
Guided Test Generation for Coverage Criteria

Rahul Pandita, Tao Xie

Department of Computer Science

North Carolina State University, Raleigh, NC

Email:{rpandit, txie}@ncsu.edu

Nikolai Tillmann, Jonathan de Halleux

Microsoft Research

One Microsoft Way, Redmond, WA

Email: {nikolait, jhalleux}@microsoft.com

Abstract—Test coverage criteria including boundary-value and
logical coverage such as Modified Condition/Decision Cover-
age (MC/DC) have been increasingly used in safety-critical or
mission-critical domains, complementing those more popularly
used structural coverage criteria such as block or branch cov-
erage. However, existing automated test-generation approaches
often target at block or branch coverage for test generation
and selection, and therefore do not support testing against
boundary-value coverage or logical coverage. To address this
issue, we propose a general approach that uses instrumentation
to guide existing test-generation approaches to generate test
inputs that achieve boundary-value and logical coverage for
the program under test. Our preliminary evaluation shows that
our approach effectively helps an approach based on Dynamic
Symbolic Execution (DSE) to improve boundary-value and logical
coverage of generated test inputs. The evaluation results show
30.5% maximum (23% average) increase in boundary-value
coverage and 26% maximum (21.5% average) increase in logical
coverage of the subject programs under test using our approach
over without using our approach. In addition, our approach
improves the fault-detection capability of generated test inputs
by 12.5% maximum (11% average) compared to the test inputs
generated without using our approach.

I. INTRODUCTION

Software maintenance is an important and expensive phase

in the software development life cycle. Among various activi-

ties performed during the maintenance phase, software testing

is an important activity to ensure high software quality during

maintenance. An existing test suite with high fault-detection

capability helps ensure that changes performed during mainte-

nance do not introduce any unwanted side effects. Thus, it is

quite important to have test suites with high fault-detection

capability during software maintenance. However, manual

generation of test suites is often labor intensive. Furthermore,

manually written test suites may be insufficient in achieving

high structural coverage, thereby incapable of detecting faults

that lie in not-covered code, or manually writing test suites to

achieve high structural coverage may be very expensive.

Automated test generation has been proposed to reduce hu-

man effort in testing. Existing test-generation approaches [9],

[19], [18] often use block or branch coverage (among the

existing structural coverage criteria) as a primary criterion

for test generation. Achieving high block or branch coverage

with a passing test suite certainly increases the confidence

on the quality of the program under test. However, block or

branch coverage itself cannot be argued as a sole criterion

for effective testing. Safety-critical or mission-critical domains

such as aerospace mandate the satisfaction of other structural

coverage criteria [1] that complement the block or branch

coverage criteria. Boundary Value Coverage (BVC) [15] and

Logical Coverage (LC) [1] are two such coverage criteria.

However, existing test-generation approaches (which use block

or branch coverage criteria for test generation and selection)

often generate a test suite that achieves low BVC and LC.

In particular, BVC aims at exercising the boundary values

of predicates in the branching statements from the program

under test, similar to Boundary Value Analysis (BVA) [4], [13].

BVA is a popular black-box testing technique that executes

the program under test not only within the input range, but

also with the boundary conditions (i.e., values from where the

range begins and ends). The key insight of using BVA is that

many faults reside at the boundary values of inputs in contrast

to values that lie within the input range [15]. Since only

two values are required to achieve block or branch coverage

involving a predicate in a branching statement, existing test-

generation approaches fail to achieve complete BVC because

achieving high or complete BVC often involves more than two

values to be strategically chosen.

In contrast to BVC, LC targets at testing logical expres-

sions that are commonly used in the program under test. LC

criteria involve instantiating clauses in a logical expression

with concrete truth values. A number of coverage criteria

such as Modified Condition/Decision Coverage [1] have been

proposed to achieve logical coverage. However, similar to the

case of BVC, these criteria require strategic combination of

truth values for clauses in the predicate condition, not always

resulting in execution of a new block or branch in the program

under test. Therefore, existing test-generation approaches fail

to strategically choose input values to achieve high or complete

LC.

We propose a general solution to address the aforementioned

shortcomings of the existing test-generation approaches. In

particular, we use code instrumentation to assist an existing

test-generation approach that targets at block or branch cov-

erage in achieving BVC and LC. An alternative solution is

to modify the internal test-generation mechanisms of existing

test-generation approaches. We chose the first solution over the

second, since the first solution is generic and can be used in

conjunction with any of the existing approaches that target at

block or branch coverage. Since these existing approaches by

nature are good at achieving high block or branch coverage,

our solution first transforms the problem of achieving BVC

and LC to the problem of achieving coverage of new blocks

or branches that are instrumented into the program, and then

applies an existing approach to cover these new blocks or

branches. Our solution guides existing approaches to achieve

the BVC and LC without any modification of these approaches

themselves.

In particular, to transform the problem of achieving BVC

and LC to the problem of achieving block or branch coverage,

we instrument the program under test with new conditional

statements that contain constraints that need to be satisfied

to achieve BVC and LC. The purpose of instrumenting the

program under test with these statements is to introduce new

blocks or branches in the program under test. These statements

(when encountered by an existing test-generation approach)

result in generation of new concrete input values that achieve

high BVC and LC. When we apply an existing test-generation

approach on the instrumented program, the output is an

extended test suite capable of exercising BVC and LC. By

guiding an existing test-generation approach (i.e., by adding

instrumented code in the program under test), we achieve high

BVC and LC as compared to the coverage achieved by the

test-generation approach without guidance.

To implement our approach, we have used Pex [22], an ex-

isting state-of-the-art structural testing tool from Microsoft Re-

search that employs Dynamic Symbolic Execution (DSE) [9],

[19], as our test-generation tool. DSE has recently emerged

as an effective approach to generate a high-covering test

suite. A DSE-based approach generates concrete test inputs

by symbolically executing the Code Under Test (CUT) in

parallel to actual execution with concrete values. This mixed

execution collects symbolic constraints on inputs obtained

from the predicates in branching statements during execution.

The conjunction of these symbolic constraints is called a path

condition. In order to maximize structural coverage, a DSE-

based approach iteratively explores new paths in the CUT and

thereby systematically increases the block or branch coverage

of the CUT.

