
Applying Interface-Contract Mutation in Regression Testing of Component-
Based Software

Shan-Shan Hou1,2, Lu Zhang1,2, Tao Xie3, Hong Mei1,2, Jia-Su Sun1,2

1Institute of Software, School of Electronics Engineering and Computer Science, Peking University,
Beijing, 100871, China

{houss, zhanglu, meih, sjs}@sei.pku.edu.cn
2Key laboratory of High Confidence Software Technologies (Peking University), Ministry of Education,

Beijing, 100871, China
3Department of Computer Science, North Carolina State University, Raleigh, NC 27695

xie@csc.ncsu.edu

Abstract

Regression testing, which plays an important role in
software maintenance, usually relies on test adequacy
criteria to select and prioritize test cases. However,
with the wide use and reuse of black-box components,
such as reusable class libraries and COTS components,
it is challenging to establish test adequacy criteria for
testing software systems built on components whose
source code is not available. Without source code or
detailed documents, the misunderstanding between the
system integrators and component providers has
become a main factor of causing faults in component-
based software. In this paper, we apply mutation on
interface contracts, which can describe the rights and
obligations between component users and providers, to
simulate the faults that may occur in this way of
software development. The mutation adequacy score
for killing the mutants of interface contracts can serve
as a test adequacy criterion. We performed an
experimental study on three subject systems to
evaluate the proposed approach together with four
other existing criteria. The experimental results show
that our adequacy criterion is helpful for both
selecting good-quality test cases and scheduling test
cases in an order of exposing faults quickly in
regression testing of component-based software.

1. Introduction

In software maintenance, regression testing is
frequently applied to ensure software quality. Due to
limited budget or desired efficiency, software
engineers usually select a subset of test cases from the
original test suite [15] or prioritize existing test cases
[30] in regression testing. Typically, both tasks use
some test adequacy criteria.

With the emergence of black-box components, such
as reusable class libraries, commercial off-the-shelf
(COTS) components, and web services, whose source
code is not available, integrating black-box

components to build new software systems has become
an important way of software development. However,
existing test adequacy criteria may not be effective to
identify faults caused by misunderstandings between
component providers and users.

Let us consider the following piece of code, in
which two black-box functions (i.e., abs and log) are
used to define a function named f. Here, abs returns the
absolute value of its input and log returns the
logarithm of its input. Due to the misunderstanding of
the log function, the author of function f thinks that log
can take any non-negative value as input, while log
actually can take only positive values as input. As a
result, there is a bug: taking 0 as the input causes a
failure in f.

double f (int n){
int a=abs(n);
return log(a);

}
Statement coverage and branch coverage are not

good criteria for testing f, as any input for f could
achieve one hundred percent statement coverage and
branch coverage. In fact, if we treat abs and log only
as black-box functions without considering that abs
returns a non-negative value and log can take only
positive values as input, the input (i.e., 0) inducing the
fault does not look different from other inputs under
any structural criteria. In practice, this preceding
situation may be a common situation for testers due to
the wide use of black-box components. Therefore,
appropriate test adequacy criteria specific to testing
component-based software should be developed.

In this paper, we establish a suitable test adequacy
criterion for testing software built on black-box
components. Our basic idea is to define interface
contracts for black-box components and use mutation
operators defined on interface contracts to simulate
faults possibly caused by the misunderstandings
between the component provider and the system
integrator. According to the notion of Design-by-

mailto:xie@csc.ncsu.edu

Contract [25], it is helpful to establish interface
contracts between the provider and the user of a
software component. When the source code of a
component is not available, contracts defined on the
interfaces of the reusable component can work as the
“intermediary” between the component provider and
the system integrator who reuse the component,
because contracts can define the rights and the
obligations of both providers and users to help
distinguish their responsibility. Due to the nature of
interface contracts, mismatches in component
composition can be viewed as deviations from this
intermediary by either side. Therefore, our approach
uses mutants of interface contracts to simulate these
deviations. Furthermore, we performed an
experimental study on applying this criterion in two
typical tasks in regression testing (i.e., test-suite
reduction and test-case prioritization). The results
confirm the effectiveness of our criterion.

The rest of this paper is organized as follows.
Section 2 discusses research related to our approach.
Section 3 presents the details of our approach. Section
4 describes an experimental study of the proposed
criterion. Section 5 discusses the benefit and cost of
using contracts. Section 6 presents conclusions.

