
Automated Behavioral Regression Testing1

Wei Jin
Georgia Institute of Technology

weijin@gatech.edu

Alessandro Orso
Georgia Institute of Technology

orso@cc.gatech.edu

Tao Xie
North Carolina State University

xie@csc.ncsu.edu

Abstract—When a program is modified during software
evolution, developers typically run the new version of the
program against its existing test suite to validate that the
changes made on the program did not introduce unintended
side effects (i.e., regression faults). This kind of regression
testing can be effective in identifying some regression faults,
but it is limited by the quality of the existing test suite. Due
to the cost of testing, developers build test suites by finding
acceptable tradeoffs between cost and thoroughness of the
tests. As a result, these test suites tend to exercise only a small
subset of the program’s functionality and may be inadequate
for testing the changes in a program. To address this issue,
we propose a novel approach called BEhavioral Regression
Testing (BERT). Given two versions of a program, BERT
identifies behavioral differences between the two versions
through dynamical analysis, in three steps. First, it generates a
large number of test inputs that focus on the changed parts of
the code. Second, it runs the generated test inputs on the old
and new versions of the code and identifies differences in the
tests’ behavior. Third, it analyzes the identified differences and
presents them to the developers. By focusing on a subset of the
code and leveraging differential behavior, BERT can provide
developers with more (and more detailed) information than
traditional regression testing approaches. To evaluate BERT,
we implemented it as a plug-in for Eclipse, a popular Integrated
Development Environment, and used the plug-in to perform
a preliminary study on two programs. The results of our
study are promising, in that BERT was able to identify true
regression faults in the programs.

I. INTRODUCTION

During maintenance, software is modified to enhance its
functionality, eliminate faults, and adapt it to changed or
new platforms. When a new version P ′ of a program P
is produced, developers must assess whether the changes
that they introduced in P ′ behave as expected and do not
affect the unchanged code in unforeseen ways. To this end,
developers typically rerun on P ′, completely or in part, a set
of existing test cases (i.e., a regression test suite), consisting
of test inputs and oracles. If one or more of the test cases
that executed successfully on P cause an unexpected failure
when run on P ′, the developers would know that the changes
introduced regression faults and would use these test cases
to investigate and eliminate such faults.2

1We presented an early version of this work at WODA 2008 [1]. In this
paper, we extend the definition of the approach, describe the BERT-PLUGIN
tool integrated into Eclipse, and present a more extensive evaluation of the
approach on a real program and real changes.

2Developers would expect some of the existing tests to fail based on the
changes made to the code. These tests, normally called obsolete test cases,
would either be discarded or modified to run on the new version.

Ideally, this traditional approach to regression testing can
identify most change-related faults. However, in practice, the
approach has a fundamental limitation: it relies exclusively
on the quality of the existing test suite for P . If such test
suite is inadequate, regression testing is likely to be ineffec-
tive. Unfortunately, regression test suites for real, complex
programs often target only a small subset of the program
behavior, for two main reasons. First, manually generating
test cases that achieve high structural coverage of non-
trivial programs is difficult and time consuming. Therefore,
developers tend to focus on the core functionality of the
program and possibly rely on alternative approaches to verify
the rest of the program, such as smoke tests, beta testing, and
inspection. Second, even in cases where developers manage
to build coverage-adequate test suites (e.g., by leveraging
some automated test generation technique), they have to
account for the oracle problem. Because writing accurate
oracles can be as expensive as generating test inputs, de-
velopers often settle for approximated oracles that perform
only partial checks of the outcome of a test input [2]. In fact,
it is common to consider crashes (or uncaught exceptions)
as de-facto oracles, even though they capture only a small
subset of the possible erroneous behaviors of a program.

In summary, traditional regression testing that relies only
on existing test suites can result in limited checking of the
changed code because of one of two issues, or both: (1) the
lack of test inputs that exercise a changed behavior; (2) the
lack of an oracle that can identify such changed behavior. To
address these issues, in this paper, we propose BEhavioral
Regression Testing (BERT), a novel approach that is meant
to complement existing regression testing approaches. The
goal of BERT is to accurately and automatically identify
behavioral differences between two versions of a program
by means of dynamic analysis.

Given information on which parts of the code have
changed between P and P ′, BERT operates in three main
phases. (To make the description of the approach more
concrete, we describe an instantiation of BERT for the Java
language, where the changed parts would consist of a set of
classes C.) In the first phase, BERT leverages automated test
generation techniques to create a large number of test inputs
targeted at each of the changed classes. In its second phase,
BERT considers each changed class c and each test input t
created for c, runs t on the old and new versions of c, and
compares the outcome of t in the two cases. The approach
performs this comparison by checking several aspects of the



test executions: the state of c after the execution of t, the
values returned by the methods of c invoked by t, and the
various outputs produced by c during the execution of t.
Finally, in its third phase, BERT analyzes any difference
in test outcomes identified in the previous phase to abstract
away some of the information and factor together related
differences (e.g., differences in the value of a given field
observed for multiple test inputs). The result of this phase
is a set of behavioral differences that BERT reports to the
developers. Developers can then use this information to
assess which of these changes may indicate the presence
of a regression fault and eliminate the fault.

The characteristics of BERT allow it to overcome the
aforementioned limitations of traditional regression testing
approaches and enable it to provide developers with more
information than such traditional approaches. By focusing
on the (typically small) subset of the code that has changed,
our approach can address the first limitation of existing
approaches: the lack of test inputs that can adequately
exercise the differences in behavior between P and P ′. And
by leveraging differential behaviors, BERT can sidestep the
second issue with traditional regression testing and perform
an accurate assessment of the changed code without the need
for any externally provided oracle.