This paper makes the following major contributions:

• A general approach to achieve high BVC and LC via

an existing test-generation approach that uses block or

branch coverage as the primary criterion for test genera-

tion. To the best of our knowledge, our approach is the

first one that uses code instrumentation to directly and

effectively guide an existing test-generation approach to

achieve BVC and LC.

• A tool implementation of our approach using Common

Compiler Infrastructure (CCI) [7], a set of components

(libraries) that provide functionalities that are commonly

used in compilers and other programming tools. Our open

source tool is released at http://pexase.codeplex.com/.

• An evaluation of our approach with three benchmarks and

two open-source projects. The evaluation results show

30.5% maximum (23% average) increase in boundary-

value coverage and 26% maximum (21.5% average) log-

ical coverage of the subject programs under test using our

approach over without using our approach. In addition,

our approach improves the fault-detection capability of

generated test inputs by 12.5% maximum (11% average)

compared to the test inputs generated without using our

approach.

The rest of the paper is organized as follows. Section II

presents background on Pex as well as logical coverage.

Section III presents our formal problem definition. Section IV

presents illustrative examples of our approach. Section V

presents our approach and tool architecture. Section VI

presents the evaluation of our approach. Section VII discusses

related work. Finally, Section VIII concludes.

II. BACKGROUND

We next present background on LC followed by background

on Pex.

A. Logical Coverage

Logical Coverage (LC) is measured based on Test Require-

ments (TR) (e.g., specific elements of software artifacts) that

must be satisfied or covered. In the case of LC, these elements

are the clauses and predicates present in the CUT.

First, we define clauses and predicates to describe the LC

criteria. “Let P be a set of predicates and C be a set of

clauses in the predicates in P. For each predicate p ∈ P ,

let Cp be the set of clauses in p, that is Cp = {c|c ∈ p}.

C is the union of the clauses in each predicate in P, that is

C =
⋃

p∈P

Cp” [1]. Among various logical criteria, enforce-

ment of Modified Condition/Decision Coverage (MC/DC) by

US Federal Aviation Administration (FAA) on safety critical

avionics software makes MC/DC a good candidate for test-

generation criteria of LC. Based on these definitions, we next

provide the definition of Correlated Active Clause Coverage

(CACC), also known as the masking MC/DC criterion for a

logical expression (the main focus of our work):

• Correlated Active Clause Coverage (CACC) [1]: “For

each p ∈ P and each major clause ci ∈ Cp, choose

minor clauses cj , j 6= i so that ci determines p. TR has

two requirements for each ci: ci evaluates to true and

ci evaluates to false. The values chosen for the minor

clauses cj must cause p to be true for one value of the

major clause ci and false for the other, that is, it is

required that p(ci =true) 6= p(ci =false).”

A major clause [1] is the focus of testing among the

clauses present in the predicate. Since MC/DC is not biased

towards any of the clauses, the definition mentions “each

major clause”. The rest of the clauses present in the predicate

other than the major clause are termed as minor clauses [1].

B. Pex

Pex is an automated DSE-based testing tool developed at

Microsoft Research. Pex was used internally at Microsoft

Research to test core components of the .NET Architecture

and found some serious defects [22].

For the implementation of our approach, we use Pex [22]

as an example state-of-the-art DSE-based test-generation tool

for generating test inputs. DSE is a variation of the con-

ventional static symbolic execution [14]. DSE executes the

CUT starting with arbitrary input values while performing

symbolic execution side by side to collect constraints on inputs

obtained from the predicates of branching conditions along the

execution. The collected constraints are modified in certain

ways and then are fed to a constraint solver, which produces

the variation of the previous input values to ensure that a

different path is exercised in the CUT in future executions. The

variation of inputs ensures that every feasible path is executed

eventually over the iterations of variations. An important part

of the iterative DSE algorithm in Pex is the choice of program

inputs produced during iterations. These choices lead to the

enumeration of all feasible execution paths in the CUT. The

DSE algorithm in Pex is designed to explore all feasible paths

in the CUT. It works well to achieve high block or branch

coverage; however, the algorithm naturally does not aim to

achieve BVC and LC.

III. PROBLEM DEFINITION

Our approach deals with the problem of achieving high

coverage on a given CUT (P), in the context of a given

coverage criterion C, using a tool that aims at achieving high

coverage on the same CUT, however, with respect to a different

coverage criterion C ′. Our approach aims at transforming the

problem of achieving high coverage on P in context of C

by transforming P to P ′ such that the problem of achieving

high coverage in P with respect to C is transformed into the

problem of achieving high coverage in P ′ with respect to C ′.

We first introduce terms that are used in our formal defini-

tion.

• Coverage function (Cov) is defined as the function that

returns the percentage of coverage achieved by a test

suite (T) over a given CUT (P) with respect to a given

coverage criteria (C), i.e., Cov(C,P, T).
• Cost function (CT) is defined as the function that

calculates cost involved in generating a test suite (T) over

a given CUT (P) for achieving 100% coverage for a given

coverage criterion (C), i.e., CT (C,P, T).

We next formally present the problem definition with respect

to the input, output, and properties that need to be satisfied.

For a given CUT P , a tool α that generates test inputs

to achieve high coverage on P with respect to a coverage

criterion C ′ and a target coverage criterion C, where C 6= C ′,

the problem is to transform P to P ′, where P ′ == P +∆P

and ∆P is the added instrumentation code to P such that the

following requirements are met.

R1: ∀I : P (I) == P ′(I), where I is a set of all legal inputs

to P , and P (I) and P ′(I) are the outputs of P and P ′ given

inputs I , respectively.

The requirement states that the added instrumentation code

∆P should not have any side effect on P . ∆P has side effects

if the execution of P ′ produces a different output from the one

produced by the execution of P when executed with the same

input.