2. Related Work

Some recent research [4,6,13,19,18] has focused
on testing components. However, when testers need to
test a software system built on black-box components,
testing individual black-box components can ensure
only the quality of these basic building blocks in the
system. The quality of the entire system still cannot be
ensured without adequate integration or system testing.

As a component-based system can be viewed as
the integration of components, test adequacy criteria
for integration testing are related to our research.
Typically, these criteria can be classified as program-
structure-based criteria, specification-based criteria,
and design-information-based criteria.

Program-structure-based criteria focus on how the
structure for integration has been covered during
testing, including data-flow-based and control-flow-
based criteria. Data flow analysis concerns with the
definitions and uses of variables, and control flow
analysis examines the execution of statements,
conditions, and branches. Jin and Offutt [20, 27]
developed a series of coupling-based criteria for
integration testing. They defined a set of coupling-
based test paths according to the definitions and uses
of variables, and also proposed a set of testing criteria,
including “call-coupling”, “all-coupling-defs”, “all-
coupling-uses”, and “all-coupling-paths”, to help
measure the effectiveness of a test suite. Harrold et al.
[14] and Linnenkugel et al. [23] analyzed inter-
procedural data- and control-flow information, and

proposed integration testing criteria, such as
“definition-use pairs” and “intraprocedural definition-
pairs” [14], “all-paths”, “all-edges”, “all-nodes”, and
“all-p-uses” [23]. However, when source code is not
available, the data-flow and control-flow information,
which is essential to all the preceding structural criteria,
cannot be easily acquired.

With the cost of constructing formal and complete
specifications for the software under test, Ammann et
al. [3] proposed a specification-based coverage
criterion to evaluate test suites. Using the detailed
specification defining the states and transitions for
each class of the system under test, Gallagher et al. [12]
acquired data dependences among classes and
constructed data flow graphs for the system under test.
Based on the coverage of data flow graphs, they
proposed several criteria for integration testing. Recent
research has shown that information derived from
software design, such as collaboration diagrams and
statecharts, can be used to define testing criteria that
can help test data generation and selection [1,16].
However, detailed specifications or design documents
of the applications (especially the reusable components)
under test are often unavailable in testing of software
built on black-box components.

Wu et al. [34] and Gao et al. [13] proposed a
technique for testing component-based software based
on the component interaction graph (CIG), which
indicates the interactions and the dependence
relationships among components. In particular, they
proposed a family of test adequacy criteria, including
all interfaces (AI), all events (AE), all context
dependence relationships (ACD-1), and all content
dependence relationships (ACD-2). However, when
the source code of a component is not available, the
content dependence relationship, which can be derived
only from a class diagram, cannot always be acquired.

Delamaro et al. [8] developed the interface
mutation (IM) approach that applies mutation testing in
software integration testing. Their approach analyzes
three types of faults that may occur during the
interactions between procedures, and designs two
groups of interface mutation operators to simulate
these faults. The first group is applied inside an
interface to mutate the source code of implementation
of the interface, and the second group is designed to
mutate the declaration and invocations of the interfaces.
Therefore, the component source code needs to be
available if we want to apply the first group of
operators in testing software built on black-box
components. Although also based on mutation testing,
our approach aims at mutating interface contracts to
support integration testing of component-based
software built on black-box components.

From the preceding analysis, when facing
software constructed with black-box components, the

preceding criteria can hardly be fully applicable, as
they more or less rely on the source code or detailed

ocument of the components.

) for
Tes

f killing mutants
to m

we define our
ore in Section 3.4.

3.1.

omponent providers can deviate from

ctly

results as

t

ils to always produce legal outputs as it is

3.2.

erized by the preceding fault

3.2.1

ive normal form, whose definition is described

rm

d

3. Interface-Contract Mutation (ICM

ting Component-Based Software
To establish a suitable criterion for testing

software built on black-box components, we mutate
the interface contracts of each black-box component.
Our approach focus on the faults that could possibly
happen when the component users integrated reusable
components in their applications. Like other mutation
testing approaches, such as traditional mutation
[9,17,26], interface mutation [8,33], class or object
mutation [2,21,24], specification mutation [5,11,31],
and conception-model mutation in database
applications [7], our approach uses mutation operators,
which simulate various types of faults in component
composition to generate mutants, and uses a mutation
score, which defines the capability o

easure the quality of test suites.
In Section 3.1, we analyze possible faults caused

by the misunderstanding between the component
providers and the system integrators. We design a set
of mutation operators to simulate these faults in
Section 3.2. Because our mutation is applied on the
interface contracts, the mutation oracle used in
traditional mutation testing is not applicable. As a
result, we give an algorithm to detect interface-contract
mutants in Section 3.3. The algorithm works as a
mutation oracle. Based on the oracle,
contract mutation sc

