
User-Perceived Service Availability: A Metric and an Estimation Approach

Lingshuang Shao1,2 Junfeng Zhao1,2,∗ Tao Xie3 Lu Zhang1,2 Bing Xie 1,2 Hong Mei1,2

1 School of Electronics Engineering and Computer Science, Peking University, China
2 Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing 100871, China

3 Department of Computer Science, North Carolina State University, USA

{shaolsh04, zhaojf}@sei.pku.edu.cn, xie@csc.ncsu.edu, {zhanglu, xiebing, meih}@sei.pku.edu.cn

Abstract

Web-service-related techniques have become popular to
improve system integration and interaction. In distributed
and dynamic environment, web services’ availability has
been regarded as one of the key properties for (critical)
service-oriented applications. Quality of Service (QoS), in-
cluding availability, has been regarded by IEEE as a user-
perceived property. However, based on our investigation of
monitoring invocation records of real web services, exist-
ing availability metrics, which were proposed in traditional
domains, have not addressed the “user-perceived” charac-
teristics. Based on analyzing the limitations of the exist-
ing availability metrics, we propose a status-based user-
perceived service availability metric and a corresponding
estimation approach. Experiments on monitoring and ana-
lyzing the invocation records of real services demonstrate
that the new metric and the corresponding estimation ap-
proach could lead to a feasible estimation on web services’
availability from the user side.

1. Introduction

As an emerging technology to improve system inte-
gration and interaction, Web-service-related techniques
have become a popular topic in the research commu-
nity. Service-oriented methodologies have been regarded
as promising solutions for future distributed applica-
tions [1, 18, 8]. Meanwhile, because of the distributed and
dynamic nature of web services, many researchers pro-
pose that quality of services (QoS) should be addressed
for successfully building critical service oriented applica-
tions [14]. Availability, one of the key properties of web
services QoS, has been explored intensively by various re-
searchers [4, 6, 10].

∗ Corresponding author

QoS, including availability, has been regarded as user-
perceived properties [5]. From our practical experiences on
running and monitoring web services, we find that because
of different network factors and user behavior, web service
availability measured at the server side and the user side
are often different. Therefore, the measurement at the server
side is not sufficient for service users, although server-side
measurement has been intensively addressed.

However, existing availability metrics [3, 10, 19, 20]
have not addressed the characteristics of “user-perceived”.
Traditionally, availability can be presented as the “up” or
“down” of the system at a single point of time. As an exten-
sion of this definition, availability can also be presented as
the average percentage of time [3]. In traditional domains,
such as hard disk availability measurement, the “time per-
centage” metric is better than “single point of time” metric.
However, for user-perceived metrics of web services, be-
cause the round trip time of invoking services is very long
(comparing to accessing hard disks) and using some ser-
vices even needs to be paid, the frequency of invoking web
services cannot be very high. Then the “time percentage”
metric, which implies that accessing is frequent enough that
can be regarded as continuous.

We propose that service availability metrics should be es-
timated based on the success rate of service invocations (ac-
cording to the “single point of time” metric). However, this
“single point of time” metric has its own limitation. As pro-
posed by Brown and Patterson [3], from the perspective of
service users, there is much difference between encounter-
ing 10 continuous failures and discrete failures during 1000
one thousand invocations.

In our previous work [16], we conducted an experiment
for monitoring services on the Internet and collected about
50,000 invocation records. From statistical analysis of these
records, we observe several implicit patterns of service-
invocation successes and failures. These characteristics de-
pict that simply averaging historical results is not appropri-
ate. In addition, these characteristics provide potential ca-
pability for helping estimate availability. However, previ-

ous metrics and estimation approaches for availability have
not accommodated these characteristics, facing limitations
when being used.

To accommodate the characteristics of failures and suc-
cesses of service invocations, we propose a novel availabil-
ity metric and a corresponding availability estimation ap-
proach in this paper. The basic idea of this metric is that
the service is running in different statuses and each status
has its own features of encountering failures. We setup a
three-status model and specify corresponding features for
each of the status. With the status model and the features,
we propose a novel estimation approach for service avail-
ability perceived by users.