R2: Given

∃T1 : ((P ′ ⊢ T1)&Cov(C ′, P ′, T1) == 100%)

01: public void SampleBVC(int x){
02: if (x >= 10) { }
03: else { }
04: }

Fig. 1. Example of CUT for BVC

01: TestBVC 0: SampleBVC(1);

02: TestBVC 1: SampleBVC(1073741824);

Fig. 2. Test inputs generated by Pex for SampleBVC

where test suite T1 is generated for P ′ represented as (P ′ ⊢
T1), since test-generation tool α uses program P to generate

test suite T

then

(T1 6= Φ) ⇒ (Cov(C,P, T1) = 100%)
The requirement states that if there exists a test suite T1,

generated by α, that achieves 100% coverage on P ′ with

respect to C, then coverage of T1 on P with respect to C

is 100%.

R3: ∀∆P : (∃T : (P ′ ⊢ T)&Cov(C ′, P ′, T) == 100%)
choose ∆P , such that CT (C ′, P ′, T) is minimum.

IV. EXAMPLE

We next explain how our approach guides a DSE-based

approach to achieve high BVC and LC using illustrative C#

examples shown in Figures 1 and 5. In particular, we explain

how our code instrumentation helps in guiding a DSE-based

approach such as Pex, to generate target test inputs that can

achieve high BVC and LC.

To illustrate our approach, we compare the test inputs

generated by Pex before and after the instrumentation of the

CUT. Often, achieving BVC and LC requires inputs to be

generated for exploring the same path more than once in the

CUT. However, since Pex uses block coverage as the primary

coverage criterion for test generation and selection, Pex fails

to achieve high BVC and LC.

A. Boundary Value Coverage (BVC)

We use the method SampleBVC shown in Figure 1 to

illustrate guided test generation to achieve BVC. The method

accepts an integer variable x as a parameter and based upon

the satisfaction of the condition x>=10 (Line 2), the true or

false branch is executed. We observe that the input space for

the variable x can be partitioned into two ranges, one less than

10 and the other greater than or equal to 10. When we apply

Pex to generate test inputs for the SampleBVC method, Pex

generates test inputs as shown in Figure 2. Pex generates two

concrete inputs each being a representative element of each

partitioned input range. Although generated inputs achieve

complete block coverage, these test inputs clearly do not

achieve complete BVC (i.e., requiring that the values of x

are on the boundary of the partitioned ranges, here being 9
and 10).

To guide a DSE-based approach such as Pex in achieving

high BVC, we instrument the CUT to add new conditional

statements as shown in Figure 3. These statements introduce

01: public void SampleBVC(int x) {
02: if(x == 10) { }
03: else if(x > 10) { }
04: else if(x == (10 - 1)) { }
05: else if(x < (10 - 1)) { }

06: if (x >= 10) { }
07: else {...... }
08: }

Fig. 3. Instrumented SampleBVC to achieve BVC

01: TestBVC0: SampleBVC(1);

02: TestBVC1: SampleBVC(9);

03: TestBVC2: SampleBVC(10);

04: TestBVC3: SampleBVC(1073741824);

Fig. 4. Test inputs generated by Pex for BVC-instrumented SampleBVC

01: public void SampleLC(bool x,bool y,bool z) {
02: if (x && (y || z) { }
03: else { }
04: }

Fig. 5. Example of CUT for LC

01: TestLC0: SampleLC(false, false, false);

02: TestLC1: SampleLC(true, false, false);

03: TestLC2: SampleLC(true, true, false);

Fig. 6. Test inputs generated by Pex for SampleLC

new branching statements in the CUT guarded by the con-

straints present in the predicates of the conditional statements.

Since the true branches of the introduced branching statements

are empty, it can be observed that the addition of these blocks

do not have any side effects on the CUT as far as the output of

the program is concerned, thus satisfying R1 in the problem

definition (Section III).

When we apply Pex to generate test inputs for the in-

strumented SampleBVC method, Pex generates test inputs as

shown in Figure 4. The two conditional statements in the

instrumented code, x == 10 (Line 2) and x > 10 (Line 3)

enforce the boundary conditions on the range x >= 10. Simi-

larly, the next two conditional statements x == (10-1) (Line

4) and x < (10-1) (Line 5) enforce the boundary conditions

on the range x <= (10-1). These statements guide Pex to

generate two additional test input values as specified in the

newly added conditional statements. From the test inputs

generated by Pex for the instrumented code, it can be observed

that the test inputs not only achieve complete block coverage

but also achieve complete BVC of the original uninstrumented

CUT.

Consider a scenario where a programmer accidentally typed

x > 10 instead of x >= 10 in the SampleBVC method (Line

2) in Figure 1. The test inputs generated by Pex without the

guidance of our approach cannot detect the fault. The primary

reason is that the inputs generated by Pex do not check the

boundary conditions that help detect the fault. However, test

inputs generated by Pex with the guidance of our approach

can detect the fault.

B. Logical Coverage (LC)

We use the method SampleLC shown in Figure 5 to illus-

trate guided test generation to achieve LC such as MC/DC.

01: if((true && (y || z)!=(false && (y || z)){
02: if(x) { }
03: else if(!x) { }
04: }
05: if(((x && (true || z)!=((x&& (false || z)){
06: if(y) { }
07: else if(!y) { }
08: }
09: if(((x && (y || true)!=((x && (y || false)){
10: if(z) { }
11: else if(!z) { }
12: }

Fig. 7. Instrumentation code to introduce dummy blocks to achieve MC/DC

01: TestLC0: SampleLC(false, false, false);

02: TestLC1: SampleLC(false, false, true);

03: TestLC2: SampleLC(true, false, false);

04: TestLC3: SampleLC(true, true, false);‘

05: TestLC4: SampleLC(true, false, true);

Fig. 8. Test inputs generated by Pex for MC/DC-instrumented SampleLC

The method accepts three Boolean values as parameters and

based on the satisfaction of the logical condition (x && (y

|| z) (Line 2), the true or false branch is executed. The

test inputs generated by Pex for SampleLC are shown in

Figure 6. The test inputs generated by Pex for the SampleLC

method achieve complete block coverage. However, since z is

never assigned a true value and thus MC/DC is not achieved,

thereby highlighting the need of guidance to existing test-

generation approaches to achieve MC/DC.

To achieve MC/DC, we instrument the SampleLC method

with the code shown in Figure 7. Statement if((true &&

(y || z) != (false && (y || z)) (Line 1) in Figure 7

ensures that the variable x is the major clause. The subsequent

inner conditional statements (Lines 2-3) ensure that when x

is the major clause, then x is instantiated with both true and

false values for different generated test inputs. The further

subsequent conditional statements (Lines 5-11) impose similar

constraints on y and z.