 Fault Model
Because we are mainly concerned with faults in

component composition, our fault model focuses on
faults caused by the misunderstanding between system
integrators and component providers. As interface
contracts are the agreements that both providers and
integrators should adhere to, the misunderstanding
would result in deviations from the agreements by one
or both sides. Therefore, the main objective of our
fault model is to characterize how component
providers and integrators can deviate from interface
contracts. We next present four cases of deviations.
The first two cases describe how integrators can
deviate from the contracts, whereas the last two cases
describe how c
the contracts.
(1) Precondition Weakening. A weaker precondition
occurs when the constraints under which the
component can perform correctly are wrongly
broadened by the integrator. Thus, if the precondition
of a component is weaker than it should be, the
component may have to deal with more inputs than it
actually can. This case simulates the situation that

while reusing a component, the integrator passes to an
interface some illegal inputs that cannot be corre
handled by the component providing the interface.
(2) Postcondition Strengthening. A stronger
postcondition occurs when the integrator imposes
stricter constraints on the outputs of the component.
Thus, if the postcondition of a component is stronger
than it should be, some correct outputs of the
component may be viewed as incorrect by the
integrator. This case simulates the situation that the
integrator misunderstands the functionality of the
component and treats some legal
unacceptable when using some interfaces.
(3) Precondition Strengthening. A stronger
precondition occurs when the provider imposes a
stricter requirement on the component integrator who
intends to reuse a component. Thus, if the precondition
of a component is stronger than it should be, the
component may not provide correct functionality when
the inputs do not satisfy the strengthened precondition.
This case simulates the situation that the componen
fails to handle some legal inputs as it is supposed to.
(4) Postcondition Weakening. A weaker
postcondition occurs when the constraints that the
outputs of the component should satisfy are wrongly
broadened by the provider. Thus, if the postcondition
of a component is weaker than it should be, the
integrator has to face some illegal outputs from the
component. This case simulates the situation that the
component fa
supposed to.

 Interface-Contract Mutation Operators
We first translate interface contracts into

conjunctive normal forms for the convenience of
defining mutation operators (Section 3.2.1), and then
describe the mutation operators, which are designed to
simulate faults charact
model (Section 3.2.2).

. Normal Form for Contracts
In our new approach, we adopt the grammar of

component-interface contracts defined in our previous
work [19], and we do not repeat the defining grammar
due to space limit. For the convenience of defining
mutation operators for interface contracts, we
transform preconditions and postconditions into the
conjunct
below.
Definition 1. A contract is a pair <Cpre, Cpost> where
Cpre is a precondition and Cpost is a postcondition. A
precondition or postcondition is in its conju ive
normal fo if and only if it is in the form C

nct
i =

0 j n≤ ≤
∧ Cij,

where Cij is in disjunctive normal form Cij=
0 k s≤ ≤
∨

 an item and Cijk is called an atomic
expression.

Cijk .

Cij is called

Algorithm DetectMutants
Input E: the execution trace of the test case t

Mall: the set of interface-contract mutants of the components invoked in E
Output: Mkilled: the set of killed interface-contract mutants
begin

for each invocation of an interface (denoted as fi) of a component invoked in E do
for each interface-contract mutant (denoted as mj) in Mall do

if mj is a mutant produced by mutating the precondition of fi
then if the result of the mutated precondition differs from that of the original precondition

then Remove mj from Mall; Add mj into Mkilled
end if

else if mj is a mutant produced by mutating the postcondition of fi
then if the result of the mutated postcondition differs from that of the original postcondition

then Remove mj from Mall; Add mj into Mkilled
end if

end if
end do

end do
end

Figure 1. Algorithm DetectMutants for determining which mutants are killed by one test case

Because both the precondition and the
postcondition of each contract are logical expressions,
we can normalize them according to the rule of
normalization of logical expressions. Consider the
TriTyp [26] example, whose contract prescribes the
calculation of the triangle type according to the three
sides. The contract is as follows.
 / * @pre a>0;