We conduct a two-fold evaluation for this status-based
metric and the corresponding estimation approach. First, to
evaluate the usefulness of this metric, we analyze the fea-
tures of interactions between services and service users.
Then we conduct a study to show that this new metric
can reveal more useful information than traditional met-
rics. Second, to evaluate the estimation approach, we keep
collecting invocation records of various services, such as
Google web page search and Amazon S3. From this study,
we observe that the estimation approach can lead to a rea-
sonable result on measuring service availability.

This paper makes the following three main contributions:
(1) identifying the limitations of traditional metrics of user-
perceived service availability and proposing a status-based
metric, (2) proposing an estimation approach for our met-
ric, and (3) providing empirical studies to evaluate the met-
ric and the approach.

The rest of the paper is organized as follows. Section
2 describes the background of collecting service invocation
records and characteristics of service failures and successes.
Section 3 presents the limitations of existing metrics and
proposes a status-based metric for web service availabil-
ity. Section 4 describes the estimation approach. Section 5
presents the evaluation of the metric and the estimation ap-
proaches. Section 6 discusses the related work. Section 7
concludes this paper and outlines our future work.

2. Background: Characteristics of Service-
Invocation Failures and Successes

In our previous work [16], we have collected and ana-
lyzed invocation records of five services. We have found
out some possible patterns of service invocation failures and
successes. Because these identified patterns are important
basis for our new metric and estimation approach, we next
briefly present these patterns as a background.

The invocation records are collected from monitoring
five real web services. These services are Google Web
Page Search, Yahoo!, Amazon S3, and SearchWS and Let-
terSOAP published at www.xmethods.net. The client pro-

grams are developed with Java JDK 1.5 and Apache Axis
1.4. Some parameters should be set before the client pro-
grams are launched. In our experiment, there are two types
of parameters: (1) invocation parameters and (2) invocation
configuration parameters. These parameters are set accord-
ing to the rules described in our previous work [15].

2.1. Three Typical Patterns of Service-
Invocation Successes and Failures

In our previous work, we finally collect about 10,000 in-
vocation records for each of the monitored service. We in-
tensively go through these records and analyze the patterns
of service-invocation successes and failures [16]. These pat-
terns occur repeatedly for almost all the services and we be-
lieve that they are representative. There are three patterns:
continuous successes, transient failures and continuous fail-
ures.

Continuous Successes. In the monitored services, en-
countering continuous successes is the most prevalent pat-
tern. Except for one service, SearchWS service, which has
never been accessed successfully, all the other services have
presented the characteristic of being stable up.

Transient Failures. When analyzing the services’ invo-
cation records, we find that some services may encounter
unstable failures. This pattern can be further divided into
two categories: first, a client program may encounter tran-
sient invocation failures but successfully access the service
for next several invocations; second, transient invocation
successes and failures happen alternatively.

This pattern has been discovered in several services. We
classify cases with less than continuous three failed invoca-
tions as transient failures.

Continuous Failures. Some services have encountered
continuous failures during our study. Because the invoca-
tion records are collected at the client side, this pattern
presents the failures of either the service or network. In
user-perceived metric, failures of the service or network are
not explicitly distinguished, because user-perceived metric
aims to estimate “user-perceived availability”, which means
that the measurement should be based on the user-side data
and should consider both service running and network fac-
tors.

These patterns show the runtime characteristics of ser-
vice invocation successes and failures. A remarkable advan-
tage of discovering these patterns is that it can efficiently
help improve the accuracy of estimating a service’s avail-
ability. Existing metrics have not accommodated these char-
acteristics, which hinder them in being sensitive to the real
situation of service-availability.

3. Status-Based Service Availability Metric

The patterns of service failures and successes described
in Section 2 show that services are running in different sta-
tuses. In this paper, we propose a three-status model, which
assumes that services are running in three statuses: Stable
Up, Transient Down, and Short-term Down. We next de-
scribe the definition of these statuses and explain why we
adopt this model.

• Stable Up (SU): This status means that the service
is running stably and no invocation failure happens.
From the invocation records collected by us, services
provided by reputable software enterprises are running
in this status at most occasions.

• Transient Down (TD): This status indicates that en-
countering failures during invocation is not predictable
and it may be recovered by a simple “retry”. As shown
in Section 2.1, most of the monitored services have
been involved in this status.

