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SE data concerns the 3Ps: people, processes, and prod-
ucts. People include software developers, testers, project 
managers, and users. Processes include various develop-
ment phases and activities such as requirements, design, 
implementation, testing, debugging, maintenance, and 
deployment. Products can be structured, such as source 
code (including production and test code), or nonstruc-
tured, such as documentation and bug reports. 

As the first column of Table 1 shows, SE data can be 
broadly categorized into

sequences•	  such as execution traces collected at run-
time, static traces extracted from source code, and 
co-changed code locations; 
graphs•	  such as dynamic call graphs collected at run-
time and static call graphs extracted from source 
code; and 
text•	  such as bug reports, e-mails, code comments, and 
documentation. 

To improve both software productivity and quality, 
software engineers are increasingly applying data mining 
algorithms to various SE tasks. For example, such algo-
rithms can help engineers figure out how to invoke API 
methods provided by a complex library or framework with 
insufficient documentation. In terms of maintenance, such 
algorithms can assist in determining what code locations 

B
ecause software plays a critical role in busi-
nesses, governments, and societies, improving 
software productivity and quality is an impor-
tant goal of software engineering. Mining SE 
data has recently emerged as a promising 

means to meet this goal due to two main trends: the 
increasing abundance of such data and its demonstrated 
helpfulness in solving numerous real-world problems.

Popular software version control systems such as the 
Concurrent Version System and Subversion let engineers 
not only capture current snapshots of a project code base 
but also maintain full version histories. Complete life-cycle 
bug management is also possible through systems such as 
Bugzilla. Moreover, rich execution data is available thanks 
to powerful instrumentation tools such as Microsoft’s Dr. 
Watson technology, used by software developers and light-
weight monitoring tools optimized for end users. 

To improve software productivity and qual-
ity, software engineers are increasingly 
applying data mining algorithms to vari-
ous software engineering tasks. However, 
mining SE data poses several challenges. 
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call sequences or call graphs from source 
code, dynamic method-call sequences or 
call graphs from execution traces, or word 
sequences from bug report summaries. 
This data is further preprocessed by clean-
ing and properly formatting it for the mining 
algorithm. For example, the input format for 
sequence data can be a sequence database 
where each sequence is a series of events. 

The next step produces a mining algo-
rithm and its supporting tool, based on the 
mining requirements derived in the first two 
steps. In general, mining algorithms1 fall into 
four main categories:

frequent pattern mining•	 —finding com- 
 monly occurring patterns;

pattern matching•	 —finding data instances  
 for given patterns; 

clustering•	 —grouping data into clusters;  
 and 

classification•	 —predicting labels of data  
 based on already-labeled data. 

The final step transforms the mining al-
gorithm results into an appropriate format 
required to assist the SE task. For example, 
in the preprocessing step, a software en-
gineer replaces each distinct method call 
with a unique symbol in the sequence da-
tabase being fed to the mining algorithm. 
The mining algorithm then characterizes 
a frequent pattern with these symbols. In 
postprocessing, the engineer changes each 

symbol back to the corresponding method call. When ap-
plying frequent pattern mining, this step also includes 
finding locations that match a mined pattern—for exam-
ple, to assist in programming or maintenance—and finding 
locations that violate a mined pattern—for example, to 
assist in bug detection. 

Mining Challenges 
Mining SE data presents several challenges.

Requirements unique to se 
Most SE data mining studies rely on well-known, pub-

licly available tools such as association-rule mining and 
clustering. Such black-box reuse of mining tools may 
compromise the requirements unique to SE by fitting 
them to the tools’ undesirable features. Further, many 
such tools are general purpose and should be adapted to 
assist the particular task at hand. However, SE researchers 
may lack the expertise to adapt or develop mining algo-
rithms or tools, while data mining researchers may lack 

must be changed when another code location is changed. 
Software engineers can also use data mining algorithms 
to hunt for potential bugs that can cause future in-field 
failures as well as identify buggy lines of code (LOC) re-
sponsible for already-known failures. The second and third 
columns of Table 1 list several example data mining algo-
rithms and the SE tasks to which engineers apply them.