To evaluate BERT, we implemented it as a plug-in for
Eclipse (http://www.eclipse.org), a popular Integrated Devel-
opment Environment (IDE), and used the plug-in to perform
a preliminary study on two programs: a small example and a
real program with real changes. In the study, we applied the
approach to the programs and their changes, and examined
the feedback provided by BERT to the developers. Although
our results are still preliminary and do not allow us to draw
any definitive conclusion on the general effectiveness of
the approach, they are nevertheless promising: BERT was
able to identify regression faults in the programs. BERT
also produces some potential false positives, but we believe
(and provide some evidence that) ranking or filtering can
be used to address this issue. Overall, our results provide
initial evidence that BERT has the potential to produce
useful information for developers by either giving developers
confidence that the changed code behaves as intended or
point them to potential issues in the code.

This paper makes the following main contributions:
• The definition of the concept of behavioral regression

testing, a novel approach to regression testing that can
complement existing approaches by addressing two of
their major limitations.

• The implementation of the approach in a tool, BERT-
PLUGIN, that is integrated into a popular IDE, can be
readily used by developers, and is freely available for
download (http://www.cc.gatech.edu/∼orso/software.html).

• A preliminary study that shows the potential usefulness
of the approach when applied on different versions of
a program.

The rest of the paper is organized as follows. Section II in-
troduces an example that we use to show possible issues with
traditional regression testing approaches and to illustrate
our approach. Section III defines our behavioral regression
testing approach. We discuss our implementation and our
empirical evaluation in Sections IV-A and IV, respectively.
Section V discusses related work. Finally, we conclude and
sketch possible future research directions in Section VI.

II. MOTIVATING EXAMPLE

Before presenting the details of our approach, we in-
troduce a small example that we use in the rest of the
paper to show the limitations of existing regression testing
approaches, motivate behavioral regression testing, and illus-
trate our approach. The example consists of a single class,
BankAccount, which implements the main functionality of a
bank account and that we assume to be part of a larger bank
management system. Figures 1 and 2 show the code of two
consecutive versions of the class.

Class BankAccount contains two methods: deposit and
withdraw. Method deposit is the same in V 0 and V 1. It
allows for depositing funds in the account. When called, the
method first checks whether the deposit amount is positive. If
so, it adds amount to field balance and returns true; otherwise,
it leaves the account balance unchanged, prints an error
message, and returns the value false.

Method withdraw allows for withdrawing funds from the
bank account and is different in the two versions. In V 0,
the method first checks whether the withdrawal amount is
negative. If so, it prints an error message and returns false.
Otherwise, it checks the value of balance. If balance is
negative, it reports that the account is overdraft and returns
false. Conversely, if balance is positive, the method subtracts
the amount from the account balance and returns a value true.

Assume that the developers decide to make the overdraft
status of the account explicit. To this end, they make three
changes to class BankAccount, which are shown in boldface
font in Figure 2. First, they add a boolean field, isOverdraft,
which keeps track of whether the account is in an overdraft
state. Then, they modify the conditional at Line 9 of method
withdraw so that it checks the value of field isOverdraft

instead of balance. Finally, they add to method withdraw

instructions to set isOverdraft to true if the balance becomes
negative (Lines 13–14).

Although these changes to method withdraw are correct,
there is a fault in the new version of the code. The developers
forgot to reset the value of field isOverdraft when a deposit
causes the balance to become positive after an overdraft. The
effect of this omission fault is that an account that reaches
an overdraft state will never leave it.

To identify the regression fault introduced in version V 1
of BankAccount, a regression test suite would need to contain a
test case that (1) performs a withdraw that causes the account
to enter an overdraft state, (2) performs a deposit that



public class BankAccount {
private double balance;

public boolean deposit(double amount) {
01 if (amount > 0.00) {
02 balance = balance + amount;
03 return true;
} else {

04 System.out.println("amount cannot be negative");
05 return false;
}
}

public boolean withdraw(double amount) {
06 if (amount <= 0) {
07 System.out.println("amount cannot be negative");
08 return false;
}

09 if (balance < 0) {
10 System.out.println("account is overdraft");
11 return false;
}

12 balance = balance - amount;
13 return true;
}

} Figure 1. Version V 0 of the bank account example.

public class BankAccount {
private double balance;
private boolean isOverdraft;

public boolean deposit(double amount) {
01 if (amount >= 0.00) {
02 balance = balance + amount;
03 return true;
} else {

04 System.out.println("amount cannot be negative");
05 return false;
}
}

public boolean withdraw(double amount) {
06 if (amount <= 0) {
07 System.out.println("amount cannot be negative");
08 return false;
}

09 if (isOverdraft) {
10 System.out.println("account is overdraft");
11 return false;
}

12 balance = balance - amount;
13 if (balance < 0) {
14 isOverdraft = true;
}

15 return true;
}

} Figure 2. Version V 1 of the bank account example.
public void testBehavioralDifference() {

BankAccount acc = new BankAccount();
acc.deposit(10.00);
acc.withdraw(20.00);
acc.deposit(50.00);
boolean result = acc.withdraw(20.00);
assertEquals(result, true);

}

Figure 3. A test case that could reveal the regression fault introduced in
version V 1 of the bank account example.

causes the account to exit the overdraft state, (3) performs
a withdraw with a positive amount, (4) checks whether the
last withdraw was successful. Figure 3 shows a possible test
case that would satisfy these requirements.