• Short-term Down (STD): This status means that a ser-
vice becomes down due to specific factors. From the
perspective of service users, they encounter continu-
ous failures. This status is common for web services.
For example, periodical server restarting can cause the
service to be unavailable for several minutes. Because
user-perceived availability also takes into considera-
tion of the network status, it is even more likely for
service users to encounter short-term network failures.

This three-status model has two advantages. First, this
model is simple. We believe that a service’s status is divid-
able. For example, short-term down can be further divided
into many statuses, such as short-term down and long-term
down. However, adding more statuses calls for more rules to
differentiate them, making the model and the corresponding
estimation algorithm complex. Second, this status model is
practical. In the reliability engineering community [9, 17],
the service statuses are always described as stable up, tran-
sient down, and persistent (permanent) down. Researchers
contributed much work on analyzing availability with this
service status model, which is shown to be understandable
and useful.

Based on these three statuses, we define a new service-
availability metric as a union of two concepts: the time per-
centage of being in each one of these statuses and the suc-
cess rate in each one of these statuses. For example, the ser-
vice availability that is measured with our metrics can be
represented as in Table 4.

SU TD STD
Time Percentage 0.3 0.6 0.1

Success Rate 1 0.95 0

Table 1. An Example of Status-Based Service
Availability Metric

4. Status-Based Availability Estimation Ap-
proach

Using the status-based metric can address the problem
of differentiating “discrete failures” from “continuous fail-
ures”. However, this metric is more complex than tradi-
tional metrics and calls for a practical estimation approach
for computing service availability. To address this issue, we
propose an estimation approach for the metric. This estima-
tion approach tries to give a long-term measurement of ser-
vice availability. The approach takes historical invocation
records as input and produces the value of the metric.

We next first define the related concepts formally and
then describe the details of the estimation approach.

4.1. Definitions

The processes of availability estimation can be regarded
as handling a sequence of web service invocation records
and producing the estimated value(s). The formal defini-
tions of related concepts are listed below:

1. It ∈ {0, 1}, t ∈ N .
It is binary denoting the result of a service invocation at

time point t (t can be presented as an integer). The value of
It can be 0 or 1; 1 indicates that the invocation is successful
and 0 indicates the contrary.

2. R1,n = {It1 , It2 , It3 , ..., Itn
},∀i,∀j, i ∈ N, j ∈

N, ti ∈ N, i < j ↔ ti < tj .
R1,n is a sequence of It, sorted by ascending time. R1,n

is a sequence of invocation results, which record the invo-
cation results during a specific time period. |Ri,j | denotes
the “length”, number of invocation results, of the sequence.

3. Rv = {Rk1,k′1 , Rk2,k′2 , ..., Rkt,k′t},∀i, j, 1 ≤ i ≤ t ∧
1 ≤ j ≤ t → Rki,k′i ∩Rkj ,k′j = ∅

Rv is a set that contains a set of Rki,kj
, where every two

elements have no intersection. Rki,kj
is a “subsequence” of

Rv if Rki,kj
∈ Rv .

4. S = {s1, s2, s3, s4} is a set of service running sta-
tuses, in which si(i ∈ N, 1 ≤ i ≤ 4) is an independent
status. In our context, si(i ∈ N, 1 ≤ i ≤ 4) respectively
denotes the “Stable Up”, “Transient Down”, “Short-Term
Down” and “Long-term Down” statuses.

5. SRi,i′ ∈ S is the service running status during time
period ti and t′i with the invocation record sequence Ri,i′ .

4.2. Estimation Approach

The input of the estimation approach is a sequence of in-
vocation records. The goal of the estimation approach is to
calculate the service availability values under different sta-
tuses. So the problem of estimation can be divided to two
sub-problems: how to identify service running status-based
on invocation records and how to calculate the availabil-
ity value under each different status. To address these prob-
lems, the estimation approach consists of three steps: (1)
dividing the historical invocation records into fragments,
each of which is regarded as a status, (2) identifying fea-
tures of each status, and (3) estimating the values of avail-
ability metrics under each status.