@pre b>0;
@pre c>0;
@post Result ==3 implies (a==b && b==c); * /

 public int TriTyp (int a, int b, int c)
The contract in the Javadoc form requires that the

length of each side should be larger than 0, and when
the output is 3 (indicating an equilateral triangle), the
inputs a, b, and c should be equal. Thus, we can
transform the precondition as (1) and the postcondition
as (2).
Cpre = a>0∧b>0∧ c>0 (1)
Cpost= (Result !=3∨a==b) ∧(Result !=3∨b==c) (2)

3.2.2. Interface-contract Mutation Operators

Table 1 shows a set of interface-contract mutation
operators (ICMOs) defined for the four cases in the
fault model (Section 3.1). Each operator in the first
column is designed to simulate the fault that is induced
by the fault model showed in the second column. The
third column describes the rules of implementing
ICMOs. We can implement the rule of deleting a
precondition/postcondition item by replacing the item
with “true”. Detailed rules of weakening and
strengthening atomic expressions are listed in Table 2.
Each ICMO should be used to mutate each contract of
the interfaces of a black-box component.

The Constant in Table 2 is the minimum
incremental value of Q’s data type or is an incremental
value that the tester has suggested. Because the forall

Table 1. Interface-contract mutation operators
Name Fault Model Rules

Delete a precondition item PreWk Precondition
Weakening Weaken an atomic expression

PreStr Precondition
Strengthening Strengthen an atomic expression

Delete a postcondition item PostWk Postcondition
Weakening Weaken an atomic expression

PostStr Postcondition
Strengthening Strengthen an atomic expression

Table 2. Detailed mutation rules
Mutated Atomic Expression Original

Atomic
Expression Strengthening Weakening

P==Q ------------------ P>=Q, P<=Q
P!=Q P>Q, P<Q --------------------
P>Q P>Q +Constant P>=Q, P!=Q
P<Q P<Q - Constant P<=Q, P!=Q
P>=Q P>Q, P==Q P>=Q - Constant
P<=Q P<Q, P==Q P<=Q + Constant

and exists expressions can be translated to a group of
expressions, these two expressions are not listed in the
table. For example, “forall x in {1, 3, 5} Result>0” can
be translated to “!(x==1 || x==3 || x==5) || Result>0”.

3.3. Interface-Contract Mutation Detection
In mutation testing, a mutation oracle, which is a

person or a program to distinguish the original
program from the mutant [22], is also a necessity
besides the original program and its mutants. Figure 1
illustrates an algorithm (named DetectMutants) for
determining which mutants are killed by a test case.
The algorithm works as an oracle of our interface-
contract mutation. In the algorithm, we record one
execution trace for each test case, and for each

execution trace we concentrate on each invocation of
an interface of a component. Before the invocation, we
check whether the result of any mutant of the
precondition differs from that of the original
precondition, which means the value of one of them is
true and the other is false. For example, if we check a
precondition (a>0)∧(b<0) (denoted as P) and its
mutant (a>0)∧(b<=0)(denoted as M) using a test
case (a=1, b=0) (denoted as t), the value of P is false
and the value of M is true. Therefore, M is killed by t.
Similar checking for mutants of postconditions is also
performed after the invocation is returned. Based on
DetectMutants, whether a mutant is killed by a test
suite can be determined as follows. If a mutant is killed
by at least one test case in a test suite, the mutant is
said to be killed by the test suite.

Compared with traditional mutation testing, our
interface-contract mutation using DetectMutants is a
low-cost mutation testing approach for reducing the
high cost of executing a large number of mutants. First,
as our ICM mutates only the interface contracts, whose
size is usually much smaller than that of source code,
the number of mutants is significantly smaller than that
of source-code mutation. Second, as mutating only
interface contracts cannot affect the execution results
of the original program, when detecting which mutants
can be killed by a test case, we can instrument all
mutated preconditions and postconditions in the
program and evaluate all of them during one program
execution with the test case.

