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Abstract

With the popularity of Service-Oriented Computing, how to
construct highly available service-oriented applications is becom-
ing a hot topic in both the research and industry communities. As
a fundamental problem in dynamic service selection, availability
estimation is challenging because of the dynamic nature of web
services. To grasp the dynamic nature of web services, we set up
an experimental environment for collecting runtime information
of web services. Based on the collected runtime information, we
identify several characteristics of service failures and successes,
and further define three typical service runtime statuses. Based on
these statuses, we propose a novel approach to dynamic availabil-
ity estimation, which is called Status Identification based Avail-
ability Estimation for Service Selection(SIBE). To evaluate our
approach, we compare SIBE with other approaches in an exper-
iment of dynamic service selection on the Internet. Experimental
results show that SIBE can efficiently improve the success rate of
selecting available services.

1. Introduction

As an emerging technology to improve system integration and
interaction, web services become a popular research topic in the
domain of World Wide Web in recent years. In particular, many
researchers regard service-oriented methodologies as a promising
solution for future distributed applications [1, 16, 21]. Meanwhile,
because of the distributed and dynamic nature of web services,
many researchers propose that quality of services (QoS) should be
a key factor for the success of building critical service-oriented
applications [16, 4, 20, 8, 14, 7].

Due to the popularity of web services, many software compa-
nies have provided their software as web services on the Internet.
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Figure 1. A Typical Scenario of Service Selec-
tion

Among these web services, many services provide similar or even
identical functionalities. For example, both Google and Yahoo
provide web search services. Based on these functionality-similar
services, a natural idea to improve the user-perceived QoS of web
services is to provide a selector that can dynamically select one
out of a group of functionality-similar services. Figure 1 depicts a
typical scenario of service selection. When the selector receives a
request from a client, the selector chooses a service to invoke and
returns the response message to the client. In this scenario, the
selection process can be optimized for a certain property of QoS.

In the preceding scenario, service selection is among only a
group of services with similar or identical functionalities. An-
other often investigated scenario is to select services among sev-
eral groups of services, with each group having similar or identical
functionalities. In this scenario, the aim of service selection is to
compose a system that can meet certain QoS criteria with selecting
one service from each group. In this scenario, “service selection”
is also referred to as “service composition” [24, 5, 10]. Different
from the preceding scenario, service selection in the composition
scenario does not aim at selecting an optimal service in each group,
but optimizing the QoS of the composed system. In this sense, ser-
vice selection in the composition scenario can be viewed as global
optimization, while service selection in the first scenario as local
optimization.

In both scenarios, the basis of service selection is correct esti-
mation of QoS properties of related services. Among all the QoS
properties, availability [3, 15, 8, 14], which indicates the probabil-
ity of successful invocation of a web service, is a key property in
service selection, as availability may affect many other QoS prop-



erties, such as response time and reliability. To estimate web ser-
vices availability for service selection, many previous approaches
have been proposed. Zeng et al. [23, 24] propose to estimate avail-
ability as Equation (1). Ava is the calculated value of availability
and Tup is the total amount of time in which the services is avail-
able during the last T seconds.

Ava = Tup/T (1)

Doshi et al. [3] propose an availability estimation algorithm
based on Bayesian Learning, which takes into consideration of dy-
namic nature of service availability. Doshi’s approach estimates
availability with an equation, which linearly increases the experi-
ences. When the service availability remains stable, this approach
can estimate availability accurately after a large number of invo-
cations.

However, when we experimentally investigate the failures and
successes of service invocations, we find that previous approaches
to availability estimation have not accommodated several charac-
teristics of service invocations.

We set up an experiment for monitoring services on the Inter-
net and collect about 50,000 invocation records. From statistical
analysis of these records, we find out that there are several implicit
patterns of service failures. These characteristics depict that sim-
ply averaging the historical results is not sufficient. In addition,
these characteristics provide some potential capability for helping
estimate availability.

To accommodate the characteristics of failures and successes
of service invocations, we propose a novel availability estimation
approach in this paper. This approach defines three statuses of
service running according to the characteristics. At each status,
the value of service availability belongs to a different range. The
basic idea of our estimation approach is (1) to identify the service
status, and (2) reuse the historical experiences in this identified
status to estimate the availability. This approach is called Status
Identification based Availability Estimation for Service Selection
(SIBE).