Although BankAccount’s regression test suite may contain
such a test case, there is no specific reason why it should. For
example, if the test suite was developed with a coverage goal
in mind, 100% of BankAccount’s code can be covered with a
set of simple test cases that do not include the one in Figure 3
(or any other test case that would reveal the fault). Moreover,
BankAccount is a fairly simple example. The situation is only
going to worsen for more realistic code and regression faults.
As we discussed in the Introduction section, the test cases
in the regression test suite may not exercise the modified
behavior. For our example, the test suite may not exercise
the specific sequence of method calls and corresponding
parameter values required to expose the erroneous behavior
of BankAccount V 1. Even in the case where there are test
cases in the regression test suite that exercise the erroneous
behavior, the oracle associated with such test cases may be
inadequate and fail in identifying such behavior. This case
commonly occurs when test cases are generated in large
quantities automatically, and the only cost-effective way to
define an oracle is to use generic, and thus fairly inaccurate,
ones. Considering again our example, a generic oracle would
likely ignore the semantics of the code and simply check that

the program under test does not throw an uncaught exception
at runtime. (In the case of object-oriented languages, the
oracle problem is further complicated by the presence of
encapsulation and information hiding.)

In Section IV, we illustrate how the two key elements
of our approach—change-centric automated generation of
test inputs and focus on differential behavior—dramatically
increase the likelihood of our approach to find regression
faults such as the one in our example.

III. AUTOMATED BEHAVIORAL REGRESSION TESTING

Figure 4 provides a high-level view of our approach
compared to traditional regression testing. In traditional
regression testing (e.g., [3]–[5]), an existing test suite (T0)
defined for the old version of a program (V 0) is run on the
modified version of a program (V 1). Non-obsolete test cases
that, according to their oracle, fail on V 1 and did not fail
on V 0 are reported to the developers as warnings that may
indicate the presence of regression faults.

Automated BEhavioral Regression Testing (BERT) com-
plements the traditional approach that we just discussed by
improving regression testing along two main dimensions: (1)
it generates a set of test inputs that are specifically targeted
at the changed code, and (2) it explicitly leverages both the
old and the new versions of the code. The result is a set of
behavioral differences between the old and the new versions
of the code. This information can provide developers with
more and finer grained data on how their changes have
affected the behavior of the code. Unexpected changes in
the behavior, together with the detailed information about
these changes, could help developers identify and remove
regression faults. The scenario of use that we envision for
BERT is one where the approach is integrated into the IDE



Test suite T0 Program V0 Program V1

Code changes C

Change 
analyzer

Test
generator

Tests for C TCProgram V0 Program V1

Regression 
errors

Test runner
&

Oracle checker

BERT: BEhavioral Regression TestingTraditional Regression Testing

Test runner
&

Behavioral
comparator

Behavioral
differences

Behavioral 
difference 
analyzer

Raw behavioral
differences

Figure 4. High-level view of our approach.

used by the developers and is activated every time the code
is updated and compiled. (To realize this scenario, in our
implementation we implemented BERT as a plug-in for
Eclipse, a widely used IDE—see Section IV-A.) In such a
scenario, the amount of changes in the code would typically
be limited and localized.

BERT consists of three phases: generation of test inputs
for changed code, behavioral comparison of original and
changed code, and differential behavior analysis and report-
ing. We discuss these three phases in detail by referring to
the overview of BERT provided in Figure 4. Because the
specific characteristics of the programming language and
environment targeted by the approach affect its definition,
we define our approach for Java and assume tests to be
encoded as JUnit tests. Although we focus on this context
in our presentation, BERT should be generally applicable to
other languages and types of tests.

A. Phase 1: Generation of Test Inputs for Changed Code

In the initial step of Phase 1, BERT collects change
information by leveraging a change analyzer that takes as
input the two versions of the program considered, V 0 and
V 1, and produces a list of the classes that differ in the two
versions. Because of the generality of this step, BERT can
use different kinds of change analyzers, such as the ones
typically provided by modern IDEs, specific differencing
techniques (e.g., [6]), or even a slightly modified version
of the Unix diff utility.

BERT then generates a set of test inputs for the changed
classes in V 1 by feeding each of these classes to a test
generator. As it was the case for the change analyzer, BERT
can use any test generator that is able to automatically
build test inputs for Java classes. Because the goal is to
generate test inputs that cover as many behaviors as possible,
the approach can even use multiple generators and just
combine the set of generated tests (possibly after eliminating
redundant tests). In addition, BERT also leverages any of the
existing tests for V 0 that exercise the changed code. (Such

tests can be identified by collecting coverage information
when tests are run on V 0, another task that can be easily
automated within an IDE.)

B. Phase 2: Behavioral Comparison of Original and
Changed Code

In Phase 2, BERT first runs all of the tests generated in
Phase 1 on their corresponding classes. For each changed
class c and each test t for c, the test runner module runs t
on the old and new versions of c, cv0 and cv1.3 After each
call to a method m of c performed by t, BERT logs the
following information:

State: BERT logs the state of the instances of cv0

and cv1 created and exercised by t, inst cv0 and inst cv1.
To log the state, it retrieves the values of each field f
in both inst cv0 and inst cv1 and stores them as <
seq id, m sig, name, value > tuples: seq id is a unique
(per version) id whose value is one for the first call and is
increased for each subsequent call; m sig is m’s signature;
name is f ’s name, and value is the value of f . If f is scalar,
the value logged is the actual value of f in inst cv0 and
inst cv1. If f is a reference to an object o, BERT logs the
value of each of o’s fields recursively until either a scalar
field is encountered or a user-defined depth is reached. In this
latter case, BERT stops its recursive descent and logs “null”
if the reference is null, and “not null” otherwise. (Note that
we cannot log hash values here because they are not required
to remain consistent across executions and may result in
false positives.) Therefore, the greater the depth, the more
precise—and more expensive—is the information collected
and the comparison between different values.

Return values: BERT stores the value returned by m in
the two cases as a < seq id, m sig, value > tuple, where
seq id, m sig, and value are defined as in the previous
case. If the method terminates with an exception, the value
of the exception is stored as the return value.

Output: BERT also captures the output produced
by the execution of m and stores it in the form <
seq id, m sig, destination, data >, where seq id and
m sig have the usual meaning, destination is the entity
where the output is sent (e.g., a textual terminal, a network
port, a graphical element), and data is the raw data sent to
that entity. In our current definition, for simplicity, we handle
output produced only on standard output, on standard error,
and on a set of graphical widgets (i.e., text widgets). We
propose possible ways to extend the definition in Section VI.