3.4. Interface-Contract Mutation Score
The mutation score is the ultimate metric of test

adequacy in mutation testing. In our approach, the
definition of the mutation score is the same as
traditional mutation testing. If we use N to denote the
number of interface-contract mutants of a system S, NE
to denote the number of the equivalent interface-
contract mutants that cannot be killed by any test case,
and ND to denote the number of the mutants killed by a
test suite T, then the interface-contract mutation score
MS is defined as:

MS(S, T) = ND / (N - NE) (3)

4. An Experimental Study
This section presents an experimental study that

we conducted to evaluate the effectiveness of the
proposed approach. We applied interface-contract
mutation on three subjects (Section 4.1), and compared
the experimental results of interface-contract mutation
criterion with other criteria (Section 4.2). Finally we
discuss some threats to the validity of our evaluation
(Section 4.3).

4.1. Experimental Setup
We conducted our experimental study on three

Table 3. Summary information of subjects
Subjects Triangle ATM Finance

Lines of Code 192 >4700 >5500
Seeded Faults 5 12 9
Atomic Expressions (Manually) 30 10 13
Atomic Expressions (Daikon) 18 61 20

subject systems (Section 4.1.1), each of which has two
groups of contracts and an initial test suite (Section
4.1.2). To evaluate the effectiveness of interface-
contract mutation criterion, we compared it with IM
and CIG-based criteria (Section 4.1.3) on test-suite
reduction and test-case prioritization (Section 4.1.4).

4.1.1. Subjects
In this experimental study, we use the Triangle

system, the ATM system, and the Finance system as
subjects. We suppose the source code of some parts of
each system is not available to present various black-
box components. The number of Lines of Code (LOC)
and the number of faults seeded in the source code of
each subject are summarized in Table 3.

The Triangle system can accept a group of
integers as input, calculate the maximum, the minimum,
and the middle value, and determine the triangle’s type
with the three values as sides. Some classical programs
such as Max, Min, Mid, and Trityp [26] have been
reused as reusable classes and they are the black-box
components of Triangle.

The ATM system 1 , which has been used in
previous research of Yuan and Xie [35], simulates
functions provided by an ATM machine and we treat
Balance Inquiry, Deposit, Withdrawal, and Transfer as
reusable classes without source code. Note that ATM
used in this experimental study is not the one used in
our previous work [19,18], which is made in-house
and contains only about 300 lines of code.

The Finance system reuses interfaces provided by
an open source Java library MoneyJar.jar 2 , and its
main program is based on MoneyJar’s example
program invoicer.java. Finance can generate invoices
including detailed charges and taxes for customers.
APIs provided by MoneyJar.jar, which are used to
compute calendars, charges, and taxes, are treated as
black-box components.

4.1.2. Interface Contracts and Test Suites
Contracts are the agreements between the

component provider and system integrator, and they
can be defined manually or be inferred using a tool.
Daikon3 [10] is a dynamic invariant detector, which
can report invariants at different program points in

1 Source code and design documents can be downloaded from

http://courses.knox.edu/cs292/ATMExample/Intro.html
2 Source code and example programs can be downloaded from

http://sourceforge.net/projects/moneyjar/
3 The Daikon tool and user manual can be downloaded from

http://pag.csail.mit.edu/daikon/

http://courses.knox.edu/cs292/
http://sourceforge.net/projects/moneyjar/
http://pag.csail.mit.edu/daikon/

several formats. The DBC-format invariants (inferred
by Daikon), which are generated at the entry and exit
points of an interface, can be viewed as that interface’s
precondition and postcondition, respectively.
Therefore, component providers can infer contracts for
their components using a tool such as Daikon, and
published these contracts together with their
components. In our experimental study, each reused
component interface has two contracts: one is specified
manually and the other is inferred by Daikon. The test
cases for Daikon are randomly generated according to
the parameters’ data type of the reused interfaces. For
example, the Triangle system reuses two interfaces
from the reusable classes, and one is the interface
“getTriTyp”, which can calculate the triangle type
according to the input of three sides. The interface
contract defined manually is shown in Figure 2 and the
contract inferred by Daikon is listed in Figure 3.

For each subject, the numbers of atomic
expressions (see Definition 1 in Section 3.2.1)
included in these two kinds of contracts are listed in
Table 3, respectively. Note that although Daikon often
infers many invariants, it does not mean that the
quality of the inferred contracts is always good. For
example, for the Deposit interface of ATM, Daikon
infers “Deposit_Amount != Account_Number”. This
invariant compares two integer parameters that are not
comparable. Thus it is not helpful for testing.