Invocation-Record Division. Given all the histori-
cal invocation records R1,n, we first divide them into k
small fragments. The parameter k is set manually ac-
cording to n: if n is large (such as 10,000), k is set
large (such as 100); otherwise, k is set small. Each frag-
ment contains an approximately equal number of records:
Meanwhile, we take into consideration of the time inter-
nal between records, records with comparatively shorter
time interval are divided into the same fragment. Be-
low is the algorithm of division:

Input: R1,n and k

Output: Rv

1. number ← xn/ky
2. Scanning R1,n orderly, put every [n/k] records into a

different sequence Ri,j . The remaining records are put into
the last sequence. Then R1,n is divided into k fragments.

3. Repeat the following procedure until Rv remains un-
changed. Scanning all sequences in Rv orderly and compar-
ing the records at the boundary of each sequence. Suppose
that there are two neighboring sequences Ri,j and Ri′,j′ and
the adjacent records are Itj

and It′i , if (|tj−t′i| < |t′i−ti′+1|
), then move I ′i into Ri,j , or else, move Ii into Ri′,j′ .

4. Scanning all sequences in Rv orderly. For Ri,j ∈ Rv ,
if ∃Ri′,j′ ∈ Ri,j ∧∀Ik, Ik ∈ Ri′,j′ → Ik = 0∧|Ri′,j′ | > t,
then break sequence Ri,j into three sub-sequences: Ri,i′−1,
Ri,i′−1, Ri,i′−1. In this step, t is a manually defined thresh-
old value to identify whether the service status is short-term
down: when the length of continuous failures is more than t,
then the service status can be regarded as short-term down.

In these steps, Step 3 divides the invocation records into
sequences. Step 4 separates continuous failures sequences
from the original sequence.

Status Identification. One of the key tasks in our esti-
mation approach is to identify the service running status ac-
cording sequence Rk,j . This status identification is realized
as applying a sequence of rules, according to our basic def-
inition for the three statuses:

1. If there is no invocation failure record in Rk,j , then
this sequence is marked as status “Stable Up”,

2. If there is no successful invocation record in Rk,j , then
this sequence is marked as status “Short-term down”,

3. Others are marked as “Transient down”.

4.2.1. Availability Estimation After the historical
records have been divided into sequences and marked with
running status, the next task is to estimate the availabil-
ity value. Our estimation consists of three steps: (1) calcu-
lating the success percentage for each sequence, (2) cal-
culating the weighted average of success rates for status
“Transient Down”, and (3) calculating the time percent-
age for each status.

Calculating Success Rate. Because each status has dif-
ferent characteristics, this step defines different estimation
strategies for each status.

Stable Up: According to the definition of status “SU”,
the estimated value of availability is “1”.

Short-term Down: Similarly, according to the definition
of status “STD”, the estimated value of availability is “0”.

Transient Down: The service may have been in the “tran-
sient down” status for several times. For every time when
the service runs in this status, there are several invocation
records being recorded and the availability value can be cal-
culated as Equation (1) [10], where Na denotes the number
of total invocations and Nf denotes the number of encoun-
tered failures.

Avatd = (Na −Nf)/Na (1)

Weighted Averaging the Success Rate for Sta-
tus “Transient Down”

For the divided sequences Rv , there are many sequences
marked with status “Transient Down”, and each sequence
has a different success rate. To produce an overall evalua-
tion for the success rate in status “Transient Down”, we pro-
pose a “weighted average” technique to calculate the over-
all success rate, and the weighting value is the time elapsed
for each sequence. For each sequence Rk,j , the time elapsed
in this sequence is calculated by |tj − ti|. Suppose that the
sequence is Rv = {Rk1,k′1 , Rk2,k′2 , ..., Rkt,k′t}, the calcula-
tion for overall success rate is based on Equation (2):

Avao
td =

∑
i=1..t∧SR

i,i′=TD |tk′i − tki
| ∗Avai,i′

td∑
i=1..t∧SR

i,i′=TD |tk′i − tki
| (2)

Time Percentage of Each Status. The calculation of the
time percentage of each status is based on Equation (3). In
this equation, the denominator is the total time duration of
the invocation and the numerator is the time duration of one
of the three statuses where si denotes a status, such as “SU”,
“TD” or “STD”.∑

i=1..t∧SR
i,i′=si

|tk′i − tki |∑
i=1..t |tk′i − tki

| (3)

5. Evaluation

To evaluate the new metric and the estimation approach,
we design empirical studies to collect web services invo-
cation records and evaluate whether our approach can pro-
vide a comparatively accurate estimation on web services
availability. In our studies, we collect totally about 200,000
records on invoking 20 different web services deployed on
the Internet. We compare our estimation approach with tra-
ditional time-period-based estimation approach. The results
demonstrate the feasibility and benefits of our approach.