Distance: With every value logged after a call to m,
BERT also records the shortest distance between m and any
changed method in the dynamic call graph induced by t. For

3Note that it may not be possible to run all test inputs created for cv1

on cv0 (e.g., due to changes to the class’s interface). These cases are fairly
uninteresting because they provide information that could be discovered
through static differencing. We therefore discard such tests.



example, if m is a changed method, such distance is zero; if
m invokes a changed method directly, the distance is one; if
m invokes a method that in turn invokes a changed method,
the distance is two; and so on.

When t’s execution terminates and the data logs are
produced, BERT’s behavioral comparator accesses the logs
for inst cv0 and inst cv1 and compares states, return values
of corresponding calls, and outputs collected for the two
versions of the class. For each difference that it finds, BERT
records the fact that there was a difference and a set of
relevant data for differences of that type. For all differences,
BERT records what were the different field, return, or output
values in the old and new versions and what was their
distance from a code change. For output differences, it
records also the destination(s) on which different output was
produced. In addition, each of the recorded changes is tagged
with a unique identifier for t, which allows to map individual
changes to the test case that revealed them.

After executing all of the tests generated in Phase 1
on all of the changed classes, the result is a set of zero
or more raw behavioral differences for each class. Each
behavioral difference consists of a state, return value, or
output difference together with its context information, as
discussed earlier.

C. Phase 3: Differential Behavior Analysis and Reporting

Phase 3 analyzes and manipulates the set of differences
produced in the previous phase to group and order them,
so as to allow developers to better consume the information
produced by BERT. To achieve this goal, BERT’s behavioral
difference analyzer first ranks or filters them based on their
likelihood to represent a regression fault. It then abstracts
away some of the information contained in the raw differ-
ences and reduces redundancy within the set of identified
differences.

First, BERT divides the set of differences into classes
based on their distance value, so that differences with the
same distance are in the same class. It then groups changes
within a class as follows.

For state-related differences, the analyzer groups all dif-
ferences that involve the same method and field as a single
behavioral difference involving that method and field. It also
associates such behavioral difference with the set of test
inputs that reveal each individual difference. Information
on the individual tuples of different values for the field in
inst cv0 and inst cv1 are maintained separately as possible
additional information for the developers.

Similarly, for differences related to return values, BERT
groups all differences involving calls to the same method
as a single behavioral difference associated with the set of
test inputs that reveal the individual differences. Also in this
case, the individual value differences are stored separately
for possible further analysis.

Also similarly, BERT groups all output-related differences
that involve calls to the same method and are sent to the
same destination as a single behavioral difference associated
with the set of test inputs that reveal the individual dif-
ferences. Again, the individual value differences are stored
separately for possible further analysis.

The overall result of this phase is a set of behavioral
differences between cv0 and cv1 that includes (1) which
fields can have different values in cv0 and cv1 and which
test inputs and method calls can cause such differences to
manifest; (2) which methods can return different values in
cv0 and cv1 and which test inputs can cause such differences
to manifest; (3) which differences in (textual) output can
occur between cv0 and cv1 on the terminal and graphically,
and which test inputs and method calls can reveal them.

BERT reports these behavioral differences to the devel-
opers ranked in an order that is inversely proportional to
their distance value (i.e., with the differences with greater
distance at the top). BERT can also filter out reports below
a given distance based on the total number of reports. The
intuition and rationale behind this ranking and filtering is
that behavioral differences that occur at a greater distance
from an actual change are less likely to be intentional
than behavioral differences that occur closer to a change.
This intuition is confirmed by the results of our empirical
evaluation, as discussed in Section IV.

Developers can use this information to assess which of
these differences may indicate the presence of a regression
fault and which instead are expected given the changes that
the developers performed on the code. If the developers
identify regression faults, they can then use the test inputs
associated to the corresponding behavioral differences to
investigate and eventually eliminate the faults.

D. Limitations

Non-deterministic methods in the program under test can
cause false positives in the report produced by BERT, as
the execution of the same test on two versions of a non-
deterministic method can produce different results that are
not caused by code changes. (Even running the same test
on a single version of a non-deterministic method twice
can produce different test outcomes.) For example, methods
returning pseudo-random values or methods returning the
current time fall into this category. Currently, BERT allows
developers to provide a list of methods that should be
excluded by our analysis, and this mechanism can be used
to exclude knowingly non-deterministic methods. In future
work, we plan to extend BERT to automatically exclude at
least some of these methods—by running each test multiple
times on a method and discarding the information for that
method if at least one execution behaves differently.

Another limitation of our approach is that it is currently
only applicable to changes that do not involve an interface
change, that is, the names and signatures of public methods



remain the same between two subsequent versions. (In the
presence of interface changes, the test inputs developed
for the new version of the code may not run on the old
version.) In this first attempt at behavioral regression testing,
we decided for now to limit the applicability of BERT to
such cases. In future work, we plan to investigate several
ways to extend the approach and be able to handle interface
changes. One possible way would be to adapt the tests so
that they run on both versions by eliminating and/or adding
some parameters, depending on the changes in the interface.
(Because we do not need explicit oracles for our tests, these
test inputs may still provide relevant information about the
differential behavior of two versions.) Another way would
be to apply recent interface adaptation techniques (e.g., [7]).

Finally, a possible limitation of our approach is that it is
designed to work on localized changes involving one class
(or a few classes) and may not be ideal in the case of ex-
tensive changes (e.g., changes that add a significant amount
of new functionality to a system). Because our approach
is applied every time a developer saves a compilable class,
however, even large changes would be regression-tested in
small increments. We plan to perform further experiments to
assess whether our approach needs to specifically handle the
case of a large set of changed classes that become compilable
only when the last one is saved. If that is the case, we
may decide to simply avoid running our approach for such
changes and let the developer test the new functionality with
traditional testing approaches (which should be conducted
anyway, no matter whether our approach is applied or not).