To evaluate the preceding criteria, we manually
generated an initial test suite for each subject based on
the preconditions of their interface contracts, using
equivalence-class partitioning and boundary-value
analysis. The number of test cases and fault-exposure
ratio (abbreviated as FER) for each test suite are listed
in Table 4. The rows of Quantity, M-FER, C-FER and
S-FER show the number of test cases, the fault-
exposure ratios of the faults seeded in the main
program, the components, and the entire system of
each initial test suites, respectively. The fault-exposure
ratio of Finance cannot achieve 100% because the test
suite cannot reveal faults seeded in the code for the
determination of “TaxOnTax”. We checked the code of
“TaxOnTax” manually and found that it is dead code,
but we are not sure if there is other dead code in
Finance.

4.1.3. Studied Criteria
We conducted our experimental study by

comparing our approach with interface mutation (IM)
[8,33] and techniques based on component interaction
graphs (CIG), including All Interfaces (AI), All Events
(AE), and All Context Dependences (ACD-1) [34, 13].
Because of the unavailability of source code of reused
components, the first group of IM operators requiring
source code was not applied, and the ACD-2 criterion
using content dependence relationships derived from
detailed design documents was not considered.

 /* @pre a>0 && b>0 && c>0;
@post Result==1||Result==2||Result==3||Result==4;
@post Result ==1 implies (a!=b && b!=c);
@post Result ==2 implies (a==b || b==c || a==c);
@post Result ==3 implies (a==b && b==c);

*/
 public int getTriTyp (int a, int b, int c)

Figure 2. Interface contract defined manually

Tri.getTriTyp(int, int, int):::ENTER
a>= b
b>=c
a>=c
Tri.getTriTyp(int, int, int):::EXIT
return >= 1
return != orig(a)
return != orig(b)
return != orig(c)
Figure 3. Interface contract inferred by Daikon

Table 4. Initial test suites of subject systems
Subjects Triangle ATM Finance

Quantity 183 79 120
M-FER① (%) 100.00 100.00 100.00
C-FER② (%) 100.00 100.00 75.00
S-FER③ (%) 100.00 100.00 77.78
①M-FER: the FER of the faults seeded in the main program

C② -FER: the FER of the faults seeded in components
S③ -FER: the FER of the faults seeded in the entire system

4.1.4. Application Scenarios
Test-suite reduction and test-case prioritization

are two typical scenarios of applying a test adequacy
criterion in regression testing. We evaluated the
effectiveness of applying the studied criteria in these
two scenarios in our study. To be fair with all the five
criteria, we used the algorithm proposed by Harrold et
al. [15] in test-suite reduction, and used the strategy for
achieving additional coverage in prioritization
(Rothermel et al. [29] show different strategies in test-
case prioritization). To evaluate the effectiveness of
interface mutation (IM), Delamaro et al. [8] seeded
faults in both components and their callers, and used
fault-exposure ratios as the metric. Similar to IM, our
ICM is also a mutation-based testing approach.
Therefore, we seeded faults in the main program and
source code of the reused components, and adopted
fault-exposure ratios as the metric for test-suite
reduction in our experimental study. We seeded faults
in reused components because developers cannot
ensure that there is no fault in published components,
and some research has focused on testing black-box
components [6,13,19,18]. The metric used in test-case
prioritization is the average of the percentage of faults
detected (APFD) metric proposed by Rothermel et al.
[29]. We mutate some lines of source code using
traditional mutation operators CRP, SVR, AOR, LCR,
and ROR [26] to seed faults, including wrong
constants and variables, faults in arithmetic, logical,
and relational operators.

4.2. Result and Analysis
In this section, we report the experimental results

of test-suite reduction (Section 4.2.1) and test-case
prioritization (Section 4.2.2) using the interface-
contract mutation (ICM), IM, AI, AE, and ACD-1
(denoted as ACD in this section). In order to
distinguish the two groups of contracts inferred by
Daikon and defined manually in our approach, we
denote them as ICM_D and ICM, respectively.