We implement a dynamic service selection algorithm based on
SIBE and set up an experimental environment for dynamically se-
lecting web services published by Google, Yahoo, Amazon and
some other services. We compare our algorithm with two other
dynamic selection algorithms and experimental results show that
SIBE can efficiently improve the success rate of selecting available
services.

This paper makes three main contributions: (1) identifying the
characteristics of service failures and successes, (2) based on these
characteristics, proposing a status identification based dynamic
service-selection approach, (3) proposing an evaluation plan and
developing the corresponding experiment platform, which can be
reused for evaluating other service selection algorithms.

The rest of the paper is organized as follows. Section 2 de-
scribes the characteristics of service failures and successes. Sec-
tion 3 describes the framework of our dynamic estimation ap-
proaches. Section 4 evaluates our metrics and our estimation ap-
proach. Section 5 gives an overview of the related work. Section
6 discusses the issues of our approach. Section 7 concludes of this
paper and outlines the future work.

2. Characteristics of Service Invocation Fail-
ures/Successes

In order to gain insight into possible patterns of service invoca-
tion failures and successes, we collect and analyze the invocation

records of 5 services. We develop client programs for all these ser-
vices, run each client program about two week, and collect about
10,000 invocation records for each service.

We next briefly introduce the environment of collecting service
invocation records, and then present the patterns discovered from
these records.

2.1 Environment for Collecting Service In-
vocation Records

We collect invocation records from monitoring 5 real web ser-
vices. Some of these services are published by Google, Yahoo!,
Amazon, others are published at www.xmethods.net. We develop
client programs for each of these services. The client programs
are developed with Java JDK 1.5, and the SOAP engine is Apache
Axis 1.4.

Some parameters should be set before the client programs are
launched. In our experiment, there are two types of parameters:
(1) invocation parameters and (2) invocation configuration param-
eters.

Invocation Parameters specify parameters defined in SOAP
message. Basically, the data types of invoking parameters include
string, integer and float. When integer or float-type parameters
are required, client program will randomly generate data. Because
string-type parameters often have some latent semantics, we de-
fine several tables for the parameters. These tables include city
names tables, IP addresses tables, etc. When a client program
needs string-type parameters, it will randomly pick up data in cor-
responding tables. For example, when a client program needs one
parameter that specifies the “city name” , this program will auto-
matically pick up one city name in the “city name” table.

Other string-type parameters have no specified semantics, such
as the parameters of the Google spelling check service. These
parameters are stored in a separate “string-type parameter” table.
Initially, about 100 English words are stored in this table. When a
client program needs such parameters, it randomly picks up data
in this separate table.

Invocation Configuration Parameters define how client pro-
gram runs. In our experiment, each client program is specified to
keep running for three weeks. The time interval between two in-
vocations is one minute, i.e., when the client program completes
one invocation, it will wait for one minute before starting another
invocation.

2.2 Typical Patterns of Service-invocation
Successes and Failures

We finally collect about 10,000 invocation records for each of
the monitored service. We intensively go through these records
and analyze the patterns of service-invocation successes and fail-
ures. These patterns occur repeatedly for almost all the services
and we believe that they are representative. Because of the limita-
tion of the space, we show part of our results.

Continuous Successes. In the monitored services, encounter-
ing continuous successes is the most prevalent pattern. Except for
one service, SearchWS service, which has never been accessed
successfully, all the other services have presented the character-
istic of being stable up. We summarize the longest time of being
stable up for each surveyed service. The results are shown in Table
1.

Transient Failures. When analyzing the services’ invocation
records, we find that some services may encounter unstable fail-
ures. This pattern can be further divided into two categories: first,
a client program may encounter transient invocation failures but



Table 1. The Longest Length of Continuous
Successful Invocations

Google Yahoo Amazon LetterSoap
2371 1397 1022 439

successfully access the service for next several invocations; sec-
ond, transient invocation successes and failures happen alterna-
tively.

This pattern has been discovered in several services. We clas-
sify cases with less than continuous three failed invocations as
transient failures. In Table 2, we summarize the number of tran-
sient failures encountered by the services.