Mining Methodology 
Figure 1 shows an overview of the five main steps in 

mining SE data. Software engineers can start with either a 
problem-driven approach (knowing what SE task to assist) or 
a data-driven approach (knowing what SE data to mine), but 
in practice they commonly adopt a mixture of the first two 
steps: collecting/investigating data to mine and determining 
the SE task to assist. The three remaining steps are, in order, 
preprocessing data, adopting/adapting/developing a mining 
algorithm, and postprocessing/applying mining results. 

Preprocessing data involves first extracting relevant 
data from the raw SE data—for example, static method-
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Figure 1. The methodology for mining software engineering data involves 
five basic steps. In practice, software engineers adopt a mixture of the first 
two steps.

Table 1. example software engineering data, mining algorithms, and Se tasks.

example se data example mining algorithms example se tasks

Sequences:  
execution/static 
traces, co-changes

Frequent itemset/sequence/ 
partial-order mining,  
sequence matching/ 
clustering/classification

Programming, 
maintenance,  
bug detection, 
debugging

Graphs: dynamic/
static call graphs,  
program dependence 
graphs

Frequent subgraph mining, graph 
matching/clustering/classification

Bug detection, 
debugging

Text: bug reports, 
e-mails,  
code comments, 
documentation

Text matching/clustering/
classification

Maintenance,  
bug detection, 
debugging
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Common types of mining algorithms include fre-
quent pattern mining—for example, frequent itemset, 
sequence, or partial-order mining—as well as sequence 
matching, clustering, and classification. Frequent pattern 
mining can be used to mine for API call usage patterns 
to help in programming or for specifications to help in 
bug detection.2 Different algorithms produce patterns 
that reflect different levels of information, and which 
algorithm to choose depends on the specific SE task’s 
mining requirements. For example, association rules 
or frequent itemsets do not reflect sequential order in-
formation among the elements in the mined patterns, 
whereas frequent sequence or partial orders do. Se-
quence matching can be used to detect potential bugs 
by finding locations for almost, but not exactly, matching 
mined sequence patterns. 

We have developed new mining algorithms that address 
the unique characteristics of SE data. These algorithms 
include mining iterative patterns, temporal rules, sequence 
diagrams, finite-state machines (FSMs), and sequence as-
sociation rules.  

iterative pattern mining
Existing sequential-pattern-mining algorithms ignore 

repetitions of items (method calls) in a trace (sequence) 
and are agnostic to the rich semantics of property speci-
fication languages in SE. To address this problem, we 
have developed an algorithm that captures repetitive oc-
currences of the patterns within each trace and across 
multiple traces.3 

Consider the following sequence database: 

1     A B C D E A X B C
2     A G X B C
3     A X B C

Our algorithm mines the set of frequent closed iterative 
subsequence patterns, at the minimum support threshold 
of 4, which is {〈A B C〉}. Current frequent subsequence 
mining algorithms would ignore the second occurrence 
or repetition of this pattern in sequence 1 and thus cannot 
mine this pattern. 

We have applied iterative pattern mining to traces 
collected from the transaction component of the JBoss 
application server. The mined patterns range from small, 
frequently occurring patterns such as “lock must be  

the background to understand mining requirements in 
the SE domain. One promising way to reduce this gap is 
to foster close collaborations between the SE community 
(requirement providers) and the data mining community 
(solution providers). Our research efforts represent one 
such instance. 

Complex data and patterns
SE researchers typically mine individual data types 

alone to accomplish a certain SE task. However, SE tasks 
increasingly demand the mining of multiple correlated 
data types, including both sequence and text data, together 
to achieve the most effective result. Even for a single data 
type, rich information is commonly associated not only 
with an individual data item but also with the linkage 
among multiple data items. 

In addition, pattern representation in the SE domain 
can be complex. There might be no existing mining algo-
rithms that produce desired pattern representations, and 
developing new algorithms for such representations can be 
difficult. Overall, ensuring a scalable yet expressive mining 
solution is difficult. 

large-scale data
SE researchers often mine only a few local repositories. 

However, there may be too few relevant data points in 
these repositories to support the mining of desirable pat-
terns, such as ones among API methods of interest. One 
way to address this problem is to mine Internet-scale soft-
ware repositories—for example, via a code search engine. 
Mining can then be applied to the entire open source world 
or to many software repositories within an organization 
or across organizations. Further, execution traces collected 
from even an average-sized program can be very long, 
and dynamically or statically extracted call graphs can be 
enormous. Analyzing such large-scale data poses a chal-
lenge to existing mining algorithms. 