Figure 8 shows the test inputs generated by Pex, when

applied over the SampleLC method instrumented with the

code snippet shown in Figure 7. We observe that the number

of generated test inputs is more than the required number of

test inputs to achieve MC/DC. These additional test inputs are

generated since they were generated early in the test generation

and covered not-covered branches at that time in the CUT,

although they are not required to satisfy the MC/DC criterion.

For example, the input shown in Line 1 of Figure 8 does not

satisfy any of the constraints in the instrumented code, but its

execution still covers new branches, i.e., the false branch of

every conditional statement (Lines 1, 5, and 9) in Figure 7.

V. APPROACH

The core idea of our approach is to transform the problem

of achieving a target coverage criterion over a CUT into the

problem of achieving block coverage, which is the coverage

criterion of the chosen test-generation approach, such as

Pex. Note that existing test-generation approaches often use

block or branch coverage as the coverage criterion for test

generation.

Fig. 9. Overview of our approach

Figure 9 shows a high-level overview of our approach. Our

approach accepts a program (source or assembly) under test

and constructs an intermediate representation of the program.

Our approach then extracts statements that qualify for the

target coverage criteria from the generated intermediate rep-

resentation. For example, our implementation targets at BVC

and LC. Therefore, our implementation extracts the predicates

of the branching conditions from the generated intermediate

representation. Our approach processes these extracted state-

ments based on the requirements of the target coverage criteria

to generate conditional statements, placing them strategically

into the intermediate representation to produce a modified

intermediate representation. Our approach uses the modified

intermediate representation to synthesize a new program con-

taining new blocks. Our approach next applies a DSE-based

approach on the newly synthesized program.

Our implementation of the approach to achieve BVC and

LC transforms the problem of achieving BVC and LC into

a problem of achieving block coverage on the instrumented

program under test. We next explain each component of the

approach using the illustrative examples (for BVC and LC)

shown in Figures 2 and 6.

A. Overview of our Approach

• Intermediate Representation Generator. The purpose

of the intermediate representation generator component

is to transform the CUT to an intermediate representa-

tion. This representation is required to facilitate effective

manipulation of the CUT.

• Statement Identifier. We next traverse the generated

intermediate representation to identify statements that

qualify to be considered for the target coverage crite-

ria. For example, in our implementation for achieving

BVC and LC, we identify conditional statements as

qualifying statements. The primary reason is that the

BVC and LC criteria involve testing the variables present

in constituent clauses of the predicates of conditional

statements at boundary conditions and testing clauses at

controlled assignment of truth values, respectively. In our

implementation, this component identifies the predicates

in the intermediate representation to be processed to

generate conditional statements that are inserted in the

intermediate representation.

For example, when BVC is the target coverage criterion,

the predicate (x >= 10) in the branching statement

if(x >= 10) is identified as a qualified statement, while

traversing the statements in the sampleBVC method of

Figure 2. Similarly, when LC is the target coverage

criterion, the conditional statement (x || (y && z) is

identified as a qualified statement for the sampleLC

method in Figure 5.

• Conditional Generator. This component generates con-

ditional statements to be placed in the intermediate rep-

resentation based on qualified statements for the target

coverage criterion and test requirements of the target

coverage criterion. In our implementation for BVC and

LC, we insert conditional statements based on the clauses

extracted from predicates identified by the statement

identifier component.

• Conditional Statement Inserter. This component places

the conditional statements generated by the conditional

generator component into the corresponding methods in

the intermediate representation. For example, the instru-

mented CUT generated by adding conditional statements

for the methods in Figures 1 and 5 are shown in Figures 3

and 7, respectively.

• Intermediate representation Translator. The addition

of conditional statements modifies the intermediate repre-

sentation. This component then transforms the new inter-

mediate representation back into the program (source or

assembly) that can be used by the DSE-based approach.

This transformation is the inverse of the transformation

performed in the intermediate representation generator

component.
We next present the conditional generator component in

detail in terms of implementation details with BVC and LC

as target coverage criteria.

B. Generation of Conditional Statements

The conditional generator component generates conditional

statements based on the test requirements of the target cov-

erage criterion and the qualified statements that are identified

by the statement identifier component. In our implementation,

we focus on BVC and LC as two target coverage crite-

ria. Therefore, the conditional generator component extracts

clauses from the predicates identified in the intermediate

representation by the statement identifier component. The

conditional generator component then evaluates these clauses

to be considered for BVC, LC, or both, in order to generate

conditional statements.

1) Generation of Conditional Statements for BVC: Table I

shows the rules for generating conditional statements for BVC

derived from the test requirements of BVC and qualified

statements. Column 1 shows the clauses that are extracted from

identified conditional statements in the CUT. Columns 2 and 3

represent the corresponding true and false conditions that

need to be satisfied to achieve complete BVC, respectively,

based on the test requirements of BVC. The constant k is

the smallest distance between two consecutive values in data

types of x and y. For example, if x and y are integers

then the value of k is 1, which is the smallest distance

between two consecutive numbers in the integer data type. The

predicate identified for the sampleBVC method in Figure 1 is

(x>=10). This predicate matches with the last row in Table I.

Therefore, the generated conditions are (x==10), (x>10),

(x==10-1), (x<10 - 1), k being 1 for the integer data

type. These introduced blocks neither redefine any existing

variables (i.e., changing values associated with local variables)

nor result in any new path that changes the execution order

of blocks in the original CUT. These properties ensure that

the introduced blocks have no side effects as far as the output

of the CUT is concerned. Thus these statements satisfy the

first requirement (R1) as stated in the problem definition

(Section III).

Furthermore, we use the else if construct to add con-

straints. Addition of the else if construct reduces the

number of additional paths introduced in the CUT, thereby

preventing exponential growth of independent paths (feasible

or infeasible). Mutually exclusive nature of inputs required

to achieve BVC facilitate the application of this strategy.

Restriction of the number of introduced additional paths (fea-

sible or infeasible) is important, since increase in the number

of paths can lead to path explosion, thereby increasing the

cost of test generation using DSE. Furthermore, reducing the

additional number of paths introduced in the CUT comes as a

requirement (R3) stated in our problem definition (Section III).