Table 2. Number of Transient Failures En-
countered by Services

Google Yahoo Amazon LetterSoap
27 45 33 7

Continuous Failures. Some services have encountered con-
tinuous failures during our study. Because the invocation records
are collected at the client side, this pattern presents the failures
of either the service or network. In SIBE, failures of the service
or network are not explicitly distinguished, because SIBE aims to
estimate “user-perceived availability”, which means that the mea-
surement should be based on the client-side data and should con-
sider both service running and network factors.

For the continuous failures encountered by each service, we
summarize the length of the longest continuous failures. The col-
lected data are shown in Table 3.

Table 3. The Longest Length of Continuous
Failures Encountered by the Services

Google Yahoo Amazon LetterSoap
11 16 34 25

These patterns show the runtime characteristics of service-invocation
successes and failures. A remarkable advantage of discovering
these patterns is that it can efficiently help improve the accuracy
of estimating a service’s availability. For example, if we have iden-
tified that a service’s current runtime pattern is continuous failures,
we can decide that the next several invocations on this service are
very likely to fail. Existing approaches have not accommodated
these characteristics, which hinder them in being sensitive to the
service-availability changes.

3. Dynamic Estimation Approach

In preceding Section 2, we have identified several patterns of
service-invocation successes and failures. From these characteris-
tics, we believe that the reason for services representing such char-
acteristics is that services are running at different statuses. If we
can identify a service’s runtime status, it will efficiently improve
the accuracy of dynamic availability estimation.

Based on these observations, we propose SIBE, a status identi-
fication based approach for dynamically estimating service avail-
ability. The first step of SIBE is to identify a service’s status with

some pre-set rules, which can be dynamically adjusted with learn-
ing strategies. With the identified status, in the second step, SIBE
estimates the service’s current availability by statistically analyz-
ing historical records.

To identify a service’s status, we define three statuses with tran-
sition rules. When one invocation ends, SIBE judges whether a
transition rule is satisfied and whether the service has entered into
a new status. When a service’s current status has been identified,
SIBE can make more accurate estimation based on this identified
status. Each transition rule has a parameter, which specifies the
precise condition under which a transition happens. Initially, these
parameters are manually set. Because the service availability is
dynamically changing, the manually set parameters may not be
accurate. We design a learning algorithm to dynamically adjust
these parameters.

We next separately describe the details of these two steps.

3.1 Estimating Service Status

3.1.1 Service Status Transition Model
Patterns of service failures/successes described in Section 2

show that services are running in different status. In SIBE, we
propose a three-status model, in which the three status are: Sta-
ble Up, Transient Down, and Short-term Down. We next describe
the definition of these statuses and explain why SIBE adopts this
model.

• Stable up (SU):

This status means that the service is running stably and no
invocation failure happens. From the invocation records col-
lected by us, services provided by reputable software enter-
prises are running in this status at most occasions.

• Transient down (TD):

This status means that encountering failures during invoca-
tion is not predictable and it may be recovered by a simple
“retry”. As shown in Section 2.2, most of the monitored
services have been involved in this status.

• Short-term down (STD):

This status means that a service becomes down because of
some specific factors. From the perspective of service users,
they encounter continuous failures. This status is common
for web services. For example, periodical server restarting
will cause the service unavailable for several minutes. Note
that user-perceived availability also takes into consideration
of the network status, it is even more likely for consumers
to encounter short-term network failures. Part of services
monitored by us are also in this status.

This three-status model has two advantages: simple and prac-
tical. First, this model is simple. We believe that a service’s status
is dividable. For example, short-term down can be further divided
into many statuses, such as short-term down and long-term down.
However, adding more statuses need more transition rules, which
makes the system and estimation algorithm complex. Second, this
status model is practical. In the reliability engineering community,
the service statuses are always described as stable up, transient
down, short term down. Researchers contribute much to analyzing
availability with these service status models.

3.1.2 Status Identification
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Figure 2. Status Model with Transition Rules

For simplicity, we assume that at each single point of time, a
service is running in one of these statuses (though in a real envi-
ronment, a service may run in both short-term down and transient
down statuses).

A service can transfer from one status to another. To dynami-
cally identify a service’s current status, we set up some rules, with
which we can deduce the current status with the previous status
and latest invocations. In SIBE, we set up a series of transition
rules to indicate the condition where the service’s status transition
happens.

