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Abstract—Logging components are an integral element of
software systems. These logging components receive the logging
requests generated by the logging code and process these requests
according to logging configurations. Logging configurations play
an important role on the functionality, performance, and relia-
bility of logging. Although recent research has been conducted
to understand and improve current practice on logging code, no
existing research focuses on logging configurations. To fill this
gap, we conduct an exploratory study on logging configuration
practice of 10 open-source projects and 10 industrial projects
written in Java in various sizes and domains. We quantitatively
show how logging configurations are used with respect to logging
management, storage, and formatting. We categorize and analyze
the change history (1,213 revisions) of logging configurations to
understand how the logging configurations evolve. Based on these
study results, we reveal 10 findings about current practice of
logging configurations. As a proof of concept, we develop a simple
detector based on some of our findings. We apply our detector on
three popular open-source projects and identify three long-lived
issues (more than two years). All these issues are confirmed and
two of them have been fixed by the open-source developers.

Index Terms—logging, logging configurations, empirical study

I. INTRODUCTION

Logging is a common practice to record runtime information
for realtime analysis and postmortem inspection. The rich
information in logs is crucial for many tasks, such as failure
diagnosis [1], [2], performance analysis [3], and user behavior
analysis [4]. The generation of logs is implemented by a
logging component in the software. The logging component
receives logging requests from application code and publishes
the logging information to the specified destinations. It is not
trivial to build a well-designed logging component, consider-
ing the vast variety of logging requirements. Therefore, log-
ging libraries, such as Log4J [5] and Logback [6] in Java, are
adopted to build a logging component. These logging libraries
not only simplify the writing of the logging component within
the software, but also provide logging configurations, with the
flexibility of controlling logging behaviors from an external
configuration file.

Although the logging libraries have dramatically simplified
the construction of a logging component, it is still challenging

to write logging code for producing high-quality log messages.
Previous studies find that many problems exist in the practice
of writing logging code, such as missing failure information
[7], improper logging level [8], and duplicated log message
[9]. In addition, various approaches [9]–[15] have been pro-
posed to improve current logging code.

Besides writing logging code, conducting logging configu-
rations is also highly important for producing high-quality log
messages; however, no existing research studies the practice
of logging configurations. The data released by Hassani et
al. [14] show that majority (65%) of the issues related to
logging configurations in the Apache Hadoop project have
medium or high priority. These issues are possible to cause
critical problems, such as runtime errors [16], disk-space
exhaustion [17], and log-message missing [18]. In contrast,
among other logging-related issues in these projects, there
are only about 39% of them with medium or high priority.
Therefore, the issues in logging configurations are more likely
(1.6 X) to bring risk to the logging component, or even the
entire system.

To fill this gap of lacking studying logging configuration
practice, in this paper, we conduct an exploratory study for
aiming to answer the following two research questions.

RQ1: How are the logging configurations used? To
answer this research question, we intend to analyze the logging
configurations in some typical software systems. Specifically,
we focus on the core elements in logging configurations,
namely, logger, appender, and layout, being critical for log-
ging management, logging storage, and logging formatting,
respectively:
• Logger is responsible for capturing and managing logging

requests.
• Appender is responsible for recording logging requests to

a destination.
• Layout is responsible for converting and formatting the

data in a logging request.
RQ2: How do the logging configurations evolve? This

research question aims to analyze all possible changes in
logging configurations to find out what change types usually
occur in practice. In the meantime, it is helpful to explain



common practice of logging configurations. Specifically, we
examine all the valid changes to logging configurations and
categorize them manually in term of changed elements (e.g.,
logger, appender, and layout).

This paper makes the following main contributions:
1) To the best of our knowledge, our work is the first

dedicated to explore the practice of logging configura-
tions by analyzing the usage and evolution of logging
configurations from 20 (10 open-source and 10 industrial)
software projects in various sizes and domains.

2) Based on analyzing the study results, we reveal 10
findings about logging configurations, including logging
management, logging storage, logging formatting, and
logging-configuration quality. Table I summarizes our
major findings from our study.

3) Based on our findings, we implement a tool to detect
invalid loggers in logging configurations. The tool has
been applied to three popular open-source projects and
identify three long-lived issues (more than two years),
demonstrating the usefulness of our findings.

II. BACKGROUND

In this section, we describe the logging mechanism adopted
by common logging libraries. Figure 1 shows an illustrative
example for the logging mechanism of Log4J 2 [5]. Specif-
ically, Figure 1(a) shows the application code that contains
logging code, Figure 1(b) shows the corresponding logging
configurations in the XML format, and Figure 1(c) shows the
generated logs by running the application code.

Before we can send logging requests to the logging com-
ponent, we need to obtain and name a logger instance. In our
case, the named logger is com.foo.Bar. The name of logger
follows the hierarchical naming rule [6]: A logger is said to
be an ancestor of another logger if its name followed by a dot
is a prefix of the descendant logger name. A logger is said to be
the parent of a child logger if there are no ancestors between
itself and the descendant logger. For instance, com.foo is
the parent of com.foo.Bar, while com is only the ancestor
of com.foo.Bar. In addition, there is a root logger, which
is an ancestor of any logger by default.

Then, we can send a logging request using the logging
method with the developer-written logging level. The logging
component compares the assigned logging level with the con-
figured threshold for the logger to verify whether the logging
request should be processed. Generally, there are six logging
levels, which are fatal, error, warn, info, debug, and trace
with decreasing priority. The level of logger follows the level
inheritance rule [6]: The level for a given logger L, is equal to
the first configured level in its hierarchy, starting at L itself and
proceeding upwards in the hierarchy towards the root logger.
In Figure 1(b), the first configured level for com.foo.Bar is
info, which is inherited from com.foo. The developer-written
level (info) is not lower than the configured threshold, so the
logging requests are transferred to the associated appenders.