4.2.1. Test-Suite Reduction
The major experimental results for test-suite

reduction are listed in Table 5. The rows of Adequacy,
Quantity, M-FER, C-FER, and S-FER show the scores
of adequacy criteria, the number of test cases, the fault-
exposure ratios of the faults seeded in the main
program, the components, and the entire system using
the reduced test suites, respectively. From the table, we
can observe that all the studied criteria can help reduce
the initial test suites significantly. Our ICM seems to
be more effective in finding faults, as the exposure
ratios of our ICM are always higher than those of the
others for the three subjects. Actually, the test cases
selected by our ICM can achieve most of the fault-
exposure ratios of initial test suites, whereas the other
criteria cannot. The research of Rothermel et al. [28]
has shown that test-suite reduction may reduce the
ability of exposing faults. In our study, the test cases
selected by our ICM seem to be more likely to
preserve the ability of exposing faults. For Triangle
and Finance, the fault-exposure ratios of the test cases
selected by our ICM are the same as those of the initial
test suites. For ATM, although the fault-exposure ratio
of the test cases selected by our ICM is not the same as
the initial test suite, it is still higher than those of the
test cases selected by other criteria.

Table 5 illustrates that our ICM_D is not as
helpful as our ICM, because the fault-exposure ratio of
our ICM_D is higher than that of IM, AI, AE, and
ACD in the Triangle System but lower than AE and
ACD in the Finance System. We analyzed the
contracts inferred by Daikon and found that these
contracts exclude some useful information that
integrators may be quite interested in. These contracts
are inferred from executions of each independent
component or interface but not from executions of the
integrated system. The relationships of the interface
outputs and some variables in the main program are
not considered. It indicates that contracts representing
only component providers’ requirements but not
expressing integrators’ requirements are not enough. In
addition, the version of Daikon that we used can detect
only invariants including three variables at most, so
contracts that consider the relationships of more than
three variables are omitted. At last, when an interface
parameter is a class X whose private member x can be
accessed only through a getx()method, or when a

Table 5. Comparison of selected test cases
Triangle System

Criteria IM AI AE ACD ICM_D ICM
Adequacy①(%) 100.00 100.00 85.77 75.00 100.00 98.53
Quantity 6 1 2 2 4 8
M-FER (%) 0.00 100.00 100.00 100.00 100.00 100.00
C-FER (%) 50.00 50.00 50.00 50.00 75.00 100.00
S-FER (%) 40.00 60.00 60.00 60.00 80.00 100.00

ATM System
Criteria IM AI AE ACD ICM_D ICM
Adequacy (%) 91.45 100.00 100.00 85.00 71.11 85.56
Quantity 4 2 3 8 5 6
M-FER (%) 66.67 66.67 66.67 66.67 50.00 66.67
C-FER (%) 33.33 33.33 50.00 50.00 66.67 66.67
S-FER (%) 50.00 50.00 58.33 58.33 58.33 66.67

Finance System
Criteria IM AI AE ACD ICM_D ICM
Adequacy (%) 83.87 100.00 100.00 100.00 60.00 71.43
Quantity 1 1 2 4 3 4
M-FER (%) 100.00 100.00 100.00 100.00 100.00 100.00
C-FER (%) 12.50 37.50 50.00 62.50 37.50 75.00
S-FER (%) 22.22 44.44 55.56 66.67 44.44 77.78
①Adequacy: Adequacy stands for mutation scores (MS) in IM and

ICM; Adequacy stands for coverage in AI, AE, and ACD (see CIG
approaches in Section 2.2 and Section 4.1.3.

Table 6. Mutants quantity comparison
Approach Mutants Killed

Mutants
Equivalent
 Mutants

IM 95 84 8
ICM_D 48 24 24 Triangle

ICM 101 67 33
IM 120 107 3

ICM_D 73 32 28 ATM
ICM 27 18 6
IM 31 26 0

ICM_D 27 12 7 Finance
ICM 17 10 3

component provides some query interfaces, such as a
top() method of a Stack component, testers can
heuristically write X.getx() or top() in contracts, but
Daikon cannot. All these limitations may cause
ICM_D not to be as effective as ICM.

Note that actual capabilities for exposing faults of
our ICM criteria are considerable when their reduced
test suites cannot achieve very high contract mutation
scores. This observation further confirms that our ICM
seems to be more practical in exposing faults than IM
and CIG-based criteria as an adequacy criterion for
testing systems built on black-box components.