Every two of these statuses are quantitatively distinguished.
For example, we can differentiate transient down and short-term
down with the continuity of failures. That means, we need manu-
ally set a threshold n. If the length of continuous failures is longer
than n, then we identify this status as short-term down; otherwise,
identify this status as transient down. The transition rules can be
set according to (1) the length of time period or (2) the number of
continuous successful (failed) invocations. For instance, we can
set up a transition rule: “if a service has been stably running for 20
minutes, then we can judge that the service is now running in the
stable up status”. Accordingly, we can present this rule in the sec-
ond way:“if a service has been successfully invoked for 20 times,
then we can judge that this service is now running in the stable up
status”.

As stated in Section 1, the aimed metric is user-perceived ser-
vice availability. That means, all the service availability measure-
ments should be based on the invocation records collected from
service users. From the perspective of service users, at most occa-
sions, the round trip time (including message wrapping/unwrapping,
network transmission, and request processing) of invoking ser-
vices will not be short, and the frequency of invoking web ser-
vices cannot be very high. Take this factor into consideration, the
“time period” is not appropriate for defining the transition rules. In
SIBE, a transition rule is using the second way, the way of binary
result of an invocation.

The status transitions with condition rules are shown in Figure
2. The arc means one status can transfer to another. Each arc in
this diagram has a transition condition. When this condition is
satisfied, the service status is transited from one status to another
following the arc.

The definition of parameters in the transition rules is based on
the basic definition of the service’s status or the characteristics of
service failures and successes. The details for these parameters are
next described.

As defined in Section 3, stable up means that a service encoun-
ters no failures. According to this definition, we define a transition
rule (c0 in Figure 2): when the previous status is stable up and
one failure happens, SIBE regards that the service status has been
transmitted to transient down (TD). Correspondingly, the condi-
tion for transmitting TD to SU is continuous k successes (c1),
which also satisfies the definition of SU . Similarly, we define the
transition rules of c2 and c3.

We did not define the transition from “stable up” to “short-term

down”, although this transition is common in real world. The rea-
son is that the transition c0 and c2 together can cover the transition
from SU to SD. If the service status suddenly changes from SU
to SD, then first, according to the transition rule, the status will
change to TD, and then the status will change to SD.

With these transition rules, we can identify the service running
statuses when an invocation ends. We next describe how we can
estimate the availability value with these identified states.

3.2 Estimating Service Availability in Spec-
ified Status

When SIBE has identified the service’s current status, the next
step for SIBE is to calculate the service’s availability value. The
result of the calculation is a real value, denoted as “avae”.

Because each status has different characteristics, SIBE defines
different estimation strategies for each of these statuses.

Stable Up: According to the basic definition of status “SU”,
the estimated value of “avae” is “1”.

Short-term Down: Similarly, according to the basic definition
of status “SD”, the estimated value of “avae” is “0”.

Transient Down: The service may have been in the “tran-
sient down” status for several times. For every time when the ser-
vice runs in this status, there are several invocation records being
recorded and the availability value can be calculated as Equation
(2) [15], in which, Na denotes the number of total invocations and
Nf is the number of encountered failures.

Ava = (Na −Nf )/Na (2)

Hence, every time when the service gets in the “transient down”
status, there is an availability value recorded. All these availability
values can be regarded as a “time series” [12]. Taking into consid-
eration of the long-term and short-term tendency, SIBE uses the
well-known “Weighted Moving Average (WMA)”[12] method to
estimate the service’s current availability. Assuming all the histor-
ical availability values are stored in a sequence, denoted as Rv , the
WMA method calculates a weighted average of the values stored
in Rv . The expression of the WMA method is described in Equa-
tion (3).

avae =

∑
i=1..n i ∗ avai∑

j=1..n j
, n = |Rv| (3)

In Equation (3), avai denotes the estimated availability and n
is the number of times that the service has been in the TD status.
This equation weighs recent values more and does not ignore old
ones.