The evaluation includes two aspects: (1) evaluat-
ing whether the status-based metric proposed in this paper
is useful for service users, and (2) evaluating the useful-
ness of our estimation approach with a case study.

In this section, we first briefly describe the service run-
ning records collected by us and then describe the evalua-
tions.

5.1. Data Sets

To evaluate our approach, we apply our estimation ap-
proach on several real web services. The setup for collecting
invocation records has been described in Section 2. We run
these client programs for about three month and each client
program collects about 20,000 invocation records. Each in-
vocation record contains the begin and end time of the invo-
cation and the request and response messages. Services are
regarded as unavailable, when (1) they fail to deliver the re-
sponse message in pre-set time interval, or (2) the response
message shows that the connection error occurs during in-
vocation.

5.2. Evaluation of the Status-Based Met-
ric

As stated in Section 2 and 3, the new metric proposed has
conveyed much more information about the service running
than traditional availability metrics. Comparing to the tra-
ditional metrics at a single point of time, the new metric
can reveal the continuity of encountering failures by explic-
itly dividing service running statuses into three categories.
In this section, we design a study to show the usefulness of
the new metric. This study shows the limitations of tradi-
tional metrics at different application scenarios and how the
new metric can address these limitations.

From the experiences of using web services, there are
two major factors that may impact how service users choose
services. The application scenario (the context of using the
services) and the interaction pattern between service users
and services. These two factors are not always independent.
For example, the application scenario may to some extent

impact the interaction pattern. However, in most occasions,
these two factors are independent and we next analyze them.

In different application scenarios, service users may em-
phasize different aspects of service availability. For exam-
ple, in a safety-critical environment, service failures cost
much and the service users may care most about whether
the service can be stably running. Specifically, they care pri-
marily about the time percentage of stable up and whether
transient down or short-term down makes no difference for
them. However, in another application scenario, the way to
choose service may be totally different. For example, in a
non-critical application, such as checking some sports news,
service failures may impact user experiences but not cost
much. Service users may not care much about whether the
service is always running stable, if transient failures do not
frequently happen, they are also acceptable. Compared to
the critical-application scenario, the time percentage of be-
ing in Stable Up and Transient Down should both be taken
into consideration.

The other factor impacting the way of choosing service
is the interaction pattern between service users and services.
From the perspective of interaction frequency, the interac-
tion pattern can be classified into two categories: continu-
ous and discrete interactions.

The continuous interaction indicates that the service
users access services frequently. If the service users has suc-
cessfully access the service once, it is likely that these ser-
vice users will access this service again short time later.
Sometimes, those two nearby invocations are not indepen-
dent. The discrete interaction indicates that the time interval
between two invocations from one service users is very un-
certain, likely being very long.

(a) Service 1

SU TD STD
Time Percentage 0.8 0.14 0.06

Success Rate 1 0.89 0
Total Success Rate 0.871

(b) Service 2

SU TD STD
Time Percentage 0.85 0.01 0.14

Success Rate 1 0.91 0
Total Success Rate 0.866

Table 2. Service Availaiblity

Our next example shows how application scenarios im-
pact the choices of services and why our new metric can
help convey more useful information. Table 2 shows two
real web services’1,2 availability measured by our proposed
metric and the total success rates. The functionality of

both these two services are in-time currency exchange rate
querying. The total success rate of these two services are
so close that according to traditional metrics, these two ser-
vices are of the same availability. However, with the status-
based metric, service users can differentiate these two ser-
vices according to application scenarios and interaction pat-
terns.

First, let us assume that there is a financial company
preparing for integrating a currency exchange service. Be-
cause this functionality strongly impacts this company’s
core business, engineers suggest that they should choose a
service that is the most stable because the failures, either
transient or short-term, make big impact on the running of
their core business. At the occasion, the financial company
would prefer to choose a service with more time percent-
age in the stable up status. In this case, Service 2 is pre-
ferred.