Just-in-time mining 
SE researchers usually conduct offline mining of 

data already collected and stored. However, in modern 
integrated SE environments, especially collaborative en-
vironments, software engineers must be able to collect 
and mine SE data on the fly to provide rapid just-in-time 
feedback. Stream data mining algorithms and tools could 
be adapted or developed to satisfy such challenging mining 
requirements. 

Mining sequenCes 
Example SE sequence data include method-call  

sequences, either dynamically collected during program 
execution or statically extracted from program source 
code. Dynamically collected method-call sequences are 
in the form of execution traces. 

In modern integrated SE environments, 
software engineers must be able to 
collect and mine SE data on the fly to 
provide rapid just-in-time feedback.
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We have applied the algorithm on traces from multiple 
open source applications to mine both short and long rules 
characterizing the applications’ behaviors. Figure 2b shows 
some examples of temporal rules.

sequence-diagram and FsM mining
We have developed algorithms to mine other forms of 

API specifications, including sequence diagrams and FSMs 
(or automata)7,8 from sequences. These specifications cap-
ture constraints that are difficult to express using patterns 
and rules. For example, a UML sequence diagram contains 
not only method calls but also caller and callee informa-
tion shown as lifelines. Moreover, rules and patterns do not 
express disjunctions and thus cannot capture the branch-
ing and loop behaviors expressible with FSMs. Rules and 
patterns are often used to express strongly observed prop-
erties in the traces—those that appear with high support 
and confidence—while FSMs tend to be used to capture 
the overall view of event transitions in the traces, ignoring 
both support and confidence.

Figure 2c shows examples of sequence diagrams mined 
from the Jeti instant messaging application, while Figure 
2d shows a mined FSM corresponding to a protocol of the 
Xlib and XToolkit routines of the X11 windowing system.  

followed by unlock” to longer patterns exceeding 30 
method calls, as shown in Figure 2a. We have also shown 
that mined iterative patterns could be used as high-level 
features to classify program behaviors.4 

temporal rule mining
A rule captures a constraint between its precondition 

and postcondition. To find common temporal rules such 
as “Whenever a series of events (for example, method calls) 
occurs, eventually another series of events will occur,” we 
developed an algorithm to mine rules of arbitrary lengths 
(pre- and postconditions of the rules could be composed 
of multiple events).5 We apply the algorithm on traces to 
find candidate temporal invariants, which could later be 
used to detect bugs. 

The algorithm first locates frequent preconditions and 
then, for each one, mines a set of significant rules obey-
ing the minimum confidence threshold. An example of a 
significant rule mined from the sequence database is 〈A〉 
→ 〈B C〉, with min_sup set to 4 and min_conf set to 100 
percent. Using an extension, the algorithm finds rules of 
the format “Whenever a series of events occurs, another 
series of events must have happened before”—known as 
past-time temporal rules.6 
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A - XNextEvent (time=X21_0) 
B - XNextEvent (time = X21_0)      
      or B = XtDispatchEvent (time = X21_0)      
      or B = XIfEvent (time = X21_0) 
C - XtDispatchEvent (time = X21_0)      
      or C = XtEventHandler (time=X21_0)  
      or C = XtLatTimeStampProcessed (time = X21_0) 
D - XGetSelectionOwner 
E -  XSetSelectionOwner (time = X21_0) 
F -  XtOwnSelection (time = X21_0) 
G - XtActionHookProc (time = X21_0) 
H - XInternAtom 

Resource allocation:
“Whenever a resource is allocated, eventually it

needs to be released.”

Windows WDK CancelSpinLock rule:
“A device driver needs to call

IoAcquireCancelSpinLock before calling

IoReleaseCancelSpinLock and it needs to call

IoReleaseCancelSpinLock  before any subsequent

calls to IoAcquireCancelSpinLock.”
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LSC Start chat

0:Chat
Windows

0:
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Tree

0:Jeti 0:
JID

1:
JID

0:
Backend

0:
Connect

0:
Output

send(Packet )

getResource ()chat(..)chat(..)

createThread ()
getMyJID ()
getUser ()

send(Packet)