3.3 Dynamic Parameter Adjustment

In Section 3.1.1, we propose a status transition model with
condition rules. Every condition rule has a parameter for indicat-
ing when a status transition happens. For example, one transition
rule may define that when a service’s previous status is “transient
down” and if this service encounters continuous k successful in-
vocations (k is a parameter), the service status should be identified
as stable up. We believe that for different services, these param-
eters should be set as different values. For services provided by
reputable providers, the value of k can set small. Otherwise, the
value of k should be set large. However, when SIBE has no histor-
ical invocation records on a specific service, the initial parameters
are all manually set. The initial values are very likely to not be
accurate and we need an algorithm to dynamically adjust these pa-
rameters.



Our learning algorithm starts when sufficient invocation records
have been newly formed. Assume that these records are stored in
a vector, which is denoted as R1,n. The learning algorithm aims to
find out a reasonable parameter value based on R1,n. The prelim-
inary assumption of this learning strategy is that if the reasonable
value is k, then when continuous k failures (successes) happen, it
is very likely that continuous k + 1 failures (successes) will hap-
pen.

The details of the learning strategy are described next. When
there are enough invocation records collected, we separately calcu-
late the number of occurrence of continuous k (the current thresh-
old value), k − 1, k + 1, and k + 2 failures (successes). With
these values, we can calculate that when continuous m failures
happen (k − 1 ≤ m ≤ k + 1), the probability of continuous
m + 1(k ≤ m ≤ k + 2) failures happen. These conditional
probability values can be used for judging which parameter value
is most reasonable. In the status transition model, the transition
rules c0 and c3 have no parameters. Next we explain the details of
adjusting parameters in transition rules c1 and c2.

The algorithms for adjusting parameters in c1 and c2 are simi-
lar. We next present the strategy by adjusting parameter in c2 as an
example. Assume that current parameter value in c2 is k, we sepa-
rately calculate the number of occurrence of continuous k, k − 1,
k + 1 and k + 2 failures. Note that when continuous k failures
occur, the number of occurrence of k−1, k−2, ..., 1 (continuous)
failure(s) should also be increased by one. We use oi to denote the
event that continuous i failures happen, P (oi|oi−1) to denote that
when there are continuous i−1 failures happen, the probability of
continuous i failures happen. Then the conditional probability val-
ues of P (ok|ok−1), P (ok+1|ok), etc. can be calculated. We can
find out the maximum value in these values. Assume that the max-
imal value is P (oi+1|oi), then i is the most representative value:
when continuous i failures happen, it is very likely that i + 1 con-
tinuous failures will happen. So the new parameter value is set to
be i.

Example We use an example to give a more detailed expla-
nation. We assume that the historical invocation records are pre-
sented as a sequence: “1..10011010101..1000101..100001101110
111..1101..1000101..1001..1001..”. In this sequence, “0” denotes
one invocation failure and “1” denotes one invocation success. We
assume that the current parameter value k is “2”.

In this sequence, the occurrences of (continuous) 1, 2, 3, and 4
failure(s) are 14, 6, 3, and 1 time(s). Then the conditional proba-
bility values are calculated as follows:

P (ok|ok−1) = P (o2|o1) = 6/14 = 0.42;
P (ok+1|ok) = P (o3|o2) = 3/6 = 0.50;
P (ok+2|ok+1) = P (o4|o3) = 1/3 = 0.33.
Because the maximum value is P (o3|o2) = 0.50, the new pa-

rameter value is 2 ¤

4. Evaluation

To evaluate our dynamic selection approach, we design an ex-
periment to simulate the real environment of dynamic web services
selection. In this experiment, we implement SIBE and compare
SIBE with two other dynamic service selection algorithms.

The goals of our evaluation are (1) to compare the capability of
these approaches on avoiding invoking unavailable services, and
(2) to find out when the service(s) or environments change dra-
matically, which selection algorithm can adjust itself most quickly
to the changes.

4.1 Dynamic Selection Algorithms
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Figure 3. Architecture of SIBE

4.1.1 Service Selection Based on Service Status Iden-
tification

We implement SIBE in a local selection scenario. The architec-
ture is shown in Figure 3. The selector maintains three lists of the
candidate services. Each list represents a separate status: stable
up, transient down, and short-term down. Whenever one service’
status has been identified, this service is put into the corresponding
list. We next present the working process of this implementation:

1. Initially, SIBE sets up three lists: the Stable Up, Transient
Down, and Short-term Down list. When there is no invocation
happens, all the candidate services are put into the “Stable Up”
list.