Second, let us assume that a service users wants to find
some currency exchange rate querying service for checking
the currency exchange rate several times per day, indicat-
ing that the interaction pattern is discrete. The total success
rates of these two services are not much different. How-
ever, with status-based metrics, this service users may find
that though Service 1 has smaller time percentage in Sta-
ble Up, this service has much more time percentage in Sta-
ble Up and Transient Down statues than Service 2.

Service 1 is impacted much by the transient instability
but Service 2 is more likely to stop its service for a compar-
atively long time (from the table, we can observe that Ser-
vice 1 has more time percentage in stable up and transient
down, and comparatively less time in short-term down). At
this occasion, Service 1 may be preferred because the ser-
vice users may recover from the failure by a simple retry
and a transient failure has not much impact on the user ex-
perience. But short-term down of the service may handicap
the service users on getting the service.

In summary, in many occasions, a simple binary met-
ric at single point time is not sufficient for helping service
users to choose the best services. Our status-based metric is
more applicable for conveying much more useful informa-
tion.

5.3. Study for Estimation Approach

In this section, we present a real case to evaluate the fea-
sibility of the estimation approach: whether the estimation
approach can address the real situation of service running.

On December 26th, 2006, the submarine cable between
China and America was interrupted because of an undersea

1 http://www.freewebs.com/jimmy_cheng/
CurrencyExchangeService.wsdl

2 http://www.xignite.com/xCurrencies.asmx?WSDL

earthquake. The repair work lasted three weeks and during
that period, Chinese people felt it was very hard to visit web
sites hosted in America. Meanwhile, most of our monitored
web services become unavailable for us in that period.

The QoS data collected by us covers part of this special
time: we had collected the QoS information from Novem-
ber 10th, 2006 to January 25th, 2007. This time period cov-
ers some days before the submarine cable was broken and
early days after the submarine cable had been completely
recovered. We next show the availability metric of the well-
known Google Web page Search Service at that time pe-
riod in Table 3 as an example. According to the news report
of the cable-repair process, we separate the data for four
phases: first, the time before the earthquake happened (be-
fore Dec. 25th, 2006, marked as Phase 1); second, the early
days of which the earthquake happened (from Dec. 26th,
2006 to Jan. 9th, 2007, marked as Phase 2); third, the last
days of the cable repair work (from Jan. 10th to Jan. 28th,
2007, marked as Phase 3); fourth, the time after the subma-
rine cable had been completely recovered (after Jan. 28th,
2007, marked as Phase 4).

In Table 3, “SU” denotes the Stable Up status, “TD” de-
notes the Transient Down status, and “STD” denotes the
Short-term Down status.

In Phase 1, Google web page search was shown to have
very good capability of providing the service.

In Phase 2, when the earthquake happened, the time per-
centage of transient down and short-term down of Google
service increased. We review related news reports at those
days and find out that Google had paid some Information
Service Provider for transferring its data through another
route. Because the new route could not provide as much as
band width as the original submarine cable, it causes much
short-term down and transient down for the service.

In Phase 3, it is apparent that Google service has become
better in providing services; however, it does not recover
to the status before the earthquake happened. Referring to
related news reports, we can find that at the time period,
although the repair work of the submarine cable is mostly
done, the cable remains very unstable and the communica-
tion was sometimes interrupted because of ongoing repair
work.

In Phase 4, the Google service had been totally recov-
ered and was shown to have even better capability of pro-
viding service then before the earthquake.

From this real study, we can observe that the estimated
results are consistent with the real world situation. This real
case study shows that our estimation approach is feasible
and can reveal much more valuable information of service
running.

Phase 1 SU TD STD
Time Percentage 0.872 0.0 0.129

Success Rate 1 – 0
Phase 2 SU TD STD

Time Percentage 0.243 0.013 0.734
Success Rate 1 0.93 0

Phase 3 SU TD STD
Time Percentage 0.662 0.176 0.161

Success Rate 1 0.95 0
Phase 4 SU TD STD

Time Percentage 0.947 0.052 0.0
Success Rate 1 0.92 0

Table 3. Availability Estimation for Google
Web Search Service

6. Related Work

6.1. Definition and Measurement of Avail-
ability

Availability is now increasingly getting more and more
attention in research community. Patterson et al. point out
that in new century, availability and maintainability would
be regarded as more important than performance[3, 11].