Learner k-len = 1 k-len = 3 
 Recall  Precs.  PS Recall  Precs.  PS 

k-tails  1.000  0.000  N/A 0.998  0.313  N/A 
sk-strings  1.000  0.654  0.692  0.998  0.883  0.758  
SMArTIC 1.000  0.820  0.910  0.998  0.987  0.956  

TransactionManagerLocator.getInstance 
TransactionManagerLocator.locate 
TransactionManagerLocator.tryJNDI 
TransactionManagerLocator.usePrivateAPI 

TxManager.begin 
XidFactory.newXid 
XidFactory.getNextId 
XidImpl.getTrulyGlobalId 

 

TxManager.commit 
TransactionImpl.commit 
TransactionImpl.beforePrepare 
TransactionImpl.checkIntegrity 
TransactionImpl.checkBeforeStatus 
TransactionImpl.endResources 
TransactionImpl.completeTransaction 
TransactionImpl.cancelTimeout 
TransactionImpl.doAfterCompletion 
TransactionImpl.instanceDone 

TransactionImpl.associateCurrentThread 
TransactionImpl.getLocalId 
XidImpl.getLocalId 
LocalId.hashCode 
TransactionImpl.equals 
TransactionImpl.getLocalIdValue 
XidImpl.getLocalIdValue 
TransactionImpl.getLocalIdValue 
XidImpl.getLocalIdValue 

TxManager.releaseTransactionImpl 
TransactionImpl.getLocalId 
XidImpl.getLocalId 
LocalId.hashCode 
LocalId.equals 

Figure 2. Examples of mined API specifications: (a) A frequent pattern from the transaction component of the JBoss application 
server; (b) temporal rules; (c) sequence diagrams from the Jeti instant messaging application; (d) a finite state machine from the 
Xlib and XToolkit routines of the X11 windowing system.
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Mining gRaphs 
Example SE graph data includes static or dynamic call 

graphs as well as program dependence graphs,10 where 
edges represent data or control dependence, and nodes 
represent statements. Program executions are directed by 
the evaluations of various predicates throughout a program 
(for example, in if and while statements), so the executions 
can be modeled as traversals on static call graphs, leading 
to dynamic call graphs. 

Common types of graph mining algorithms include 
frequent subgraph mining, graph matching, graph clas-
sification, and graph clustering. Frequent subgraph mining 
can be used to find programming rules, which manifest 
as frequent subgraphs in program dependence graphs that 
are extracted from code bases, while graph matching can 
be used to find locations for almost, but not exactly, match-
ing mined subgraphs corresponding to potential bugs.10 

We have developed new graph mining algorithms 
including discriminative graph mining and graph clas-
sification to assist in debugging. 

discriminative graph mining
Running a set of test cases over an instrumented pro-

gram would produce two sets of traces: one corresponding 
to correct executions of passing test cases and the other 
to erroneous executions of failing test cases. Each of the 
traces could be “coiled” to form dynamic call graphs. A 
node in the call graph corresponds to method calls, and 
a transition in the graph corresponds to the various rela-
tionships among the method calls—for example, a method 
is immediately called after another method returns, and 
one method invokes another. Such coiling would produce 
two sets of dynamic call graphs. We could also build a 
similar graph from executions of basic blocks—a sequence 
of statements without any jump—in a program. Figure 4 

sequence association  
rule mining

Applying existing association-
rule mining algorithms can help 
find rules of the form “FC

a
 ⇒ FC

e
” 

as specif icat ions, where both 
FC

a
 and FC

e
 are method calls that 

share the same receiver object in 
object-oriented programs. These 
specifications can be used to find 
exception-handling bugs: if FC

e
 does 

not follow FC
a
 in all exception paths. 

However, association rules of this 
form are often insufficient to cap-
ture common exception-handling 
rules. In some situations, FC

a
 is not 

necessarily followed by FC
e
 when 

FC
a
 raises exceptions, although 

both method calls share the same 
receiver object. 

Consider the two code samples shown in Figure 3, 
which are extracted from real applications. The code 
example in Figure 3a attempts to modify the contents 
of a database through the method call Statement.ex-
ecuteUpdate (line 1.9), whereas the code example in 
Figure 3b attempts to read the contents of a database 
through the method call Statement.executeQuery (line 
2.8). A simple specification in the form of an associa-
tion rule “Connection creation ⇒ Connection rollback” 
indicates that a rollback method call should occur in 
exception paths whenever an object of Connection is 
created. However, this form of specification is not a real 
rule since the rollback method call should be invoked 
only when changes are made to the database. 