TABLE I
BVC CONDITIONAL STATEMENTS FOR CLAUSES.

Condition True Conditional Statements False Conditional Statements

(x == y) (x == y) (x == (y + k)),
(x == (y − k))

(x! = y) (x == (y + k)), (x == y)
(x == (y − k))

(x < y) (x == (y − k)), (x == y),
(x < (y − k)) (x > y)

(x <= y) (x == y), (x == (y + k)),
(x < y) (x > (y + k))

(x > y) (x == (y + k)), (x == y),
(x > (y + k)) (x < y)

(x >= y) (x == y), (x == (y − k)),
(x > y) (x < (y − k))

2) Generation of Conditional Statements for LC: For the

MC/DC coverage, our approach adds conditional statements

in the CUT to guide a DSE-based approach to generate

a restricted set of inputs from all possible inputs required

to achieve MC/DC. In order to achieve MC/DC, we use

CACC (described in Section II) as the base criterion for

code instrumentation. We use Algorithm 1 to generate the

conditional statements for MC/DC. The algorithm accepts a

predicate as input and generates a list of conditional statements

as output. Lines 5-18 create conditions that force each clause

to be a major clause in the predicate. Recall that a major clause

should determine the predicate for the given instantiation of

other clauses, i.e., if the major clause is true, then the

predicate evaluates to one of the truth values. Similarly, the

predicate evaluates to the other truth value when the major

Algorithm 1 MC/DC Instrumentation Generator

Input: Predicate P

Output: List[] Instrumentation

1: List[] Instrumentation = φ

2: for each clause c in P do

3: Predicate X = P

4: Predicate Y = P

5: for each occurrence cx of c in X do

6: replace cx with true

7: end for

8: for each occurrence cy of c in Y do

9: replace cy with false

10: end for

11: Condition Z = φ

12: Z.predicate = generateInequality(X, Y)
13: Condition ptrue = φ

14: ptrue.predicate = c

15: Condition pfalse = φ

16: pfalse.predicate = generateNegation(c)
17: ptrue.falsebranch = pfalse

18: Z.truebranch = ptrue

19: Instrumentation.add(Z)
20: end for

21: return Instrumentation

clause is false for a given instantiation of minor clauses.

The generateInequality method in Line 12 accepts two

predicates and returns a new predicate with an inequality

operator between input predicates. Lines 13-16 ensure that

when conditions for a major clause are achieved, then the

inputs are generated to cause true and false values for that

clause, respectively. The generateNegation method in Line

16 accepts a clause as input and returns a new predicate that is

negation of the input clause. The iteration (Line 2) through all

the clauses ensures that the process is applied to every clause

in the predicate, thereby ensuring MC/DC. The conditional

statements for the predicate identified for the sampleLogical

method in the CUT (shown in Figure 7) are shown in Figure 7.

These instrumented statements guide the DSE-based ap-

proach to generate inputs for the variables x, y, and z so that

the MC/DC criterion is achieved for the identified predicate.

The first conditional statement (Line 1 in Figure 7) ensures that

x is a major clause for the identified predicate in the CUT, i.e.,

(x||y)&&z. The sub conditions (Lines 2 and 3 in Figure 7)

ensure that when instantiations for y and z are achieved with x

as a major clause, the DSE-based approach generates different

values to cause true and false instantiations of x ensuring

that masking MC/DC (CACC) is achieved with respect to x.

The subsequent conditional statements (Lines 5-12 in Figure 7)

ensure that the masking MC/DC is achieved with respect to y

and z. The if, else structure cannot be used to restrict the

number of additional paths introduced in the method, since

there might be (and often is) overlap in the instantiations of

the participant clauses.

TABLE II
STATISTICS OF SUBJECTS.

Project LOC #Methods

NextDates 157 3

Triangle 72 23

StringDefs 1619 72

TCAS 187 9

CaramelEngine 2023 147

VI. EVALUATION

We conducted two evaluations to demonstrate the effective-

ness of our approach in achieving BVC and LC (MC/DC).

In our evaluations, we used benchmarks that were previously

used in evaluating related approaches [3], [21]. We address

the following research questions in our evaluations.

• RQ1: What is the percentage increase in the BVC and LC

by the test inputs generated by Pex with the assistance

of our approach compared to the test inputs generated

without the assistance of our approach?

• RQ2: What is the percentage of additional mutants that

are weakly killed1 [17], [8] by the test inputs generated

by Pex with the assistance of our approach compared to

the test inputs generated without the assistance of our

approach? This percentage reflects the increase in the

fault-detection capability of the generated test inputs [2].

A. Subject Applications

We used two benchmarks and three open-source applica-

tions for evaluating our approach. Two of the benchmarks were

written in Java and used in evaluating a related approach [3].

The first benchmark is the triangle classification program

(Triangle [3]). This program accepts three integer inputs

representing lengths of the sides of a triangle and classifies

the triangle as invalid, equilateral, isosceles, or scalene, and

further into acute, right, or obtuse. The second benchmark

NextDate [3] accepts three integer inputs as a day, month,

and year of a date. NextDate validates the inputs and returns

the date of the next day. We converted these benchmarks to

C# code using Java2CSharpTranslator [12]. We also applied

our approach on a C# version of Traffic Collision Avoid-

ance System (TCAS) [21], which was previously used by

Hutchins et al. [11] to investigate the effectiveness of data-

flow and control-flow based test adequacy criteria for fault

detection. TCAS is a basic implementation of an important

safety system designed to avoid air collision of aircrafts.

Furthermore, we also applied our approach on two open source

projects StringDefs [20] and Caramel Engine [6]. StringDefs

is an open source C# library for providing abstracted string-

processing routines comparable to those of scripting languages

such as Perl and Python. Caramel Engine is an open source

C# implementation of a logic engine aimed for a wide variety

of games. Table II shows the number of the lines of code and

the number of methods associated with each subject. The lines

of code do not include user-entered blank lines or comments.

1Mutants, program state is infected after the execution of the mutated line
of code.