Research on availability can be found in many communi-
ties, such as computer architecture, network, and distributed
computing. Brown and Patterson [3] have identified three
different definitions of availability: binary metric at single
point of time, binary metric at percentage of time, and time-
dependent metric.

Researchers also addressed the problem of estimating
machine availability in distributed environments. Brevik et
al. [2] classify estimating approaches into two categories:
parametric and non-parametric. In the non-parametric cate-
gory, two methods, termed with Resample Method and Bi-
nomial method, are proposed.

In this paper, we reconsider the availability metric in
service-oriented environment. We propose that the metrics
of the server side’s availability and the user side’s avail-
ability should be differentiated. We analyze the character-
istics of user-perceived service availability and identifying
the limitations of traditional metrics for measuring web ser-
vices’ availability.

6.2. Web Service Availability

In web service domain, availability is one of the key QoS
properties. Many researchers propose applications, such
as (dynamic) service selection, service composition, SLA-

aware middleware, and self-reconfiguration service deploy-
ment platform based on estimated service availability.

In the web service domain, two major definitions, binary
metric at single point of time and binary metric at percent-
age of time, have been addressed. The expression of “single
point of time” metric is showed in the Equation (4) [7, 10].
In Equation (4), Ava is the probability that that services
will be available for use. Na is the total times the client pro-
gram has invoked the services, Nf is the number that the
client program fails to access the services.

Ava = (Na −Nf)/Na (4)

Zeng et al. [20] adopt the “percentage of time” metric as
Equation (5), in which Ava is the calculated value of avail-
ability and Tup is the total amount of time in which the ser-
vices are available during the last T seconds.

Ava = Tup/T (5)

Equation (6) shows another similar equation for calcu-
lating availability proposed by Rosenberg et al. [13].

1− Tdown/Tup (6)

In Equation (6), Tup is the uptime of the monitoring de-
vice (the device monitors the running of the service)[12],
which is much different from the “last T ” seconds in Equa-
tion (5).

Although there exist various metrics, the basic character-
istics of web services’ availability have not been explored.
According to the definition of IEEE [5], quality of service
(QoS), including availability, should represent the percep-
tion of service users. From this point of view, existing met-
rics are not appropriate for user-perceived availability.

The implicit assumption of the “time period” definition
is that the system is accessed frequently so that the user-
perceived service status at a single point of time can be re-
garded as the status in that short time period. In fact, in
many research communities, such as software RAID sys-
tems [3], measurement in this way is reasonable because of
the high-frequency accesses.

The limitation of adopting the “time percentage” defi-
nition in web service domain is that the assumption of the
high frequency of accessing web services is not valid. First,
round trip time of invoking services contains time for com-
plex business handling and SOAP message (un)wrapping.
In some cases, a long time interval interaction lasting more
than one minute is possible (e.g., invoking a complex busi-
ness process). Second, using some web services needs to be
paid for invocations, which poses the barriors for the fre-
quent accesses.

Our research differs from the preceding previous re-
searches in two major aspects: (1) the new metric addresses
the features of service invocation successes and failures, and
(2) the new metric has a corresponding estimation approach,
which is evaluated with real empirical data.

Doshi et al. [4] emphasize that availability is dynami-
cally changing and propose a Bayesian Learning algorithm
to keep up the estimated availability with the changing en-
vironment. Their measurement is based on counting the oc-
currences of the successful and failed invocation records,
and new records have been assigned more weight. Their ap-
proach is evaluated with simulated data.

In our previous work [16], we proposed a status-based
dynamic availability estimation algorithm. This algorithm
adopts the same three-status model for dynamically esti-
mating service status and the probability of invoking ser-
vices successfully for the next invocation.

Both Doshi’s work and our previous work aim to im-
prove the accuracy of dynamically estimating the probabil-
ity of being successful for the next invocation availability.
Our new approach addresses a totally different issue: mea-
suring long running service availability, which aims to make
the overall evaluation on service running.