IV. EVALUATION OF BERT

To assess the feasibility and usefulness of our approach,
we implemented it in a prototype tool and used the tool to
perform two empirical studies: a proof of concept study on
our example described in Section II and a more extensive
evaluation on a real subject. More specifically, we investi-
gated the following research question: Is BERT able to reveal
regression faults in a new version of the code automatically
and without generating too many false positives? In the rest
of this section, we discuss our implementation of BERT-
PLUGIN, present our two studies, and discuss their results.

A. Implementation of BERT-PLUGIN

We have implemented our proposed BERT approach as an
Eclipse plug-in, called BERT-PLUGIN, that operates transpar-
ently as developers edit and evolve their code. We concisely
describe BERT-PLUGIN by discussing how it implements the
different parts of our approach, presented in Section III and
depicted graphically in Figure 4.

Phase 1’s modules: To implement the change analyzer
module, we leverage two features of Eclipse—the ability to
intercept events and the availability of change information
between two versions of a project (or parts thereof). More
precisely, BERT-PLUGIN intercepts successful compilation

events to be able to perform its analysis each time some
part of a project has been modified, saved, and compiled.
When triggered by one such event, BERT-PLUGIN compares
the previous and the new versions of the project using the
functionality provided by Eclipse through its API. The result
of this step is a list of modified classes in the project.

The test generator module relies on Randoop [8] and
CodePro Server (http://www.instantiations.com/codepro) for test
input generation. We chose these tools because they can
generate test inputs for single classes and have the advantage
of automatically building the scaffolding needed for the tests,
such as drivers and stubs (i.e., mock objects) and producing
readily usable JUnit tests. (Note that we do not require the
JUnit test suite to be equipped with assertions, as we are
interested only in differential behavior.) For reusing existing
tests, the test generator module leverages the functionality
provided by Eclipse’s JUnit plug-in—for identifying and
rerunning tests associated with a project—and EclEmma—
for collecting coverage information and associating test
inputs with the classes that they exercise.

Phase 2’s modules: To collect the information needed
for behavioral comparison, BERT-PLUGIN instruments the
JUnit tests and the code under test before running the
tests. The instrumentation is performed using Javassist (http:
//www.csg.is.titech.ac.jp/∼chiba/javassist), a bytecode rewriting
library written in Java. For each test t, BERT-PLUGIN first
identifies the set of relevant objects for t, that is, instances
of changed classes created (and therefore being tested)
by t. It then instruments every call performed by t on a
method m of a relevant object o by adding probes that store
(1) o’s state after the execution of m and (2) m’s return
value, as described in Section III-B. Finally, BERT-PLUGIN
instruments m with two kind of probes: (1) probes that
intercept all (textual) output produced by m and suitably log
such output together with the destination where the output
is sent; and (2) probes that keep track of the call stack and
measure the distance as defined in Section III-B.

After instrumenting the code and the tests, BERT-
PLUGIN’s test runner module runs both the existing and
newly created tests by also leveraging the JUnit plug-in in
Eclipse, which allows for rerunning all or part of the JUnit
tests for a given project. As the tests run, the probes added
through instrumentation collect the information needed by
BERT-PLUGIN to perform behavioral comparison and store
such information persistently on the file system in XML
format. The use of XML allows for easily saving and
reloading values even when they consist of hierarchical
records (i.e., when collecting non-scalar values using a depth
that is greater than one—see Section III-B for details).

The behavioral comparator module is implemented in
Java and simply (1) reads the XML files produced by the
test runner module described earlier, (2) compares the values
for corresponding calls, and (3) produces a set of raw
behavioral differences. To read and write XML files, BERT-



Figure 5. Eclipse view produced by the behavioral difference analyzer.

PLUGIN uses the SAXParser in the standard Java library
(javax.xml.parsers.SAXParser).

Phase 3’s modules: The behavioral difference analyzer
module is also implemented in Java and performs the group-
ing and ordering described in Section III-C. The module
also provides visualization capabilities for displaying in an
Eclipse view the set of grouped and ordered differences.
Figure 5 shows the view obtained when using BERT-PLUGIN
on our BankAccount example. Clicking on any of the behav-
ioral difference groups shows the individual differences in
that group, and clicking on an individual difference would
show the actual delta between the values involved in the
difference, in XML format (see Figure 8 for an example).

B. Empirical Studies

1) Study 1: Proof of Concept:
Setup: In our proof of concept study, we performed an

initial assessment of the feasibility of our approach. To this
end, we applied BERT-PLUGIN to the example presented in
Section II. We loaded the version V 0 of the BankAccount code
into Eclipse and saved it, causing the code to be compiled
as well, and BERT-PLUGIN to be triggered as a consequence.
Since V 0 was the first version being created, BERT-PLUGIN
simply stored the version and did not perform any analysis.
We then applied the changes shown in Figure 2 to go from
V 0 to V 1 and saved the new version V 1, leading again
to the compilation of the code and the invocation of BERT-
PLUGIN. This time, however, BERT-PLUGIN realized that V 1
was a new version and performed the three phases of its
analysis. After identifying that BankAccount (the only class in
the project in this case) had changed, BERT-PLUGIN’s test
generator generated a set of test inputs for version V 1 of the
class. Overall, 2,569 test inputs were generated. Each test
input consisted of pseudo-random method sequences with
pseudo-random method arguments.

At this point, BERT-PLUGIN ran each test input on both
versions of BankAccount, while logging state, return value,
and output information. (It is worth noting that executing
the complete set of test inputs on BankAccount takes less than
a second.) BERT-PLUGIN then performed the comparison
of the recorded logs and suitably generated the set of
differences for the two versions of the class.