B. Evaluation Setup

Although our ultimate goal for RQ1 is to measure the

increase in the coverage with respect to BVC and LC, there are

currently no specific tools publicly available to measure BVC

and LC. The instrumentation code that we add to the CUT

essentially transforms the problem of achieving BVC and LC

to the problem of achieving block coverage by introducing

new blocks in the code. To measure the achieved coverage,

we insert PexGoal.Reached(...) statements within the

introduced blocks. A PexGoal.Reached(...) statement is

uniquely identified by the identifier name provided as the

argument to the method call in the statement. During explo-

ration, whenever such a statement is encountered by Pex, Pex

remembers the identifier name of that statement as an achieved

goal and outputs the identifier name in coverage reports.

We measure the number of additional covered blocks by

counting the number of PexGoal.Reached(...) statements

(that have been introduced by our approach) executed by

the generated test inputs with and without the assistance

of our approach. The gain in the number of additional

PexGoal.Reached(...) statements executed by the test

inputs generated with the assistance of our approach (over the

test inputs generated without the assistance of our approach)

reflects the gain in the BVC and LC using our approach.

To investigate RQ1, we measure the number of

PexGoal.Reached(...) statements inserted into the

CUT (denoted by n). We also measure the number of

PexGoal.Reached(...) statements executed by the test

inputs generated by Pex without the assistance of our

approach (denoted by n1). We next measure the number

of PexGoal.Reached(...) executed by the test inputs

generated by Pex with the assistance of our approach

(denoted by n2). We define Improvement Factor (IF1) as the

percentage increase in BVC and LC as n2−n1

n
. The value of

IF1 indicates the increase in BVC and LC achieved by our

approach.

For RQ2, we carry out mutation testing to investigate the

fault-detection capability of generated test inputs. We mutate

a method under test by modifying one operator at a time in

a single line of code in the original method to generate a

faulty method (referred to as mutant). In particular, we use

relational mutation operators for our evaluation. We replace

each relational operator (>, >=, <, <=, ==, and ! =)

with every other relational operator. We also replace boolean

operators with each other. For example, we replace && with

‖ and vice versa. The Statement-Weak (ST-WEAK) mutation

testing recommended by Offutt and Stephen [17] is used as the

basis for weak mutation testing. In ST-WEAK, we compare

the program states after the first execution of the mutated

statement. A mutant is considered as killed when there is a

difference between the program state reached by executing the

mutated statement and the program state reached by executing

the original statement. We detect differences in the program

states by comparing the output (e.g., the value of the left-

hand-side variable of an assignment statement or execution of

a different branch in a conditional statement) of the mutated

statement with the output of the original statement. If there is

a difference between the two outputs, we consider the mutant

as killed. We execute the test inputs generated by Pex with

and without the assistance of our approach on the generated

mutants. We measure the relative gain in the success of the

test inputs generated with the assistance of our approach to kill

mutants (causing differences in the program states) over the

test inputs generated without the assistance of our approach.

This gain reflects increase in the fault-detection capability of

our approach [2].

To investigate RQ2, we measure the total number of mutants

generated for each subject (denoted by n), the number of

mutants killed by the test inputs generated without the assis-

tance of our approach (denoted by u), the number of mutants

killed by the test inputs generated with the assistance of our

approach (denoted by v), the number of additional mutants

killed (that were not killed by the test inputs generated without

the assistance of our approach) by the test inputs generated

with the assistance of our approach (denoted by k). We also

measure the number of equivalent mutants that have the same

behavior as the original program (denoted by s) among the

mutants that were not killed by either of the two sets of test

inputs. We next measure the Improvement Factor (IF2) of our

approach as k
n−s

. The values for IF2 indicate additional fault-

detection capability of our approach. We also present another

improvement factor IF3 that indicates the effectiveness of the

test inputs in killing mutants that were not killed previously.

We calculate IF3 as k
n−u−s

.

Our current prototype implementation for MC/DC code

instrumentation faces issues with conditional statements con-

taining multiple ‖. We manually instrumented the programs to

generate desired instrumentation effect for a few conditional

statements of this type. We also did not include 19 methods

from the StringDefs application and 8 methods from the

CaramelEngine application in our evaluation, since our proto-

type implementation currently cannot deal with the foreach

construct used in these methods.

C. Results

RQ1: Coverage. We next describe our empirical results

for addressing RQ1. Tables III and IV show our empirical

results for BVC and LC, respectively. Column “Project”

shows the name of the program. Column “n” shows the

total number of mutants created for each program under

test. Column “n” in Tables III and IV shows the number

of PexGoal.Reached() statements (i.e., new blocks) intro-

duced in the original program by the instrumentation process

for achieving BVC and LC, respectively. Column “n1” shows

the number of PexGoal.Reached() statements covered by

test inputs generated without assistance of our approach.

Column “n2” shows the number of PexGoal.Reached()

statements covered by test inputs generated with the assistance

of our approach. Column “a” shows the number (n2 − n1) of

additional PexGoal.Reached() statements that are covered

by our approach. Column “IF1” shows the percentage increase

TABLE III
IMPROVEMENT FACTOR IN ACHIEVING BVC.

Project n n1 n2 a IF1

NextDates 42 30 (71.5%) 39 (93%) 9 21.5%

Triangle 48 33 (69%) 41 (85.5%) 8 16%

StringDefs 212 123 (58%) 149 (70%) 26 12%

TCAS 24 10 (41.5%) 16 (66.5%) 6 25%

CaramelEngine 331 197 (59.5%) 298 (90%) 113 30.5%

Total 657 393 (63.5%) 543 (82.5%) 162 23%

TABLE IV
IMPROVEMENT FACTOR IN ACHIEVING LC (MASKING MC/DC).

Project n n1 n2 a IF1

NextDates 16 13 (81%) 16 (100%) 3 19%

Triangle 24 19 (79%) 24 (100%) 5 21%

StringDefs 166 103 (62%) 146 (88%) 43 26%

TCAS 48 29 (60.5%) 40 (83.5%) 11 23%

CaramelEngine 72 64 (89%) 72 (100%) 8 11%

Total 326 228 (70%) 298 (91.5%) 70 21.5%

in the BVC (Table III) and LC (Table IV) for programs under

test.