7. Conclusion and Future Work
Web services’ availability has been regarded as one of

the key properties for service-oriented applications. Starting
from analyzing the basic features of web service availabil-
ity, and based on observations on monitoring service run-
ning, we propose a new metric for web service availability.
Further more, we propose an approach to estimating service
availability according to the new metric. Empirical studies
demonstrate that the new metric and estimation mechanisms
can produce a more feasible estimation of web service avail-
ability.

In our future work, we plan to make a survey on whether
the new metric is applicable for choosing services and set-
ting up SLA. We also plan to extend the data set in the study.

8. Acknowledgement
We would like to thank Dr. Ying Pan’s valuable in-

structions on this paper. This research was sponsored by
the State 863 High-Tech Program (SN: 2006AA01Z189,
2007AA010301), and National Science Foundation of
China (No.60803011,60803010).

References

[1] M. Aoyama, S. Weerawarana, H. Maruyama, C. Szyperski,
K. Sullivan, and D. Lea. Web services engineering: promises
and challenges. In Proc. of the 24th International Confer-
ence on Software Engineering, pages 647–648, 2002.

[2] J. Brevik, D. Nurmi, and R. Wolski. Quantifying machine
availability in networked and desktop grid systems. Tech-
nical Report CS2003-27, U.C. Santa Barbara Computer Sci-
ence Department, 2003.

[3] A. Brown and D. A. Patterson. Towards availability bench-
marks: a case study of software raid systems. In Proc.
USENIX Annual Technical Conference, pages 263–276,
Berkeley, CA, USA, 2000. USENIX Association.

[4] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma. Dynamic
workflow composition using markov decision processes. In
Proc. of the IEEE International Conference on Web Services,
pages 576–582. IEEE Computer Society, 2004.

[5] IEEE. IEEE Standard Computer Dictionary: IEEE Standard
Computer Glossaries. IEEE, New York, 1990.

[6] A. Keller and H. Ludwig. The WSLA framework: Speci-
fying and monitoring service level agreements for web ser-
vices. J. Netw. Syst. Manage., 11(1):57–81, 2003.

[7] N. Kokash and V. D’Andrea. Evaluating quality of web
services: A risk-driven approach. In Proceedings of the
Business Information Systems Conference, LNCS. Springer,
April 2007.

[8] P. M. M.-S. L. E. Moser and W. Zhao. Building dependable
and secure web services. Journal of Software, 2(1):14–26,
Feb., 2007.

[9] M. R. Lyu and V. B. Mendiratta. Software fault tolerance
in a clustered architecture: Techniques and reliability model-
ing. In IEEE Aerospace Conference, pages 141–150, 1999.

[10] M. Mikic-Rakic, S. Malek, and N. Medvidovic. Improving
availability in large, distributed, component-based systems
via redeployment. Technical Report USC-CSE-2003-515,
December 2003.

[11] D. A. Patterson. Availability and maintainability >> perfor-
mance: New focus for a new century. In Key Note at FAST,
2002.

[12] C. Platzer. Personal communication. 2007.
[13] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping per-

formance and dependability attributes ofweb services. In
Proc. of the IEEE International Conference on Web Services,
pages 205–212, 2006.

[14] M. A. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui. A
QoS broker based architecture for efficient web services se-
lection. In Proc. of the IEEE International Conference on
Web Services, pages 113–120, 2005.

[15] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei. Per-
sonalized qos prediction forweb services via collaborative
filtering. In Proc. IEEE International Conference on Web
Services, Application Services and Industry Track, Septem-
ber 2007.

[16] L. Shao, L. Zhang, T. Xie, J. Zhao, B. Xie, and H. Mei. Dy-
namic availability estimation for service selection based on
status identification. In Proc. IEEE International Conference
on Web Services, Application Services and Industry Track,
September 2008.

[17] W. Torres-Pomales. Software fault tolerance: A tuto-
rial. Technical Report Technical Report Tm-2000-210616,
NASA, NASA Langley Research Center, October 2000.

[18] A. Tsalgatidou and T. Pilioura. An Overview of Standards
and Related Technology in Web Services. Distrib and Par-
allel Databases, 12(2-3):135–162, 2002.

[19] K. Xiong and H. Perros. Trust-based resource allocation in
web services. In Proc. of the IEEE International Conference
on Web Services, 2006.

[20] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware middle-
ware for web services composition. IEEE Trans. Softw.
Eng., 30(5):311–327, 2004.