Results: The results of the comparison were encourag-
ing: about 60% of the automatically generated test inputs
(1,557 out of 2,569) were able to reveal the behavioral
difference that indicates the regression fault in the example,

public void testclasses3() throws Throwable {
01 BankAccount var0 = new BankAccount();
02 double var1 = (double)1.0;
03 boolean var2 = var0.deposit((double)var1);
04 double var3 = (double)2.0;
05 boolean var4 = var0.withdraw((double)var3);
06 double var5 = (double)1.0;
07 boolean var6 = var0.deposit((double)var5);
08 double var7 = (double)2.0;
09 boolean var8 = var0.withdraw((double)var7);
}

Figure 6. An example of test input for the bank account example.

and no false positives were reported. Figure 6 shows one
of the automatically generated test inputs that reveal the
problem. As the figure shows, the test exercises the fault-
revealing sequence discussed in Section II.

In all these cases, the behavioral difference was identified
automatically and manifested itself in two ways: some calls
to method withdraw returned two different values in the two
versions and produced some output only in the new version
of the code. For illustration, consider again the test in Fig-
ure 6. For that test, the last call to withdraw would return true

and produce no output in version V 0 of BankAccount, whereas
it would return false and produce the output “account is
overdraft” in version V 1. Note that the prototype did not
report any state-related behavioral difference because of the
presence of the new field isOverdraft in V 1. Since the
addition or removal of a field is almost always intentional,
BERT-PLUGIN identifies only state differences that involve
fields that are present in both versions of a class.

We stress that the successful identification of the erro-
neous behavior, which would easily reveal the corresponding
regression fault, is due to the two key characteristics of
BERT: the automatic generation of a large number of test
inputs for the changed code and the use of automatically
identified detailed behavioral differences.

2) Study 2: Real Program:
Setup: Although Study 1 provides some initial evidence

of BERT’s usefulness, it targets a small example. Therefore,
in our second study, we further investigate the effective-
ness and precision of our approach by targeting many
versions of a real application: a Java library called Joda-
Time (http://joda-time.sourceforge.net/). Joda-Time extends the
functionality of date- and time-related classes in the standard
Java library. The SVN repository of Joda-Time contains
a large number of versions that correspond to the whole
history of the library and that is still being actively updated.
Because the initial history of the library involves for the
most part addition of functionality, rather than evolution and
changes to existing code, we focused on relatively mature
versions of the code. To identify such versions, we simply
checked through sampling the point in the history where
the addition of new classes dropped and remained low for
several subsequent versions.

Starting from that point in the SVN history, we extracted
all versions that satisfy BERT’s assumption of not having
interface changes between two versions (see Section III-D).



//r916:
private transient YearInfo[] iYearInfoCache;
private transient int iYearInfoCacheMask;

//r917:
private static final int CACHE_SIZE = 1;
private static final int CACHE_MASK = CACHE_SIZE - 1;
private final YearInfo[] iYearInfoCache =

new YearInfo[CACHE_SIZE];

Figure 7. Changes between versions r916 and r917.

V1/out-TestSerialization.testSerializedBuddhistChronology
.2.readObject.state

<className>org.joda...BuddhistChronology</className>
< <field>

...

V2/out-TestSerialization.testSerializedBuddhistChronology
.2.readObject.state

<className>java.io.NotSerializableException</className>

Figure 8. Behavioral difference report for version pair r916–r917.

The final result was a set of 54 pairs of version of Joda-Time.
We applied BERT-PLUGIN to each pair of versions, similarly
to what we did for the two versions of our example in Study
1: we loaded the first version of the pair into Eclipse, applied
the changes to obtain the second version of the pair, and
let BERT-PLUGIN perform its three phases. At the end of
this process, we obtained a change report, in the form of
the one shown in Figure 5, for each version pair. We then
manually investigated the reports to determine whether the
behavioral differences identified by BERT-PLUGIN actually
corresponded to regression faults in the code.

Results: The reports generated by BERT-PLUGIN for
the considered 54 version pairs contained 36 behavioral dif-
ferences. In particular, BERT-PLUGIN detected no behavioral
difference for 21 version pairs, 1 behavioral difference each
for 30 version pairs, and 2 behavioral differences each for
the remaining 3 version pairs. By using the information on
bug fixes in the CVS repository, we were able to confirm
that one of the behavioral differences was without doubt a
true regression fault. We next discuss this fault in detail and
then consider the other differences.

The true regression fault is caused by the changes made
when going from version r916 to version r917 in the SVN
repository. Figure 7 shows the relevant part of the change.

The change in class BaseGJChronology is meant to enhance
the performance of some critical methods. The culprit that
causes the regression fault is the modification of YearInfo’s
declaration from transient to final. Because YearInfo is
a non-serializable class (i.e., it does not implement the
Serializable interface), this modification affects the ability
to serialize the whole BaseGJChronology class: objects of type
BaseGJChronology can be serialized in version r916, but can
no longer be serialized in version r917. (Note that transient
fields are excluded from serialization, whereas final fields
are not.) Figure 8 shows parts of the XML content of the
behavioral difference report for this change.

In the report, SerializedBuddhistChronology is a subclass
of BaseGJChronology, thereby inheriting the fields declared

public long set(long instant, int value) {
int min = getMinimumValue(instant);

//r1216:
if (value >= min && value < getMaximumValue(instant)) {

//r1217:
if (value >= min && value <= getMaximumValue(instant)) {

return super.set(instant, value);
}
return add(super.set(instant, min), value - min);

}

Figure 9. Changes between versions r1216 and r1217.