We propose sequence association rules9 of the form 
“(FC

c
1 ... FC

c
n) ∧ FC

a
 ⇒ (FC

e
1 ... FC

e
m),” which prescribes 

that method-call sequence FC
e
1 ... FC

e
m should follow FC

a
 

in exception paths only when method-call sequence 
FC

c
1 ... FC

c
n precedes FC

a
. Thus, the sequence associ-

ation rule for the code samples shown in Figure 3 is 
expressed as “(FC

c
1 FC

c
2) ∧ FC

a
 ⇒ (FC

e
1),” where FC

c
1 is 

OracleDataSource.getConnection, FC
c
2 is Connection.

createStatement, FC
a
 is Statement.executeUpdate, and 

FC
e
1 is Connection.rollback. 
We have developed an algorithm that annotates 

items in sequences, mines the frequent subsequences 
of these sequences, and postprocesses the mined fre-
quent subsequences to produce sequence association 
rules. We applied the new algorithm on static sequences 
extracted from code examples (found on the Inter-
net) that use third-party APIs found in five real-world 
applications (including 285 KLOC), mining 294 real 
exception-handling rules and detecting 160 exception-
handling defects. 

2.1:       Connection conn = null;
2.2:       Statement stmt = null;
2.3:       BufferedWriter bw = null; FileWriter fw = null;
               try {
2.4:             fw = new FileWriter("output.txt");
2.5:             bw = BufferedWriter(fw);
2.6:             conn = DriverManager.getConnection("jdbc:pl:db", "ps", "ps");
2.7:       Statement stmt = conn.createStatement();
2.8:       ResultSet res = stmt.executeQuery("SELECT Path FROM Files");
2.9:              while (res.next()) {
2.10:                           bw.write(res.getString(1));
2.11:            }
2.12:           res.close();
2.13: }  catch (IOException ex) {  logger.error("IOException occurred");
2.14: }  finally {
2.15:          if(stmt != null) stmt.close();
2.16:          if(conn != null) conn.close();
2.17:          if(bw != null) bw.close();
2.18: }

1.1:     ...
1.2:     OracleDataSource ods = null; Session session = null;
            Connection conn = null; Statement statement = null;
1.3:     logger.debug("Starting update");
1.4:     try {
1.5:           ods = new OracleDataSource();
1.6:           ods.setURL("jdbc:oracle:thin:scott/tiger@192.168.1.2:1521:catfish");
1.7:           conn = ods.getConnection();
1.8:           statement = conn.createStatement();
1.9:           statement.executeUpdate("DELETE FROM table1");
1.10:         connection.commit(); }
1.11:         catch (SQLException se)  {
1.12:                        if (conn != null)  {conn.rollback(); } 
1.13:                        logger.error("Exception occurred"); }
1.14:    finally {
1.15:         if(statement != null)  statement.close();
1.16:         if(conn != null)  conn.close();
1.17:         if(ods != null) ods.close();
1.18: }

(a) (b)

Figure 3. Two code samples from real applications. (a) This code attempts 
to modify the contents of a database through the method call Statement.
executeUpdate (line 1.9). (b) This code attempts to read the contents of a database 
through the method call Statement.executeQuery (line 2.8).
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To classify dynamic call graphs, we have developed a 
closed graph mining algorithm to represent graphs by 
a series of essential subgraphs. 

Mining text 
Example SE text data include bug reports, e-mails, code 

comments, and documentation for API methods. A unit of 
common concern is a text document similar to a sequence 
in the sequence database for sequence data. 

Common types of text mining algorithms include text 
clustering, classification, and matching. Example text 
clustering applications include clustering bug reports to 
detect duplicate bug reports and thereby reduce inspec-
tion efforts, and assigning reports to specific developers 
to fix the bugs. Example text classification applications 
include recommending assignment of a new bug report to 
a specific developer based on the past assignment of old 
bug reports. Example text matching applications include 
searching keywords in code comments, API documenta-
tion, or bug reports, and detecting duplicates of a given 
bug report among old reports. 