2. When a consumer’s request arrives, SIBE makes a choice
among the candidate services: the selector first tries to pick up a
service in the Stable Up List. If the Stable Up list is empty, the
selector tries the Transient Down List. Finally the selector tries
the Short-term Down List.

If there are more than two services are marked as an identical
status, the selector has a selection strategy. If there are more than
one service in the Stable Up list, then the selector randomly picks
up one service. If the Stable Up list is empty and there are more
than one service in the Transient Down list, the selector dynami-
cally estimates these services’ availability according to Equation
(3) and picks the service with the highest availability value. If the
Stable Up list and Transient Down list are both empty and there
are more one service in the Short-term Down list, then the selector
picks up the service that has not been invoked for the longest time.

3. When the selection process ends, the selector puts the in-
vocation records into Historical Records and reevaluates the status
of the invoked services. For example, when one invocation ends,
if the current service status is Transient Down and rule c2 is trig-
gered, SIBE moves this service from the Transient Down list to
the Short-term Down list.

4. When SIBE has collected two hundred invocation records
for one service, SIBE starts the learning algorithm to automatically
adjust the parameters of the condition rules for this service.
4.1.2 Last-Success Selection and Bayesian Learn-

ing Selection
The last-success selection algorithm (abbreviated as LS for sim-

ple presentation) maintains a service list in its memory and always
selects the “head” service in the list before each invocation. When
the invocation ends, LS adjusts the head service of the service list.



If the invocation succeeds, the head service remains unchanged.
Otherwise, if the invocation fails, the head service is moved to the
tail of the list.

The Bayesian Learning algorithm (abbreviated as BL for sim-
ple presentation) makes choices before an invocation phrase and
adjusts the estimated availability of each service when the invo-
cation phrase ends. An invocation phrase denotes the following
process: the client program invokes the services according to their
previous estimated availability, and if the service with the higher
availability fails, the client program chooses the next one. When
there is a successful invocation or all the services have been in-
voked once, the phrase ends. Then the BL algorithm estimates the
services’ availability with the previous experiences and the result
of the latest invocation. If one service is successfully invoked, the
equation for calculation is Equation (4); otherwise, Equation (5).
In these equations, ava′ denotes the estimation availability value,
exper denotes the number of all the historical invocation records
and ava is the previously estimated availability value. With this
newly estimated value ava′, all the services are sorted.

ava′ =
ava + 1

exper + 1
(4)

ava′ =
ava

exper + 1
(5)

4.2 Implementations and Experimental Pro-
cess

To be compatible with real situation of dynamic service selec-
tion, we choose eight real web services that are deployed in Inter-
net by Google, Yahoo, Amazon, etc.

The client programs have no previous experiences on using
these services before the experiment starts. We implement each of
the three algorithms with Java JDK 1.5 and Axis 1.4. To avoid the
intervention of different network environments, we deploy these
implementations on three workstations, which are located in the
same local area network and have the same hardware environment.

We launch each implementation at the same time and the im-
plementation stops automatically while this implementation has
fulfilled a pre-set number of invocations (in our experiment, this
number is set as 30,000).

To simulate the situation that the services or the environments
change dramatically, we make the implementations invoke ser-
vices through different proxy servers. We find some proxy servers
in the Internet and we do not know where these proxy servers are
really located. We make the proxy servers’ addresses recorded
in a file as a list and each implementation of an algorithm has
a copy of it. Each implementation will first invoke the service
without proxy, then with the first proxy server, then the second,
and so on. Because the proxy servers are located in different net-
work environments, for a specific service, it is possible that some
proxy servers make this service’s user-perceived availability low,
but others make the user-perceived availability high. We believe
that switching proxy servers for the implementations is a feasible
mechanism for us to assess the algorithms’ adaptability for dra-
matically changing services and environments.

The whole process of this experiment is described next. We
find two proxy servers in the Internet and the experiment has 3
phrases. In each phrase, each implementation makes k times of
selections and invocations. In our experiment, we set k as 10,000,
which is large enough for us to make each implementation to have
enough time to learn the behaviors of the services. At the Phrase 1,
all implementations invoke the services without proxy. In Phrases

No P ro xy P ro xy 1 P ro xy 2

SIBE

Figure 4. Comparison of Dynamic Estimation
Algorithms

2 and 3, the implementations invoke the services with the proxy
servers stored in the list orderly.