V1/out-LenientDateTimeField.set.retval.testNearDstTrans.10
<f_value>1162188000000</f_value>
V2/out-LenientDateTimeField.set.retval.testNearDstTrans.10
<f_value>1162191600000</f_value>

Figure 10. Behavioral difference report for version pair r1216–r1217.

in BaseGJChronology. This report shows a difference in
behavior between the two versions of the class when
we execute the second call (indicated by ID “.2.”) to
method SerializedBuddhistChronology.readObject within test
testSerializedBuddhistChronology. In the second version,
the call results in a NotSerializableException exception,
whereas the execution of the same test throws no excep-
tion in the first version. The group of differences that
include the one listed in Figure 8 also include similar be-
havioral differences for classes SerializedCopticChronology,
SerializedGJChronology, SerializedGreorianChronology, and
SerializedJulianChronology, which are also subclasses of
BaseGJChronology.

Based on inspection of the report(s) produced by BERT
and the code, it looks clear that (1) the behavioral difference
is indeed a regression fault and (2) it would be fairly
straightforward to go from the difference to the actual fault
in the code and fix it.

From the comments on bug fixes in the SVN repository,
we found that the true regression fault detected by BERT
on version r917 was indeed fixed in a subsequent version,
and the commit-time difference between the two versions
was three days. This is one case where the use of BERT
would have likely allowed the developers to find and fix the
problem before even committing their changes.

For the remaining behavioral differences reported by
BERT-PLUGIN on Joda-Time, we were not able to identify in-
formation in the SVN logs that clearly indicated whether the
reported differences correspond to true regression faults. We
therefore inspected all of the reported differences manually,
which is a difficult task; in many cases, it is not clear what
the developers’ intention was in introducing a change, and it
is therefore not possible to classify a behavioral difference
as either a true or a false positive. Here, we discuss one
of the cases for which we were able to classify a reported
difference as a false positive. The behavioral difference is
related to the changes between versions r1216 and r1217,
shown in Figure 9.

In this example, developers changed the set method in
the LenientDateTimeField class. By looking at the SVN logs,



we discovered that the reason for this change is to fix a
fault in class LenientChronology, which might incorrectly
adjust a valid hour field near a daylight-saving transition.
The behavioral difference reported by BERT-PLUGIN, shown
in Figure 10, indicates that BERT detects a difference in
the return value of method LenientDateTimeField.set. This
difference is caused by the bug fix and is thus not a
regression fault.

Although this example indicates that BERT-PLUGIN can
produce false positives, two things can be noted about the
report. First, the developer who just fixed the fault would
likely recognize immediately that the behavioral difference
can be ignored and would not waste time on it. Second,
the distance for the difference is zero in this case, that is,
the behavioral difference manifests itself in the method that
was changed. As we discussed in Section III-B, we expect
reports with distance zero to be considerably more likely to
represent expected behavioral changes.

Considering all of the 36 behavioral differences reported
by BERT-PLUGIN, 22 are at distance 0, 10 at distance 1, and
the remaining 4 at distances greater than 1. We analyzed
these four behavioral differences by looking at the code
and the SVN logs: one corresponds to the true regression
fault discussed earlier (versions r916–r917); one is a false
positive; and the remaining two could not be classified either
way with the information available to us. In other words, if
we filtered reports with distance lower than 2, the developers
would be presented with only four reports, of which one
represents a true regression fault, which we believe to be
an encouraging result. Moreover, ranking could further help
focusing the developers’ attention on potentially more useful
reports—the difference corresponding to the true regression
fault is ranked second based on distance among all reports.

To get further evidence of the usefulness of BERT, we
also examined the 21 changes that did not result in any
behavioral difference. After inspecting the code locations of
these changes and the SVN logs, we found that most of
these code changes are related to refactoring for improving
the design of the project, and the corresponding code was
not further changed in subsequent versions. This is also
encouraging, as it shows that BERT-PLUGIN did not report
differences for cases where there should have not been.

V. RELATED WORK

The Diffut approach [9] exploits method preconditions
and postconditions to enable synchronized execution of two
versions (V 0 and V 1) of a class and compare the behavior
of the two versions. Diffut suffers from a number of
limitations. For example, corresponding classes from V 0
and V 1 with the same package and class name cannot be
executed in the same Java Virtual Machine, as required by
Diffut, and system outputs from the two versions cannot be
captured or compared by Diffut. In contrast, our approach
does not suffer from these limitations because it runs the

same test inputs separately on two versions and compares
the captured data from two versions offline. In addition, our
approach is also flexible enough to allow for incorporating
heuristics for filtering out intended behavioral differences,
such as addition, deletion, or renaming of object fields.

Evans and Savoia [10] proposed a differential testing
approach in which they generate a test suite for each of
the two given versions of a software system (V 0 and V 1);
assertions are synthesized in the generated test suite to assert
the captured behavior of the version [11]. Assume that the
generated test suites for the two versions V 0 and V 1 are
T0 and T1, respectively. Their approach then runs test suite
T0 on V 1 and test suite T1 on V 0. Our approach does not
synthesize or add assertions in the generated test inputs, but
runs the same test inputs on both versions while capturing
and comparing data related to the execution of each version.
The behaviors being compared by our approach are more
detailed than the ones targeted by the approach proposed
by Evans and Savoia, which does not compare program
outputs and compares receiver-object states only in a limited
way. Therefore, our approach is likely to provide better
regression-fault detection capability.

Some existing capture and replay approaches [12]–[14]
capture the inputs and outputs of the unit under test during
the execution of system tests. These approaches then replay
the captured inputs for the unit as less expensive unit
tests, where the outputs of the unit are checked against the
captured outputs. Different from these existing approaches,
our new approach captures runtime behavior of the execution
of automatically generated new unit tests, which exercise
behaviors that are not necessarily exercised by system tests.
However, our approach can also be used in combination with
these previous approaches by comparing the behaviors of the
unit tests generated by such approaches.