Our approach instruments the program under test based

on the conditional statements in the program. Since such

statements vary from program to program, the increase in

the number of blocks (due to our code instrumentation)

also varies accordingly. As shown in Column “n”, for our

subject applications, CaramelEngine had a maximum increase

of 331 blocks for BVC instrumentation and StringDefs had a

maximum increase of 166 blocks for LC instrumentation.

The results in Tables III and IV show that test inputs

generated without the assistance of our approach do not

cover all the new blocks added in the programs via code

instrumentation. Furthermore, although test inputs generated

with the assistance of our approach cover a higher number of

blocks (i.e., “n2” > “n1” in the Tables III and IV) introduced

in a program, they did not cover all newly introduced blocks

(i.e., “n2” < “n” in the Tables III and IV). One of the reasons

is that new blocks introduced in a program are infeasible to

cover. Figure 10 shows an illustrative example of such a block

from the Triangle program.

The triangle program accepts three non-zero and non-

negative integer inputs representing lengths of the sides of

a triangle and classifies the triangle as invalid, equilateral,

isosceles or scalene, and further into acute, right, or obtuse.

The program accepts the inputs and stores the largest of the

three input in variable a and the remaining input arguments

in b and c. Lines 4-8 of Figure 10 check whether a triangle is

a right triangle or not. Lines 1-3 are the new lines added for

BVC instrumentation. However, as mentioned in the descrip-

tion, there is a conditional check for ensuring that a’s value is

not smaller than either b or c. Due to this conditional check,

our instrumented code in Line 3 is infeasible. Furthermore,

the check for non-zero variable values makes the condition in

Line 2 infeasible. This example illustrates one of the reasons

why Pex, even with the assistance of our approach, could not

cover all newly introduced blocks.

RQ2: Mutation Testing. Table V shows our evaluation

TABLE V
IMPROVEMENT FACTOR IN FAULT-DETECTION CAPABILITY.

Project #Mutants Killed w/o Killed w Same # Add. Mutants IF2 IF3

n Assist. (n− u) Assist. (v) Behavior (s) Killed. (k)
NextDates 111 90 101 9 11 11% 92%
Triangle 80 51 54 26 3 5.5% 100%
StringDefs 616 465 533 67 68 12.5% 81%
TCAS 42 34 36 6 2 5.5% 100%
CaramelEngine 583 489 544 26 55 10% 81%

Total 1432 1129 1268 134 139 11% 82%

01: if((a*a) == ((b * b) + (c * c)))

02: else if((a*a) == ((b * b) + (c * c)) + 1)

03: else if((a*a) == ((b * b) + (c * c)) - 1)

04: if ((a * a) == ((b * b) + (c * c)))

05: {
06: // right triangle

07: triangle = triangle + "right triangle.";

08: }

Fig. 10. An illustrative example that shows infeasible blocks introduced by
our instrumentation.

results illustrating the usefulness of achieving BVC and LC.

Column “Project” shows the name of the program. Column

“n” shows the total number of mutants created for each

program under test. Column “u” shows the number of mu-

tants killed by the test inputs generated by Pex without the

assistance of our approach. Column “v” shows the number

of mutants killed by test inputs generated by Pex with the

assistance of our approach. For example, with the assistance

of our approach, 11 additional mutants are killed in the

program NextDate shown in column “k”. Column “s” shows

the number of mutants with the same behavior. Column “IF2”

shows the improvement factor IF2 percentage and column

“IF3” shows improvement factor IF3 percentage. Our results

show that our approach can guide an existing DSE-based

approach to generate test inputs that achieve higher fault-

detection capability (reflected by“IF2” and “IF3”) in contrast

to test inputs generated by the DSE-based tool without the

assistance of our approach.

Figure 11 shows the Own_Above_Threat method from the

TCAS program to illustrate the increase in the fault-detection

capability achieved by our approach. One of the mutants

for the code shown in Figure 11 is produced by changing

Other_Tracked_Alt < Own_Tracked_Alt in Line 2 to

Other_Tracked_Alt != Own_Tracked_Alt. The mutant

is not killed by the test inputs generated by Pex without the

assistance of our approach, since Pex does not generate test

inputs that exercise boundary value for Other_Tracked_Alt,

i.e., when Othern_Tracked_Alt == Own_Tracked_Alt.

However, with the assistance of our approach, Pex

generates test inputs to cause Other_Tracked_Alt ==

Own_Tracked_Alt, thereby killing the mutant.

D. Summary

In summary, the results show that our approach can effec-

tively guide Pex to generate test inputs that achieve BVC and

LC, represented by increase in the values of Column “n2”

01: bool Own_Above_Threat() {
02: return (Other_Tracked_Alt < Own_Tracked_Alt);

03: }

Fig. 11. An illustrative example that shows increase in fault detection
capability.

in comparison to values in Column “n1” for each subject

application in Tables III and IV. Evaluation results show

that our approach can assist Pex in achieving a maximum

increase of 30.5% (23% average) in BVC and 26% maximum

increase (21.5% average) in LC of the subject applications. In

addition, our approach effectively improves the fault-detection

capability of generated test inputs reflected by postive values

of Column “k” in Table V, representing additional mutants

killed by Pex with assistance from our approach in comparison

to the mutants killed by Pex without the assistance from our

approach. In our evaluation, there is a maximum gain of 12.5%
(11% average) in the fault-detection capability of test inputs

generated by Pex with assistance of our approach compared

to the generated test inputs without the assistance of our

approach.

E. Threats to validity

Threats to external validity primarily include the degree

to which the subject applications used in our evaluations are

representative of true practice. To minimize the threat, we used

benchmarks that were used by previous related approaches [3],

[11]. Furthermore, we also applied our approach on two real-

world open source applications, StringDefs [20] and Carame-

lEngine [6]. The threat can be further reduced by evaluating

our approach on more subjects. Threats to internal validity

include the correctness of our implementation in adding the

instrumentation. To reduce the threat, we manually inspected

a significant sample of the generated instrumentation code in

the evaluations.

VII. RELATED WORK

Automated test generation for achieving high structural

coverage is one of the most widely investigated subjects

in the area of software testing. Many approaches automate

the process of test generation for achieving high structural

coverage. There exist approaches [19], [22] that automatically

generate test inputs based on DSE. Furthermore, random test-

ing approaches [18] generate test inputs randomly. However,

none of these approaches target at achieving BVC and LC

criteria, which are the major focus of our approach.