4.3 Experimental Results and Analysis

We compare the success rate of each separate 1000 invocations
for all these three implementations. Figure 4 shows the compari-
son results of these algorithms: (1) Doshi et al’s Beyesian Learn-
ing algorithm [3] (BL), (2) SIBE, and (3) the last success algo-
rithm(LS). In Figure 4, y axis is the success rate and x axis is the
phrases of invocations. Each unit in x axis denotes separate 1000
invocations. The vertical line in Figure 4 denotes when the client
programs switch the proxy server.

Figure 4 shows that, at the beginning phrase of this experiment,
SIBE shows good capability of finding the most available services.
In the most subsequent cases, SIBE has higher success rates than
BL and LS. When the client programs switch the proxy and the
environment changes dramatically, SIBE also shows good ability
of adapting to the changes.

From our experimental results, it is surprising that BL algo-
rithm does not perform well, although this algorithm has a mech-
anism of adapting to changes. We analyze the invocation records
and find out the reason. According to equation (4) and (5), the ac-
curacy of the BL algorithm is dependent on the length of historical
invocation records. Whenever a service shows good or bad avail-
ability for a relatively long time, BL algorithm is hard to change
its belief on this service. When the environment changes dramat-
ically, the length of historical invocation records makes the BL
algorithm unable to be aware of the changes.

The LS algorithm has no learning process so the changes of
environment has not much impact on its results. However, because
LS algorithm always changes its choice whenever an invocation
failure happens, the services with low availability always have the
same priority to be chosen as the high availability services. This
mechanism makes the LS algorithm fail in achieving high success
rate.

It is very interesting that LS has a very similar success rate
curve as SIBE, although the success rate values for these two al-
gorithms are different. The reason is that, essentially, the LS al-
gorithm is also a status-identification-based algorithm. In LS, ser-
vices have two statuses: “Up” and “Down”. When an invocation
fails, the LS regards the invoked service as “Down”; otherwise,
LS regards this service as “Up”. Furthermore, because these eight
candidate services have much time percentage in statuses “Sta-
ble Up” and “Transient Down”, LS and SIBE have similar curves.



However, from our experimental results, this status model falls
short of being too simple and can not achieve good results.

5. Related Work

5.1 Web Service Availability

Availability has been be defined as the degree to which a sys-
tem is operational and accessible when required for use [6]. This
definition is abstract and many researchers try to give a more con-
crete one, which can be used for quantitatively measuring avail-
ability. Brown and Patterson [2] have summarized two traditional
definitions of availability: binary metric at a single point of time
or and average percentage of time that a system is available. The
latter is an extension to the former [2].

In the web services domain, there exist various definitions of
availability. Menasce [14], Zeng et al. [24], Mikic-Rakic et al.
[15] and Xiong and Perros [22] have given their definitions on
web service availability in different application scenarios indepen-
dently.

The expression of the “binary status” estimation is shown in
(6) [15, 9]. Ava denotes the probability that one service will be
available. Na is the number of times that a client program has
invoked the service, Nf is the number that the client program fails
to access the service.

Ava = (Na −Nf )/Na (6)

Most approaches in web services domain define availability
from the perspective of time period. Zeng et al. [24] adopts the
“time period” definition which is shown as Equation (7). Ava is
the calculated value of availability and Tup is the total amount of
time in which the services are available during the last T seconds
.

Ava = Tup/T (7)

Rosenberg et al. [18] propose techniques on measuring avail-
ability with Equation (8).

1− Tdown/Tup (8)

In Equation (8), Tup denotes the uptime of the monitoring de-
vice [17], which is much different from the “last T ” seconds in
Equation (1). The time periods Tup and Tdown are measured by
independent interaction with frequency one minute [18], which
means, if the client program successfully accesses the services
once in one minute (a single time point), then this minute (a time
period) is regarded as “up”. Otherwise, it is marked as “down”.
This definition transforms the binary status measurement to the
time period measurement.

These definitions are proposed in the context of static measure-
ment, which can not efficiently satisfy the requirement of dynamic
service selection.