Sometimes the quality of the existing tests might not be
good enough to cause the outputs of two program versions to
be different and expose behavioral differences between them.
Some previous regression test generation approaches [15]–
[17] try to generate new tests to expose such behavioral
differences. These approaches complement our approach and
can be integrated with our approach as third-party test-
generation tools.

Santelices and colleagues [18] use data and control de-
pendence information, along with state information gathered
through partial symbolic execution of the old and new
version of a program, to help developers augment an existing
regression test suite. Their approach does not automatically
generate any test input, but simply provides guidelines
for developers on how to improve an existing regression
test suite. Our approach not only generates unit tests, but
also compares the behaviors captured while running the
generated unit tests on multiple versions.



VI. CONCLUSION AND FUTURE WORK

We have presented a novel regression testing approach—
BEhavioral Regression Testing (BERT)—that is based on au-
tomatically identifying behavioral differences between two
versions of a program through dynamic analysis. BERT
consists of three main phases: (1) generating a large number
of test inputs for the changed parts of the code, (2) running
the generated test inputs on the old and new versions of
the code and identifying differences in the tests’ behavior,
and (3) analyzing the identified differences and presenting
them to the developers. Our approach has two key aspects
that distinguish it from traditional regression testing. First,
it focuses on a small subset of the code, which allows
it to generate a more thorough set of tests. Second, it
leverages differential behavior, which eliminates the need for
developer-provided oracles. Because of these novel aspects,
BERT can give developers more (and more detailed) infor-
mation than traditional regression testing approaches. Our
preliminary evaluation of BERT provides initial evidence
of its usefulness: for the cases considered, BERT was able
to identify true regression faults while generating false
positives that could be filtered out or ranked at low priority.

We believe that these initial results, albeit still preliminary,
are encouraging and motivate further research along several
directions. First, we plan to perform a more extensive
empirical evaluation of BERT. Second, we plan to investigate
the use of finer-grained differencing techniques (e.g., [6])
to further reduce the scope of the test generation portion
of BERT. Moving to the method or even code-fragment
level might allow for an increasingly thorough testing of the
changes. Third, we plan to explore the use of test generation
techniques that are guided by the characteristics of the iden-
tified changes, rather than being based on mainly random
generation. Fourth, we plan to investigate different ways
to handle interface changes, as described in Section III-D.
Finally, we plan to explore more aggressive ways to cluster,
filter, and abstract changes before presenting them to the
developers. In this context, we may also be able to leverage
bug isolation techniques targeted at specific parts of the
code (e.g., [19]) to further reduce the developers’ inspection
efforts. We also plan to investigate filtering of the behavioral
differences based on diversity metrics other than distance of
dynamic call graph (e.g., [20]), which may provide more
accurate feedback to the developers.

ACKNOWLEDGMENTS

This work was supported in part by NSF awards CCF-0725202 and
CCF-0916605 to Georgia Tech and CCF-0725190 to NC State University.

REFERENCES

[1] A. Orso and T. Xie, “BERT: BEhavioral Regression Testing,”
in Proc. WODA, 2008, pp. 36–42.

[2] E. J. Weyuker, “On testing non-testable programs,” Compuer
Journal, vol. 25, pp. 465–470, 1982.

[3] T. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rother-
mel, “An empirical study of regression test selection tech-
niques,” in Proc. ICSE, 1998, pp. 188–197.

[4] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case
prioritization,” IEEE Transactions on Software Engineering,
vol. 27, no. 10, pp. 929–948, October 2001.

[5] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing
to large software systems,” in Proc. FSE, 2004, pp. 241–252.

[6] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A differenc-
ing algorithm for object-oriented programs,” in Proc. ASE,
2004, pp. 2–13.

[7] D. Dig, S. Negara, V. Mohindra, and R. Johnson, “ReBA:
Refactoring-aware binary adaptation of evolving libraries,” in
Proc. ICSE, 2008, pp. 441–450.

[8] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed
random testing for Java,” in OOPSLA Companion, 2007, pp.
815–816.

[9] T. Xie, K. Taneja, S. Kale, and D. Marinov, “Towards
a framework for differential unit testing of object-oriented
programs.” in Proc. AST, 2007, pp. 5–11.

[10] R. B. Evans and A. Savoia, “Differential testing: a new
approach to change detection,” in Proc. ESEC/FSE, 2007, pp.
549–552.

[11] T. Xie, “Augmenting automatically generated unit-test suites
with regression oracle checking,” in Proc. ECOOP, 2006, pp.
380–403.

[12] A. Orso and B. Kennedy, “Selective capture and replay of
program executions,” in Proc. WODA, 2005, pp. 29–35.

[13] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic
test factoring for Java,” in Proc. ASE, 2005, pp. 114–123.

[14] S. Elbaum, H. N. Chin, M. Dwyer, and J. Dokulil, “Carving
differential unit test cases from system test cases,” in Proc.
FSE, 2006, pp. 253–264.

[15] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic
test data generation,” IEEE Transactions on Software Engi-
neering, vol. 17, no. 9, pp. 900–910, 1991.

[16] K. Taneja and T. Xie, “DiffGen: Automated regression unit-
test generation,” in Proc. ASE, 2008, pp. 407–410.

[17] K. Taneja, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte,
“Guided path exploration for regression test generation,” in
Companion ICSE, NIER, 2009, pp. 311–314.

[18] R. A. Santelices, P. K. Chittimalli, T. Apiwattanapong,
A. Orso, and M. J. Harrold, “Test-suite augmentation for
evolving software,” in Proc. ASE, 2008, pp. 218–227.

[19] A. Orso, S. Joshi, M. Burger, and A. Zeller, “Isolating relevant
component interactions with JINSI,” in Proc. WODA, 2006,
pp. 3–9.

[20] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching
for cognitively diverse tests: Towards universal test diversity
metrics,” in Proc. ICST Workshop, 2008, pp. 178–186.