The appender of logger follows the appender additivity
rule [6]: The log message of logger L goes to all the appenders

2019-03-12 17:50:04,062 INFO com.foo.Bar - Entry
2019-03-12 17:50:04,069 INFO com.foo.Bar - Exit
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Code

(b)
Logging
Config.
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Generated

Log

package com.foo;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Bar {
public static Logger LOG =

LoggerFactory.getLogger("com.foo.Bar");

public void logging() {
LOG.info("Entry");
// TODO
LOG.info("Exit");

}
}

<Configuration>
<Appenders>

<Console name="Console" target="SYSTEM_OUT">
<PatternLayout>

<pattern>
%d %level %logger - %msg%n

</pattern>
</PatternLayout>

</Console>
</Appenders>
<Loggers>

<Logger name="com.foo" level="INFO"></Logger>
<Root level="WARN">

<AppenderRef ref="Console"/>
</Root>

</Loggers>
</Configuration>

① Logger Definition

② Logging Request

③ Logger

④ Appender

⑤ Layout

⑥ Log

Fig. 1: An illustrative example of logging mechanism

in L and its ancestors. In our example, as com.foo.Bar
does not bind with any appender directly, the log message of
com.foo.Bar is directed to only ConsoleAppender, which
is configured with the root logger. Before writing the log
message to the destination, the logging component utilizes
the associated layout to format the log message. Here, the
PatternLayout is used to format the log message according to
the value of pattern. Specifically, it adds the time, priority,
and category into the log message. Finally, the formatted log
message is outputted to the console.

III. STUDY METHODOLOGY

In this section, we first introduce the systems under study,
and then describe how we extract necessary information for
further analysis.

A. Subject Systems

We perform our study on 10 open-source projects and
10 industrial projects in Java. The open-source projects are
selected from the Apache Software Foundation [21] based on
three main criteria. First, the selected projects are popular with
more than 1,000 stars on Github. Second, the selected projects
are mature with more than eight years of development history.
Third, the selected projects represent various domains, ranging
from message queue to distributed computing platforms. The
industrial projects are retrieved from the Alibaba Group, which
is the world’s largest retailer, and one of the largest Internet
companies in the world. These projects are fundamental sys-
tems to support the business of the company. Half of them
are core business platforms, such as product management,
membership management, and fund management. The other
half of them are middleware, such as cache server, message
broker, and configuration server.

The details of these projects are listed in Tables II and III,
respectively. The LOC (lines of code) measures the size of
functional code, excluding the testing code, comments, and
white-spaces. The LOLC (lines of logging configurations)



TABLE I: Major findings in our study
Logging Management (Findings 1, 2, 5, and 8) Implications
Developers make efforts to take full advantage of the logging mechanism to simplify
logging management, such as adopting a well-designed naming convention. However,
there are some common cases that default behaviors of the logging mechanism result in
unexpected logging behaviors (e.g., duplicated log messages).

It is necessary to establish conventions to consolidate the best
logging practices. For example, there is a dedicated section for
logging practice in Alibaba Java Coding Guidelines [19].

About one third (32.4%) of loggers are configured to control the logging activities of
external libraries. There are some external libraries whose logging behaviors are often
recognized as inappropriate.

It is possible to extract templates of logging configurations
for some common external libraries, especially for common
dependencies in software ecosystems.

Majority (80%) of the changes to thresholds are adjustments between different thresholds.
It indicates that developers struggle to assign appropriate thresholds for loggers to strike
a balance between different logging levels and between different logging activities.

It is not trivial to determine thresholds for loggers under the
current logging mechanism. Recent work on new logging mech-
anisms (e.g. adaptive logging [20]) may address this problem.

Logging Storage (Findings 3 and 6) Implications
Reliability and performance are the main concerns of logging storage. The most
commonly used appender is rolling-file appender. More than one third (38.6%) of
appender change the storage parameters at least once to meet ever-changing capacity
and performance requirements.

It is not trivial to determine the storage parameters and there
is a demand for automatic capacity estimation and performance
tuning.

Logging Formatting (Findings 4 and 9) Implications
A significant percentage (94.3%) of layouts add several (with a median of 3) useful
contexts when the logging component formats the logging requests. More than half (65%)
of them have been changed at least once to improve informativeness, performance, or
understandability (both for human and machine) of log messages.

It is possible to add common context information into logging
messages by customizing the layouts, instead of changing
multiple instances of logging code.

Logging-Configuration Quality (Findings 7 and 10) Implications
About 12.9% of changes to logging configurations are to improve their quality. Specif-
ically, developers extract configurable variables from logging configurations to enhance
usability and replace the names in logging configurations with more readable ones to
strengthen maintainability.

Additional work and tools are needed to improve the quality
of logging configurations, such as detecting and resolving the
smells in logging configurations automatically.

TABLE II: Statistics of open-source projects
Project Description Version SLOC LOLC

ActiveMQ Message broker 5.15.8 210K 108*

Ambari Cluster management 2.7.3 285K 139*

Cassandra Distributed database 3.11.3 284K 85
Flume Log management 1.8.0 49K 91*

Hadoop Distributed computing 2.9.2 717K 429*

HBase Distributed database 2.1.1 381K 154*

Hive Data warehouse 3.1.1 992K 113*

Solr Search engine 7.5.0 634K 68
Storm Distributed computing 1.2.2 181K 87
Zookeeper Distributed coordinator 3.4.13 37K 69*

Total 4M 1,343
* The original configuration files are written in the properties format and we convert them into the

equivalent XML format manually. Because XML-style files are more widely used than property-style
ones, and many advanced features are supported in only XML-style files.

stands for the size of logging-configuration files in the XML
format, excluding empty lines but including comments, be-
cause we find many configurations are commented out in open-
source projects to disable some functionalities by default. It
is worth noting that the average size of logging configurations
in open-source projects is smaller than that of industrial
projects. We suspect that open-source projects mainly provide
some common logging configurations during development, and
users of these open-source projects can customize the logging
configurations in production to meet various requirements,
e.g., audition, operation.

