider both
summary documents and execution traces of bug reports
in detecting duplicate reports. Specifically, we first cal-
culate the NLP-based similarities between the summary
document of the new bug report and the summary docu-
ments of the existing reports. Second, we calculate the
execution-trace-based similarities between the new bug
report and existing reports—for example, with sequence
matching. Finally, we identify potential duplicate bug re-
ports for the new report using the two types of similarities
based on some combination heuristics.

Our empirical results show that our approach, which
combines the analysis of both textual information and
execution traces, can identify 67 to 93 percent of duplicate
bug reports in the Firefox bug repository, compared with
43 to 72 percent using information from text alone.

T
he huge, growing amount of SE data provides
many opportunities for future research. Inte-
grating additional, more effective data mining
tools that address practical SE problems into
popular SE environments such as Eclipse and

Microsoft Visual Studio will facilitate widespread adoption
of data mining solutions in SE. However, this long-term

13 magazines—one source • FREE articles on hot topics
• Blogs, podcasts, & more

http://computingnow.computer.orghttp://computingnow.computer.org

COVER FE ATURE

compUTer 62

Suresh Thummalapenta is a PhD student in the Department
of Computer Science at North Carolina State University. His
research interests include automated software engineering,
with an emphasis on mining software engineering data and
software verification. Thummalapenta received an MS in
computer science from North Carolina State University.
He is a member of the ACM. Contact him at sthumma@
ncsu.edu.

David Lo is an assistant professor in the School of Infor-
mation Systems at Singapore Management University. His
research interests include dynamic program analysis, speci-
fication mining, and pattern mining. Lo received a PhD in
computer science from the National University of Singa-
pore. He is a member of the IEEE and the ACM. Contact him
at davidlo@smu.edu.sg.

Chao Liu is a researcher at Microsoft Research in Redmond,
Washington. His research interests include data mining,
machine learning, statistical methods and their applica-
tions to software engineering, and Internet services. Liu
received a PhD in computer science from the University of
Illinois at Urbana-Champaign. He is a member of the IEEE
and the ACM. Contact him at chaoliu@microsoft.com.

 10. R-Y. Chang, A. Podgurski, and J. Yang, “Finding What’s Not
There: A New Approach to Revealing Neglected Conditions
in Software,” Proc. 2007 Int’l Symp. Software Testing and
Analysis (ISSTA 07), ACM Press, 2007, pp. 163-173.

 11. H. Cheng et al., “Identifying Bug Signatures Using
Discriminative Graph Mining,” Proc. 2009 Int’l Symp. Soft-
ware Testing and Analysis (ISSTA 09), ACM Press, 2009,
pp. 141-152.

 12. C. Liu et al., “Mining Behavior Graphs for ‘Backtrace’ of
Noncrashing Bugs,” Proc. SIAM Int’l Data Mining Conf.
(SDM 05), Soc. for Industrial and Applied Mathematics,
2005, pp. 286-297.

 13. X. Wang et al., “An Approach to Detecting Duplicate Bug
Reports Using Natural Language and Execution Informa-
tion,” Proc. 30th Int’l Conf. Software Eng. (ICSE 08), ACM
Press, 2008, pp. 461-470.

Tao Xie is an assistant professor in the Department of
Computer Science at North Carolina State University. His
research interests include software engineering, particu-
larly mining software engineering data and automated
software testing. Xie received a PhD in computer science
from the University of Washington. He is a member of the
IEEE and the ACM. Contact him at xie@csc.ncsu.edu.