Our approach also builds on previous work [15], [10], [1],

that presents a formal definition of BVC and LC criteria

used for automatic generation of test inputs. Hoffman et

al. [10] proposed an approach for automatic generation of

test inputs that satisfy BVC. However, their approach requires

testers to provide inputs in the form of specifications of test

focus (aspects of programs that are of interest in context of

testing), syntax and semantics of templates that specify tests.

Furthermore, their approach does not consider structure of

the program under test. In contrast, our approach leverages

the structure of the program under test to assist a DSE-based

approach to generate test inputs that achieve high BVC and

LC.

Awedikian et al. [3] proposed automatic MC/DC-based test

generation. They use Evolutionary Testing (ET) techniques to

generate test inputs to achieve MC/DC. They use a fitness

function that is tailored for MC/DC. However, their approach

faces the problem of local maxima1 in achieving MC/DC. In

contrast, ET [16] is shown to be highly effective for generating

test inputs that achieve high branch coverage. Thus, our

approach used in conjunction with a ET-based test-generation

tool may be less likely to face issue of local maxima. Fur-

thermore, their approach is restricted to ET techniques for

MC/DC-based test generation; in contrast, our approach is

general and can be used in conjunction with any existing

automatic test-generation approaches that use block or branch

coverage as one of the criteria for test generation.

Recent improvement in DSE search strategies [5], [23],

guide DSE to effectively achieve high structural coverage

of a program under test. However, these techniques do not

specifically target to achieve BVC and LC. In contrast, our

approach guides an existing DSE-based tool to generate test

inputs that achieve high BVC and LC.

VIII. CONCLUSION

BVC and LC are proposed to complement the block or

branch coverage to increase the confidence on the qual-

ity of the program under test. Safety-critical or mission-

critical domains such as aerospace have mandated the sat-

isfaction of these criteria. However, existing test-generation

approaches (which use block or branch coverage criteria for

test-generation and selection) do not support effective test

generation against BVC and LC. In this paper, we presented a

general approach to guide an existing test-generation approach

that uses the block or branch coverage criterion for test

generation and selection to generate test inputs that achieve

high BVC and LC.

Our evaluations on five subject programs show 30.5%

maximum (23% average) increase in BVC and 26% maximum

(21.5% average) increase in LC of the subject programs under

test using our approach over without using our approach. In

addition, our approach improves the fault-detection capability

of generated test inputs by 12.5% maximum (11% average)

1A local maxima of an ET-based problem is a solution optimal within a
neighboring set of solutions, in contrast to a global maximum, which is the
optimal solution among all possible solutions.

compared to the test inputs generated without using our

approach.

Currently, our approach does not consider the satisfiability

of the constraints used to add empty blocks, thereby increas-

ing the cost of test generation by existing test-generation

approaches. In future work, we plan to filter out the constraints

that cannot be satisfied to achieve BVC and LC. Furthermore,

we plan to extend our approach to achieve complex coverage

criteria such as data flow coverage.

Acknowledgments. This work is supported in part by NSF

grants CNS-0720641, CCF-0725190, CCF-0845272, CNS-

0958235, CCF-0915400, an NCSU CACC grant, ARO grant

W911NF-08-1-0443, and ARO grant W911NF-08-1-0105

managed by NCSU SOSI.

REFERENCES

[1] P. Ammann, J. Offutt, and H. Huang. Coverage criteria for logical
expression. In Proc. ISSRE, pages 99–107, 2003.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proc. ICSE, pages 402–411, 2005.

[3] Z. Awedikian, K. Ayari, and G. Antoniol. MC/DC automatic test input
data generation. In Proc. GECCO, pages 1657–1664, 2009.

[4] B. Beizer and J. Wiley. Black box testing: Techniques for functional
testing of software and systems. IEEE Software, 13(5):98, 1996.

[5] J. Burnim and K.Sen. Heuristics for scalable dynamic test generation.
In Proc. ASE, pages 443–446, 2008.

[6] Caramel Engine. http://caramelengine.codeplex.com/.
[7] Common Compiler Infrastructure, 2009. http://cciast.codeplex.com/.
[8] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection:

Help for the practicing programmer. In IEEE Comput., vol. 11, No. 4,
pages 34–41, 1978.

[9] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Proc. PLDI, pages 75–84, 2005.

[10] D. Hoffman, P. Strooper, and L. White. Boundary values and automated
component testing. Software Testing, Verification and Reliability, 9(1):3–
26, 1999.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria.
In Proc. ICSE, pages 191–200, 1994.

[12] Java 2 CSharp Translator for Eclipse. http://sourceforge.net/projects/
j2cstranslator/.

[13] B. Jeng and E. J. Weyuker. A simplified domain-testing strategy. ACM

Trans. Softw. Eng. Methodol., 3(3):254–270, 1994.
[14] J. C. King. Symbolic execution and program testing. In Commun. ACM,

19(7), pages 385–394, 1976.
[15] N. Kosmatov, B. Legeard, F. Peureux, and M. Utting. Boundary coverage

criteria for test generation from formal models. In Proc. ISSRE, pages
139–150, 2004.

[16] P. McMinn. Search-based software test data generation: a survey: Re-
search articles. Software Testing, Verification and Reliability, 14(2):105–
156, 2004.

[17] A. J. Offutt and S. D. Lee. An empirical evaluation of weak mutation.
IEEE Tran. Software Eng., vol. 20, No. 5, pages 337–344, 1994.

[18] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed
random test generation. In Proc. ICSE, pages 75–84, 2007.

[19] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In Proc. ESEC/FSE, pages 263–272, 2005.

[20] StringDefs, 2010. http://stringdefs.codeplex.com/.
[21] Traffic Collision Avoidance System. http://sir.unl.edu/portal/bios/tcas.

html.
[22] N. Tillmann and J. de Halleux. Pex – white box test generation for

.NET. In Proc. TAP, pages 134–153, 2008.
[23] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte. Fitness-guided

path exploration in dynamic symbolic execution. In Proc. DSN, pages
359–368, 2009.