B. Data Extraction

We next describe the steps that we use to extract the
necessary information from these projects.

1) Identifying Logging Configuration Files: The first step
is to find the logging-configuration files for these projects.
Note that there are different configuration files in projects
for various purposes (e.g., test configurations, sample con-
figurations). In this study, we focus on the core production

TABLE III: Statistics of industrial projects
Project Description SLOC LOLC

P1 Business platform 445K 875
P2 Business platform 62K 1,233
P3 Business platform 276K 784
P4 Business platform 308K 993
P5 Business platform 333K 1,468
P6 Cache server 207K 387
P7 Configuration server 13K 246
P8 Database replication 61K 87
P9 Log management 78K 60
P10 Message broker 105K 416

Total 2M 6,549

configuration files. We devise the following command to find
all the configuration files:
find | grep -E ".*log.*\.(properties|xml)"
This command finds all the files whose name contains

“log” and ends with properties or XML. Among the found
files, we manually identify the core configuration files. After
having found the logging-configuration files for each project,
we extract details of configurations (e.g., logger) from these
files to answer the first research question (Section IV). This
process is automatic; we have built a simple script based on
heuristic rules.

2) Extracting Logging-Configuration Revisions: In order to
answer the second research question (Section V), we extract
all the revisions to logging-configuration files. In particular,
we retrieve the git repositories of these projects, and we use
the following command to extract the commits that contain
logging-configuration revisions:

git log -M --follow [filepath]
Note that this command does not work when the content

of files is changed too much (e.g., file format change). To
address this issue, we manually examine the first revision of
the configuration files and determine whether it is derived from
other files.



Once we obtain all the revisions, we filter the invalid
revisions containing only changes that we are not interested
in. These invalid revisions mainly fall into the following types:
• Revisions do not change the content of logging configu-

rations. The addition, deletion, and movement of logging-
configuration files belong to this type. In addition, the revi-
sions changing only the whitespace in logging-configuration
files are also ignored.

• Temporary revisions. The revisions belonging to this type
often come in pair. The first revision introduces some
changes for temporary tasks, such as testing and debugging.
Once the tasks are finished, developers commit the other
revision to revert the changes of the first revision.

• Duplicate revisions. This situation often occurs when de-
velopers use cherry-picking to apply some revisions
from one branch to another branch and then merge these
two branches into the same branch.

• Rollback revisions. This type of revisions is mainly caused
by carelessness of developers who forget the changes to
logging configurations when merging different branches.
The developers sometimes make another complementary
revision to get those missing changes back.

C. Categorizing Logging-Configuration Changes

Actually, developers often commit unrelated or loosely
related changes in a single revision [22]. Therefore, the
changes to logging configurations in each revision consist
of some atomic changes. We first divide the changes into
atomic changes according to their semantics. After that, we
examine each revision based on its commit message and
detailed patch. If the revision is associated with issue reports in
the issue tracking system (e.g., JIRA), we also investigate the
description, discussion, and other information stored in every
associated issue report to understand the revision properly. We
further categorize the atomic changes according to the changed
elements, which can reflect the semantics of the changes. This
part of work is conducted by the first and fourth authors jointly.
The two authors have categorized the revisions independently
and then discussed the disagreements to reach consensus.

IV. RQ1: HOW ARE THE LOGGING CONFIGURATIONS
USED?

As explained in Section II, logging configurations are
mainly composed of loggers, appenders, and layouts. To
answer this research question (RQ1), we investigate four key
aspects of these core elements: the name and source of logger,
the type of appender, and the pattern of layout.
• The name of logger influences how efficiently we can

manage the logging requests.
• The source of logger affects what kind of logging requests

we need to manage.
• The type of appender determines the storage process of

log messages.
• The pattern of layout impacts how the log messages are

formatted.

TABLE IV: Details of loggers

Project Naming Conventions Source

Package Topic Mixed Internal External Unknown

ActiveMQ 6 0 1 2 5 0
Ambari 8 4 0 9 3 0
Cassandra 1 0 0 1 0 0
Flume 6 0 0 1 5 0
Hadoop 4 3 2 7 2 0
HBase 7 0 1 2 6 0
Hive 24 4 0 4 24 0
Solr 3 0 1 2 2 0
Storm 3 0 0 3 0 0
Zookeeper 0 0 0 0 0 0

Subtotal 62 11 5 31 47 0
Percentage 79.5% 14.1% 0.06% 39.7% 60.3% 0.0%

P1 24 38 1 47 14 2
P2 19 31 4 10 44 0
P3 16 38 1 38 10 7
P4 34 81 0 86 28 1
P5 12 51 0 51 12 0
P6 6 7 0 13 0 0
P7 0 0 11 11 0 0
P8 0 3 0 3 0 0
P9 0 4 0 4 0 0
P10 0 19 0 18 0 1

Subtotal 111 272 17 281 108 11
Percentage 27.8% 68.0% 4.3% 70.3% 27.0% 2.8%

Total 173 283 22 312 155 11
Percentage 36.2% 59.2% 4.6% 65.3% 32.4% 2.3%

A. Loggers

Loggers are also known as categories, and they are the
entry point to the logging component and are responsible
for capturing logging requests and redirecting them to the
appropriate appenders.