Xiong and Perros [22] construct a model on estimating the
availability of clustered servers with MTTR and MTTF. This work
differs from SIBE in that their availability is estimated at server
side, while SIBE estimates user-perceived availability.

5.2 Dynamic Web Service Selection

In the web service domain, availability is one of the key QoS
properties. Many researchers propose applications, such as service

replication [19], service composition [5, 24], SLA-aware mid-
dleware [8], and self-reconfiguration service deployment platform
[11] based on dynamically estimating service availability.

Approaches on dynamic web service selection can be classi-
fied into two categories: functionality-based or non-functional-
requirement-based. Maximilien [13] has proposed an ontology
framework for service selection. This framework contains a ser-
vice ontology and a QoS ontology. The service ontology repre-
sents the functional-requirement-oriented selection and the QoS
ontology represents the non-functional selection. Functionality-
oriented service selection has been intensively explored. SIBE
tackles only the non-functional-requirement-oriented service se-
lection.

Another intensively explored topic for dynamic service selec-
tion is web service composition. For this problem, researchers
emphasize on selecting services in a global view and formalize the
original problem as an optimization problem [24]. However, most
approaches in this context assume that QoS properties remain sta-
ble, that is, the composition process does not pay much attention
to the dynamic nature of web service QoS. Although some ap-
proaches use the latest n interaction records for measuring service
availability [24], essentially, this measurement still falls short of
not fully addressing the dynamic nature of service availability.

SIBE differs from these previous approaches on focusing on
the dynamic nature of service availability. We believe that the dy-
namic nature of services and dynamically estimating service avail-
ability are important. An efficient service composition algorithm
should be based on dynamically estimating service QoS. SIBE ad-
dresses the problem of dynamically estimating service availabil-
ity, which is the basis of dynamic service composition. Although
SIBE does not address the problem of service composition di-
rectly, SIBE still contributes to solving a fundamental problem of
service composition.

The Bayesian Learning (BL) based service selection algorithm
proposed by Doshi et al. [3] has a similar motivating scenario with
SIBE. The BL algorithm uses incremental experiences to adapt
to the service availability against changes, while SIBE predefines
three service statuses and makes adjustment whenever the ser-
vice’s statuses change. It can be derived from both mathematical
analysis and experimental results that the BL algorithm is much
slower to adapt to the dramatically changes on availability than
SIBE.

6. Discussion

There are two scenarios for service selection: global and local.
The global selection scenario is also referred as service composi-
tion [24]. SIBE has been evaluated in the local selection scenario.
We argue that SIBE is also promising for the global selection sce-
nario.

Service composition is a problem of finding the most opti-
mized solution for composing several web services with several
QoS properties (such as availability and response time) taken into
consideration. For this problem, accurately estimating each QoS
attribute is important. Because of the dynamic nature of web ser-
vices, all the QoS properties should be estimated with the real-time
data. SIBE aims to provide an efficient solution on dynamically
estimating a service’s availability. Experimental results show that
SIBE is an efficient availability estimation approach in the local
selection scenario. Because the scenario has irreverent to the esti-
mation results, in the global selection scenario, SIBE would also
make efficient estimation for a single service’s availability. Be-
cause the optimizing algorithm in the service composition scenario



is based on a single service’s availability estimation, the SIBE
model can provide a better basis for global selection scenario.

7. Conclusion and Future Work
Web service availability has been regarded as one of the key

QoS properties for service-oriented applications. Availability-aware
service selection is an important and fundamental issue for build-
ing highly availability systems. One major challenge for service
selection is the dynamic nature of web services. From our practi-
cal experiences on monitoring service running, we identify several
patterns of service-invocation failures and successes. Based on
these observations, we propose a novel dynamic service availabil-
ity estimation approach, SIBE, based on service status identifica-
tion. Experimental results show that SIBE can make significant
improvement on the effectiveness of availability-aware service se-
lection.

In the experimental study, the number and characteristics of
candidate services may impact the efficiency of service-selection
algorithms. In future work, we plan to evaluate our approach with
different experimental data sets. As shown in Section 3.1.1, the
status model in SIBE can be further extended. In further work,
we plan to make extension on the current status model and assess
the feasibility. SIBE is evaluated in the local selection scenario.
Our ongoing work is to set up a global selection environment and
evaluate SIBE in the global selection scenario.
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