We have developed an approach for duplicate-bug-re-
port detection13 that helps avoid assigning duplicate bug 
reports to different developers. We illustrate the approach 
with two examples using reports from the Firefox bug 
repository.

example 1
Consider the following bug summary documents: 

Bug-219232: random “The Document contains no  
 data.” Alerts

Bug-244372: “Document contains no data” message on  
 continuation page of NY Times article 

To detect Bug-244372 to be a duplicate of Bug-219232 
among all existing reports, we represent the summary 
document of each as an n-dimensional vector, where n 
is the number of unique index terms (words) occurring 
in all the documents and each index term has a weight, 
being the vector value of that index, calculated based on 
the following rationale: If the index term t occurs in more 
documents, it receives less weight than that given to index 
terms that occur in fewer documents since t is not a good 
discriminator across documents. 

Before transforming documents to vectors, we use 
common natural-language processing (NLP) techniques 
such as removing stop words—words that carry little 
meaning such as “on” or “of” in the Bug-244372 sum-
mary. After transforming documents into vectors, we 
calculate the similarity of the summary document of 
each bug report in the existing bug repository with the 
summary document of Bug-244372 through a formula 
for defining the similarity of two vectors. 

shows examples of such graphs recovered from executions 
of Mozilla Rhino.

To extract features, in the form of subgraphs, that dis-
tinguish the two sets of dynamic call graphs, we have 
developed an algorithm that mines the top-k most dis-
criminating graphs.11 These graphs serve as signatures 
and context where bugs occur and could potentially help 
software engineers to locate and fix them. Our empirical 
results on benchmark datasets show an average of 74 per-
cent precision and 91 percent recall at method level and 
an average of 59 percent precision and 73 percent recall 
at basic block level. 

graph classification
The dynamic call graph of an erroneous execution 

can sometimes diverge from those of correct execu-
tions.12 Knowing at what time the divergence occurs 
would shed light on the potential bug location. Given 
that call graphs look roughly the same between correct 
and erroneous executions until the buggy place is exe-
cuted, we use incremental classification to detect when 
the buggy place is triggered. Specifically, we build a 
support vector machine classifier at different execution 
points based on the dynamic call graphs accumulated 
so far from correct and erroneous executions; intui-
tively, the classification accuracy will stay low until the 
buggy point has been executed. Therefore, by detecting 
the accuracy boost, we can determine the bug location. 

Parser.parse()

IRFactory.createScript()Parser.function()IRFactory.createLeaf()

IRFactory.createFunction()IRFactory.createName()

(a)

Parser.parse()

IRFactory.createScript()Parser.statementHelper()IRFactory.createLeaf()

Parser.function()

IRFactory.createFunction()IRFactory.createExpr
Statement()IRFactory.createName()

(b)

Figure 4. Examples of dynamic call graphs from executions 
of Mozilla Rhino: (a) partial graph for a correct execution; (b) 
partial graph for an erroneous execution.
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goal does not come without obstacles. Currently, much 
work needs to be done to further adapt general-purpose 
mining algorithms or develop specific algorithms to sat-
isfy the unique requirements of SE data and tasks. Further, 
the scope of SE tasks that can benefit from data mining 
must be expanded as well as the range of SE data that 
can be mined. 

In the pattern-mining domain, increased scalabil-
ity of mining algorithms and expressibility of mined 
results are needed to obtain important nuggets of knowl-
edge that could later be fed to downstream SE tools to 
perform various SE tasks. In the classification domain, 
more-accurate classifiers for SE tasks are desirable. In the 
pattern-matching domain, more-efficient approximate 
matching algorithms could help analyze the gigantic scale 
of SE data that extends to billions of LOC, documentations, 
and bug reports accumulated over time and shared via the 
Internet or intranets. 
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Our approach determines that Bug-219232 has the 
highest similarity with Bug-244372. Hence, it would mark 
Bug-244372 as a potential duplicate of Bug-219232.

example 2
Now consider the following bug summary documents 

from the Firefox bug repository: 

Bug-260331: After closing Firefox, the process is still  
 running. Cannot reopen Firefox after that, unless the  
 previous process is killed manually.

Bug-239223: (Ghostproc) - [Meta] Firefox.exe doesn’t  
 always exit after closing all windows; session-specific  
 data retained. 

Both documents use terms such as “Firefox” and “after 
closing,” but these terms also commonly appear in other 
unrelated bug reports in the Firefox bug repository. In ad-
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