1) Naming conventions of loggers: All the loggers need to
be named before they can be used. The names of loggers are
critical because all the logger are organized in an inheritance
relationship, as explained in Section II. Benefiting from the
inheritance relationship, we need to manage only a limited
number of loggers, and others inherit the configurations from
their nearest configured ancestor loggers. Therefore, it is
important to follow a well-designed naming convention.

The most commonly used naming convention is package-
based naming. As shown in Figure 1, when using this naming
convention, the loggers are named with the package names or
class names. However, doing so faces an issue when multiple
distinct logging activities need to be performed under the
same package or class. Topic-based naming can be used to
address this issue, because topic-based naming names the
logger according to the topic of logging activities. To analyze
the usage of the naming convention, we write a simple script
to extract all logger names from the logging configurations
in the projects under study, and then recognize what naming
conventions are followed by each logger name using heuristic
rules. In the rest of this paper, “package-based loggers” and
“topic-based loggers” refer to loggers that are named following
the conventions of package-based naming and topic-based
naming, respectively.

As a result, Columns 2-4 in Table IV show the distribution
of loggers according to naming conventions across projects.
The results show that majority (79.5%) of the loggers in
configurations of open-source projects follow the convention



of package-based naming. In addition, the number of package-
based loggers is larger than the number of topic-based loggers
in each open-source project. However, the results of the
industrial projects are very different from those of the open-
source projects. In the industrial projects, the topic-based
loggers account for the largest proportion (68%). One possible
reason is that industrial projects prefer the flexibility of logging
configurations because of various logging requirements. For
example, we have observed that some classes in P5 perform
more than five distinct logging activities.

Note that we find some special loggers whose name starts
with the package name and ends with a topic. As shown by
Column 4 (denoted with “Mixed”) of Table IV, this special
naming convention appears in 8 projects. Diving into the
details of these loggers, we find out two situations: (1) the
separate topic-based loggers are dedicated to specific package-
based contexts; (2) some topic-based loggers share the same
package-based contexts. In both situations, developers intend
to control these topic-based loggers together with other loggers
under the same contexts. Hence, the developers adopt this
particular naming convention. For example, issue YARN-6042
from issue repositories (i.e., JIRA) introduces a separate logger
to print state dump of fair scheduler and it is named with
the class name of fair scheduler following a constant string
“.statedump”.�

�

�

�
Finding 1: There are three naming conventions adopted
by developers, namely, topic-based naming (59.2%),
package-based naming (36.2%) and mixed naming
(4.6%), as shown in the last row of Table IV.

2) Sources of loggers: Software projects rarely work in
isolation. In most cases, a project relies on reusable func-
tionalities in other libraries. Due to the extensive usage of
external libraries, many pieces of logging code belonging to
these external libraries are also imported into the host project,
and some of these code pieces are invoked during the runtime.
In order to avoid undesirable logging behaviors from external
libraries, developers sometimes control the logging activities
by configuring these external libraries’ loggers, which we refer
to as “external loggers”. Similarly, we refer to the loggers
defined in the host project as “internal loggers”.

To identify the sources of loggers in configurations, we
find out where these loggers are defined. To this end, we
build a tool to extract all the logger definitions in code. Then
we iterate through each logger in configurations to find the
matched loggers in code. For those unmatched loggers, we
infer their sources using heuristic rules.

Consequently, Columns 5-7 of Table IV show the distribu-
tion of loggers with respect to the sources across projects.
Note that there are some loggers whose source cannot be
determined, even if we use heuristic rules. These loggers
follow the convention of topic-based naming, but the topics
(e.g., “MONITOR”, “SQL”) are too general to determine
which libraries they belong to.

External loggers are found in 12 out of 20 projects. Surpris-

TABLE V: Distribution of appender types
Type Subtype Freq. Ratio

File

Size based rolling 123 28.6%
Size and time based rolling 101 23.5%
Time based rolling 90 20.9%
No rolling 5 1.2%

Subtotal 319 74.2%

Asynchronous N/A 58 13.5%
Console N/A 13 3.0%
Other N/A 40 9.3%

Total 430 100.0%

ingly, 5 out of these 12 projects have external loggers no fewer
than internal loggers. For example, the number of external
loggers is 6 times that of internal loggers in Hive. Hive is a data
warehouse system built on the Hadoop ecosystem, and there
are 15 out of 24 external loggers from the Hadoop ecosystem.
Moreover, we observe that there are some common external
loggers that are configured to restrict their logging activities,
implying that the logging behaviors of the corresponding
external libraries are often recognized as inappropriate. For
example, Solr, Hive, and HBase have the same external loggers
about Zookeeper in their logging configurations. It is possible
to suggest some logging configurations when new external
libraries are introduced.�

�

�

�

Finding 2: About one third (32.4%) of loggers are
configured to control the logging activities of external
libraries, as shown in the last row of Table IV. There
are some external libraries whose logging behaviors
are often recognized as inappropriate.

B. Appenders

Appenders are also known as handlers, and they are re-
sponsible for recording logging requests to the destinations.
Logging libraries provide a vast range of appenders (e.g.,
file, database) to meet different output requirements. We have
extracted all appenders in logging configurations from the
projects under study and Table V shows the distribution of
the appender types.

It is indeed expected that file appenders are the most
common appenders (74.2%), because most of the log data are
stored as files on storage devices. The second most common
appenders are asynchronous appenders, which are able to pro-
cess logging requests asynchronously and often introduced to
improve logging performance of existing appenders. Console
appenders are in the third place. In some cases, the console is
the only available destination to display log messages. Most of
the rest are customized appenders, and they are mainly used
to meet special storage requirements for certain log messages.

For file appenders, we further divide them into subtypes in
term of rolling policies. As the log files tend to grow over time,
they become unmanageable and bring the risk of crashing.
Rolling policies are responsible to address this problem by
archiving log files when certain predefined conditions are
satisfied. As shown in Table V, there are only 1.6% (5/319) file
appenders without rolling. 4 of them come from Ambari, for
which the frequency of logging requests is low (e.g., infrequent



TABLE VI: Distribution of conversion characters
Characters Freq. Brief Description

%n 346 line separator character
%msg 334 developers supplied message
%date 313 the date (time, time zone, etc.)
%mdc 246 developers supplied thread-context message
%level 224 developers supplied logging level
%logger 190 developers supplied logger name
%ex 42 control the depth of stack trace
%thread 36 the name of the thread
%line 13 the line number in source file
%class 6 the fully qualified class name of the caller
Other 9 such as the method of the caller

user behavior) or constant (e.g., environment checking during
system initialization). The last one is from Zookeeper, which
is designed to store trace logs during debugging.

The most commonly used rolling policy is size based
rolling, which accounts for 38.6% (123/319) of all file appen-
ders. It rolls log files over when their sizes reach predefined
thresholds. Time based rolling takes the third place among
all rolling polices. With the help of time based rolling, it is
possible to roll log files over hourly or daily, being helpful
for developers to narrow down the search space and locate
the relevant log messages based on time ranges. In addition,
size and time based rolling has the second highest proportion
among all the rolling polices. It rolls log files over according
to time and file sizes, and is devised to take advantage of
strengths from size-based rolling and time-based rolling.�
�

�
�

Finding 3: The majority (74.2%) of appenders are
file appenders, and almost all (98.4%) of them are
configured with rolling policies, as shown in Table V.

C. Layouts
Layouts are also known as formatters, and they are responsi-

ble for converting and formatting the data in logging requests.
In the projects under study, all the appenders associated
with layout adopt PatternLayout (334) to format the logging
message. PatternLayout formats the logging information using
a given pattern string, which is composed of literal texts
and conversion characters. Logging libraries provide many
built-in conversion characters to display commonly used data,
e.g., date, priority. Table VI summarizes the distribution of
conversion characters in the projects under study.

Note that we exclude %n, %msg, and %ex from our discus-
sion. %n and %ex are merely used to control the format and
they do not generate any information. %msg is the message
generated by developer-written logging code and all layouts
include this conversion actually. In addition, we find that there
are 315 (94.3%) layouts that contain other (with a median of
3) informative conversions except these 3 conversions.�
�

�
�

Finding 4: A significant percentage (94.3%) of layouts
add several (with a median of 3) useful contexts when
logging components format the logging message.

V. RQ2: HOW DO THE LOGGING CONFIGURATIONS
EVOLVE?

In this section, we investigate how the logging config-
urations evolve. Following the steps described in Section

TABLE VII: Revision of projects under study

Project
# Total

Rev.
# Total

LC Rev.
# Valid
LC Rev.

% Valid / Total
LC Rev.

ActiveMQ 10K 26 24 92.3%
Ambari 24K 19 17 89.5%
Cassandra 23K 41 30 73.2%
Flume 2K 12 11 91.7%
Hadoop 15K 41 37 90.2%
HBase 16K 37 30 81.1%
Hive 12K 32 27 84.4%
Solr 30K 22 20 90.9%
Storm 8K 32 29 90.6%
Zookeeper 1K 9 7 77.8%

Subtotal 140K 271 232 85.6%

P1 16K 59 53 89.8%
P2 44K 108 88 81.5%
P3 19K 144 110 76.4%
P4 23K 160 149 93.1%
P5 44K 144 131 91.0%
P6 5K 53 26 49.1%
P7 1K 19 15 78.9%
P8 2K 23 16 69.6%
P9 2K 35 26 74.3%
P10 2K 58 42 72.4%

Subtotal 158K 803 656 81.7%
* LC is abbreviation for “logging configurations”.

TABLE VIII: Description of change types
Type Brief description

Schema Add/delete loggers, appenders and association between them
Storage Change the polices and parameters of appenders
Threshold Change the thresholds of loggers and appenders
Layout Change the patterns of layouts
Name Change the (logger, appender, etc.) names in configurations
Variable Change the variables in configurations

III-B2, we have extracted all revisions related to logging
configurations, and Table VII shows the summary statistics
of these revisions for each project under study. Column 3
lists the numbers of revisions related to logging configurations,
while Column 4 lists the numbers of valid revisions related to
logging configurations. Column 5 shows that the ratio of valid
over total revisions related to logging configurations mostly
fall into 70-90%. Note that the ratio of P6 is much lower
because there are many temporary changes for debugging.
In summary, we have examined 1,213 revisions that contain
changes to logging configurations, and 891 of them turn out
to be valid revisions.

Subsequently, we follow the instructions introduced in Sec-
tion III-C to categorize the atomic changes. As a result, we
have found 12 change types in term of changed elements. Due
to the limited space, we discuss only the top half of them1,
which account for 93.2% of all changes to logging configura-
tions. The description and distribution of these change types
are presented in Tables VIII and IX, respectively. We can see
that the most common change types are the same in open-
source and industrial projects, but with slight different orders.

Figure 2 illustrates the distribution of priority for change
types. The priority is extracted from the associated issue
reports of open-source projects. The order of stacks in Figure

1The complete list of these change types can be found in our complementary
materials: https://github.com/log-config/log-config



TABLE IX: Distribution of changes types
Industrial Projetcs Open-source Projects

Type Freq. Ratio Type Freq. Ratio

Schema 433 48.2% Schema 97 30.8%
Threshold 151 16.8% Threshold 57 18.1%
Storage 107 11.9% Layout 33 10.5%
Name 76 8.5% Name 30 9.5%
Layout 72 8.0% Storage 24 7.6%
Variable 27 3.0% Variable 23 7.3%
Other 32 3.6% Other 51 16.2%

Total 898 100.0% Total 315 100.0%
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Fig. 2: Distribution of priority for change types

2 is derived from the proportion of issue reports with medium
or high priority (i.e., labeled as Major, Critical, or Blocker)
for corresponding change types. In the rest of this section, we
also follow the order to describe the change types.

A. Schema Changes

We use the term “schema” to represent the logical structure
of logging configurations; schema is determined by loggers,
appenders, and association between them. The changes to
schema have the highest proportion and priority among all
change types. According to what elements have been changed,
we divide this category into the following two subtypes.

Addition/deletion of loggers or appenders (89.6%). This
type of changes accounts for the majority of schema changes.
More than one third of these updates (i.e., addition or deletion)
are adaptive changes, which often appear as a revision that
contains updates of feature code and corresponding logging
configurations. For the remaining independent updates, there
are two main causes: (1) separating specific log messages from
others to facilitate post-processing; (2) changing the thresholds
for certain log messages.

Modifications to association between loggers and appen-
ders (10.4%). The association between loggers and appenders
can be explicit or implicit. The explicit associations are
specified by the AppenderRef attribute of logger in configu-
ration. Developers change the explicitly associated appenders
of loggers to change the logging behaviors. In the projects
under study, half of these changes are applied to the root
logger to switch between the production-logging mode and

TABLE X: Migration of rolling policies
Migration Path Freq.

Time based rolling → Size based rolling 84
Time based rolling → Size and time based rolling 54
No rolling → Time based rolling → Size based 3
No rolling → Time based rolling → Size and time based rolling 3
Size based rolling → Time based rolling 2
No rolling → Size based rolling 1

development-logging mode; the other half of them are used
to switch between synchronous appenders and asynchronous
appenders for performance improvement.

The implicit associations are derived from appender addi-
tivity of logging mechanism. Developers sometimes turn off
appender additivity to eliminate undesirable logging behaviors,
such as duplicated log messages (e.g., issue HIVE-11563)
and cramming unexpected appenders (e.g., issue YARN-6360).
Specifically, we notice that if the logger is configured with
explicit association, its appender additivity is likely (97.1%)
to be turned off in the projects under study.�

�

�
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Finding 5: Almost all (97.1%) loggers configured with
explicit association remove implicit associations to
avoid undesirable logging behaviors, caused by the
default appender additivity.

B. Storage Changes

This category refers to those changes that edit the details of
existing appenders to adjust storage behaviors. According to
the effects of the changes, this category can be divided into
two cases: policies adjustment and parameters tuning.

Policies adjustment (42%). This subtype refers to the
changes of appender types, especially for the rolling policies.
We have extracted the change history for each appender with
respect to rolling policies. As a result, Table X shows the
migration paths of rolling policies for each appender. We
can see that the majority of the migrations occur to time
based rolling policy. The migrations are mainly performed
to improve the reliability of logging storage, because some
implementations of time based rolling policy do not support to
limit the total size of log files, and the generated logs have the
risk to fill up storage devices. For example, issue HADOOP-
8149 asks to change the default rolling policies from time
based rolling to size based rolling. The issue reporter states
“I’ve seen several critical production issues because logs are
not automatically removed after some time and accumulate.”

Parameters tuning (58%). Appenders occasionally offer
some configuration parameters to control their detailed storage
processes. We have tracked the changes to parameters for each
appender and find that more than one third (38.6%) of the
appenders have changed their parameters at least once (with
median of 2). These parameters can be simply classified into
the following two types:
• Capacity-related parameters. These parameters are mainly

adopted by rolling polices to limit the size of individual log
file or total log files. Developers usually need to adjust these
parameters to meet the varied capacity requirements. More-



over, developers sometimes need to balance the capacities
assigned to each appender based on their priorities.

• Performance-related parameters. Performance is one of the
main concerns about logging. Developers usually enable
some advanced features (e.g., buffering and asynchroniza-
tion) to improve logging performance. However, we find that
some changes are to turn off these features, as they cause
some unexpected side effects. For example, we observe that
some appenders used to output realtime-monitoring logs
have turned off buffering to assure the immediacy of log
messages (e.g., issue STORM-1519).�

�

�
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Finding 6: Reliability and performance are the main
concerns of logging storage. More than one third
(38.6%) of appenders change the storage parameters
at least once to meet ever-changing capacity and per-
formance requirements.

C. Variable Changes

A variable can be specified in a logging configuration file
and it is replaced with real values during the initialization of
a system. This feature, often named variable substitution, is
useful for automatic integration and deployment, especially
in the current development practice. As there are multiple
deployment environments, some properties (e.g., storage path)
in logging configurations should be consistent with the envi-
ronments. Actually, we find that all the projects under study
have introduced at least one variable (with median of 3) into
their logging configurations.

Most (70%) of these variable changes are on extracting
variables, such as storage parameters and logging levels. These
variables are mostly extracted for two reasons. The first is
to replace values that are varied according to context. The
variables for storage parameters belong to this type. The sec-
ond is to replace values that are often changed simultaneous.
Such situation often occurs to logging levels of appenders,
because their logging activities share some commonality with
each other and their logging levels should be kept consistent
with each other. The remaining variables changes are switch-
ing between variables and hard-coded values. Such situation
usually occurs to where particular values need to be used.�
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Finding 7: There are at least one variable (with median
of 3) defined in logging configurations of the projects
under study. And the majority (70%) of the changes to
variables are to introduce new variables.

D. Threshold Changes

Loggers and appenders can have thresholds associated with
them. Logging requests are filtered if their levels are lower
than thresholds of both the loggers and appenders. Hence,
it is possible to turn off or on certain levels of logging by
changing the thresholds attached to the loggers and appen-
ders. Threshold changes account for 17.1% of the changes
to logging configurations, being in the second place after
schema changes. Note that there are rare cases of changing the
threshold of appenders, and we focus on only those changes

to loggers. We further break down threshold changes into the
following three subtypes.

Increasing threshold (55.9%). These changes are per-
formed to filter log messages, and these changes occur to
external loggers and internal loggers evenly. There are two
main cases for these changes: (1) the thresholds are changed
from debug to info, as the corresponding software components
are sufficiently stable for production; (2) the thresholds are
changed from info to warn or error, as the corresponding
loggers generate excessive trivial log messages and affect the
efficiency for diagnosis.

Decreasing threshold (24.1%). Developers sometimes relax
the thresholds of loggers to allow more log messages for
diagnosis. Majority (76.1%) of these changes occur to internal
loggers. Interestingly, we find some cases where developers
initially increase the thresholds of certain loggers to filter out
some noisy log messages (e.g., issue HBASE-1273), but finally
find that the thresholds are too high, causing to lose some
important log messages, so they decrease the thresholds (e.g.,
issue HBASE-1572). Such result indicates that developers
struggle to assign appropriate thresholds for loggers to balance
different logging activities.

Breaking level inheritance (20%). Developers sometimes
explicitly assign loggers with the thresholds of their parent
loggers to avoid level inheritance. These changes are usually
used to restrict the log messages generated by these loggers
during debugging. In such situation, the parents of these
loggers usually are the root loggers, whose thresholds are
decreased during debugging (e.g., issue FLUME-1418).�
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Finding 8: Majority (80%) of the changes to thresh-
olds are adjustments between different thresholds. It
indicates that developers struggle to assign appropriate
thresholds for loggers.

E. Layout Changes

Developers can specify pattern layouts to format log mes-
sages. We have extracted all the changes for each layout and
found that most (65%) of them have been changed at least
once. In term of editing actions, this category can be divided
into the following three subtypes.

Layout enhancement (61.9%) is to add extra information
into the layouts. The three most commonly added conversions
are %mdc, %date, and %thread. %mdc and %thread belong
to thread contexts, being usually helpful to debug multi-
threaded applications. %date provides a flexible definition of
date format, and developers adjust the format according to
their needs.

Layout simplification (26.7%) is to remove some informa-
tion from the layouts. More than half of the simplifications
are to remove useless information. For example, in revision
b0269719, ActiveMQ removes the logger names for audit
log. The reason is that it is easy to identify the category
or locate the related classes for audit logs without the log-
ger names. One third of the simplifications are to remove
redundant information. For instance, in revision b0269719,



ActiveMQ removes the date for audit logs, as the date has
been printed in logging code. The remaining simplifications
are dedicated to simplify location related information (e.g.
%line, %class). As the generation of location information is
extremely slow, the generation is avoided if performance is
the main concern. For example, in issue HIVE-14079, the line
number from pattern layout is removed.

Layout normalization (11.4%) does not change the con-
tents of layouts, but changes the way to display the informa-
tion, such as adding separators between conversions, adjusting
the order of conversions and limiting the length of conversions.
This subtype is mainly for ease of log parsing, because it is
quite difficult to parse arbitrary log messages automatically.�
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Finding 9: More than half (65%) of layouts have
been changed at least once to improve informativeness,
performance, or understandability (both for human and
machine) of log messages.

F. Name Changes

Similar with source code, developers also need to name
entities in logging configurations, e.g., logger names, appender
names, and variable names. We break down these changes
to the following three subtypes according to their change
purposes.

Coupling change (19.8%). There are some coupling re-
lationships in logging configurations, especially for the cou-
plings between logger definitions in code and logger usages
in configurations. For these coupling names, the same changes
should be applied for each of them.

Readability improvement (55.7%). This subtype of
changes usually improves the readability of names or main-
tains the convention among names. For example, YARN-
6453 changes the name of FairScheduler’s appender from
FSLOGGER to FSSTATEDUMP, because the original name is
misleading, being amenable to be misinterpreted as “logger of
file system”.

Inconsistency repair (24.5%). This subtype can be divided
into two cases: fixing copy-paste and fixing coupling changes.
For the first case, developers add new loggers or appenders
by copying existing configurations and applying similar edits
to some locations. However, the developers sometimes intro-
duce problems due to missing of some edits. For example,
in revision 96c51312a, Storm introduces a new appender
“ACCESS” by copying the configurations of existing appender
“A1”. The developers change the name of log file, but forget
to change the name of rolling log file. Hence, the rolling log
files generated by “ACCESS” overwrite those generated by
“A1”. After half a year, in revision 7d4d1608f, this issue is
found and fixed. For the second case, it is due to missing of
coupling changes. For example, in issue HADOOP-3951, the
logger name of “FSNamesystem” is changed in code, but the
corresponding logger in the log configuration is forgotten to
be changed. After a year and a half, in issue HADOOP-7053,
a complementary revision is made to fix this missing coupling
change.
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Finding 10: Maintainability is the main driver for
changes to names in logging configurations. More than
half (55.7%) of changes to names are to improve the
readability by using well-defined names. One fourth of
changes to names are fixing issues caused by inconsis-
tency, and these issues are relatively hard to find, and
they remain in logging configurations for years.

VI. DETECTION OF INVALID LOGGERS

To demonstrate the usefulness of our findings, we have built
a simple tool to detect invalid loggers based on our findings
(Finding 10). We refer to invalid loggers as loggers that are
used in configurations, but do not have any matched definition
in source code. The reasons for these invalid loggers are that
(1) the corresponding source code has been removed; (2) the
logger definition in source code has been changed.

To this end, we have developed a static analysis tool based
on WALA [23] from IBM to detect these invalid loggers. First,
we scan the configuration files to get all the names of loggers
used in configurations. Second, we retrieve all the class files
(including those class files from external libraries) for each
project and parse the class files to get all the names of loggers
defined in code. Finally, we compare the two sets of loggers
and report the unmatched loggers.

We apply our tool to the ten open-source projects under
study (Table II), and our tool detects three issues in three
open-source projects, as shown in Table XI. Note that the
two unmatched loggers of Hive belong to the same issue, as
they are introduced by the same external library. In addition,
there is one false positive in Hadoop. The name of this logger
is composed of a constant and a variable, and we have to
implement constant propagation to determine the value of the
variable; constant propagation is an expensive operation for
such large-scale system. We report these issues to the devel-
opers of these three open-source projects, and these issues are
all confirmed and two of them have been fixed. Actually, we
notice that there are some perfective changes made to these
invalid loggers after the missing coupling changes. However,
the developers do not realize that these loggers are inconsistent
with their definitions in source code. We also apply our tool to
the ten industrial projects under study, and find some potential
issues. We are working with the developers of these industrial
projects to review these issues.

VII. THREATS TO VALIDATION

Construct Validity. In our study, we consider only the
logging configurations in files. However, logging libraries
usually support to configure logging behaviors programmat-
ically. These configurations are excluded from our study.
Actually, programmatic configurations are rarely used because
they are inflexible to change or manage. In addition, we
do not take cloud logging into consideration, which is an
emerging style of logging. The providers (e.g., Loggly [24]
and Sumo Logic [25]) provide logging services in a cloud
setting. However, there are no standard logging configuration
models for this new style of logging.



TABLE XI: Result of applying our tool for detecting invalid loggers
Project Source Naming Convention Logger Name Status Since

Hadoop Internal Mix http.requests.s3gateway False Positive N/A
Hadoop Internal Package org.apache.hadoop.mapred.JobInProgress$JobSummary Fixed 2012-11-09
Ambari External Package org.glassfish.jersey Fixed 2016-04-28
Hive External Topic JPOX Confirmed 2015-12-02
Hive External Topic Datastore Confirmed 2015-12-02

Internal Validity. When we extract the revisions from the
git repositories for each project under study, we find that
the early development history is missing for some projects.
Because these projects use other version control systems (e.g.,
svn) at first and migrate to git later. Some of these projects
are relatively mature when the migration happens. Such factor
is the reason why some large projects (e.g., P6) have a
relatively small number of changes to logging configurations.
If the early development history is included, there can be more
valid revisions to logging configurations. However, we are
inclined to believe that doing so influences the distribution
of only existing types of changes and does not introduce new
types of changes.

External Validity. We have only studied a limited number
of projects in Java, and thus our results may not necessarily
generalize to other projects. However, our projects under study
cover a wide variety of projects of different sizes and do-
mains. Moreover, the logging libraries in other programming
languages (e.g., C#, Python) have borrowed many concepts
from those logging libraries in Java, and are similar to them
in terms of logging mechanisms.

VIII. RELATED WORK

Our study is related to three categories of previous research:
empirical studies on logging practice, empirical studies on
configuration issues, and logging improvement. Different from
the previous research, we focus on the practice of logging
configurations, being also important but receiving insufficient
attentions.
A. Empirical Studies on Logging Practice

Given the popularity and criticality of logging, previous
research has been conducted to understand current logging
practice. Yuan et al. [8] perform the first empirical study
on logging practice in 4 open-source C/C++ software ap-
plications. They find that current logging practice is not
good enough as developers are constantly making revisions
to improve the quality of logging code. Chen et al. [26] and
Zeng et al. [27] replicate the work of Yuan et al. [8] on Java
software applications and Android applications, respectively.
Some studies on industrial software [28] [29] also show that
there is no rigorous logging specification even in a leading
software company (e.g., Microsoft), and the logging behavior
is highly developer dependent. Some other research focuses on
certain aspects of logging practice, such as logging levels [30],
logging-library migrations [31], description text in logging
code [32], and energy consumption of logging code [33].
B. Empirical Studies on Configuration Issues

The issues in configurations have attracted research in-
terests recently. Xu et al. [34] study the over-design issues

in configurations and propose some techniques to simplify
the design space of configurations. Xu et al. [35] analyze
issues related to security-related configurations to understand
the reasons for these security misconfigurations. Additionally,
there exist studies to explore the practice of specific types of
configurations, such as automatic-deployment configurations
[36] and continuous-integration configurations [37].

C. Logging Improvement

Given that there are many issues in current logging practice,
researchers also make efforts to help developers improve
the quality of logging code. Previous research focuses on
three categories. First, where-to-log addresses the problem of
logging-code placement, and various techniques have been
introduced to fulfill this goal based on program analysis
[7] [10], machine learning [38], and association rule mining
[11]. Second, what-to-log resolves the problem of insufficient
information in logging code to improve the diagnosability of
generated log messages [12]. Third, log-repair aims to detect
and solve issues in logging code automatically, such as smells
of duplicated logging code [9].

IX. CONCLUSION

In this paper, we have presented the first attempt to explore
the practice of logging configurations using 10 open-source
projects and 10 industrial projects written in Java in various
sizes and domains. By analyzing the usage and evolution of
logging configurations from these projects, we have revealed
10 findings about practice of logging configurations, including
logging management, logging storage, logging formatting, and
logging-configuration quality. We believe that these findings
can inspire further work on improving the practice of logging
configurations. Such benefits of our findings are confirmed
by a simple tool built by us, motivated by the difficulties to
identify certain invalid configurations. This tool has detected
three long-lived issues (more than two years) from three
popular open-source projects. All these issues have been
confirmed, and two of them have been fixed by the open-
source developers.
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