Because ICM, ICM_D, and IM are mutation-
based criteria, we performed a further comparison of
them in Table 6. The research results of Vincenzi et al.
[33] show that the computational cost of IM is not
greatly reduced compared to traditional mutation
testing. The reason is that the first group of mutation
operators, which are applied to mutate the
implementation of interfaces, can generate thousands
of mutants. As our experiments have not applied these
IM operators, the number of IM mutants is small.
Table 6 shows that the number of ICM mutants is

almost as small as or much smaller than that of IM
mutants in all systems. This obervation indicates that
all the mutation techniques are efficient in this context.
Furthermore, all the mutation techniques produced a
group of equivalent mutants in our experiment. This
result indicates that more efforts for identifying
equivalent mutants would be needed in both IM and
our ICM (as well as ICM_D).

4.2.2. Test-Case Prioritization
The results for test-case prioritization are shown

in Figures 4-6. These figures show changes of the
percentage of faults detected (the vertical axis)
corresponding to the increase of the number of test
cases (the horizontal axis). Due to space limit, the
figures do not show the curves after achieving highest
fault-exposure ratios. Figures 4-6 show the results of
exposing faults in the entire subject systems. The
results in all these figures confirm that our ICM and
ICM_D can usually achieve better fault-exposure
ratios than other criteria with the same number of test
cases. We can also observe that our ICM or ICM_D
always first achieves the highest fault-exposure ratios
in the three subjects.

In Figures 4-5, the number of test cases for
achieving 100% FER using ICM in Triangle and ATM
is much larger than that in test-suite reduction, and we
suspect that it is probably because our interface-
contract mutation operators produced easily-killed
mutants. When prioritizing test cases according to the
mutation score (MS), once MS achieves its highest
value early, the remaining test cases would not be
prioritized.

4.3. Threat to Validity
Threats to internal validity mainly include factors

that may also be responsible for experimental results
except for the factors studied in the experiments. In our
experiments, the algorithm of test-suite reduction, the
strategy and the metric of test-case prioritization, and
the metric for evaluating the quality of a test suite may
affect our experimental results. In order to reduce this
threat, we adopted algorithms, strategies, and metrics
from previous work. We used the test-suite reduction
algorithm proposed by Harrold et al. [15], the
additional coverage strategy and the APFD metric for
test-case prioritization proposed by Rothermel et al.
[29], and the fault-seeding approach and the fault-
exposure-ratio metric adopted by Delamaro et al. [8].

One issue raised in the experiments is that there is
no powerful evidence for the reliability of using fault-
exposure ratios as metrics. Thus we are not very sure if
faults seeded in the main program and components’
source code could precisely simulate faults appearing
in practice. However, we have not found more
realistic techniques for validating the effectiveness of
test suites in testing component-based software. So we

used fault-exposure ratios as metrics, which have been
widely used in testing and are also adopted in interface
mutation [8]. Because our fault model is based on the
deviation of contracts, we expect that our approach
could perform better than what the experimental results
have shown if the seeded faults can precisely simulate
faults appearing in testing software built on black-box
components in practice.

Factors that may affect the generalization of
experimental results are threats to external validity. In
our study, we used only one small subject and two
medium-sized subjects built on Java reusable class
libraries. Although these subjects are programs from
public software libraries or used in previous work, our
experimental results may not be generalized to other

different programs. To reduce this threat, we plan to do
more experiments with large-sized systems that reuse
more kinds of black-box components in our future
work, such as large distributed systems built on EJBs
and Web Services.

5. Benefits and Costs of Using Interface
Contracts

The main reason for the effectiveness of interface-
contract mutation lies in the use of interface contracts.
Interfaces of black-box components alone contain little
information of the components, whereas interface
contracts can provide the tester with more valuable
information. Another benefit of interface contracts is
that they themselves can help reveal faults, because
interface contracts can capture invalid inputs and
outputs between the components and the main program.

The preceding benefits are achieved with costs of
specifying interface contracts, which are essential for
the use of interface-contract mutation. However,
contracts are not defined only for the purpose of
providing information for testing. Meyer [25] pointed
out that contracts can help programmers write high-
quality programs, and Szyperski [32] also pointed out
that contracts can make reusable building blocks easier
to implement and compose. Therefore, the effort for
defining contracts is not just the cost of providing
information for testing, but actually the expense paid
to achieve all the preceding advantages. Consequently,
interface-contract mutation can be considered as a low-
cost approach in this context.

6. Conclusions
Because of unavailability of source code, testing

software built on black-box components becomes a
challenging issue. In our research, we proposed a new
adequacy criterion for testing this type of software. We
performed an experimental study on our criterion
together with four other previously proposed criteria
(IM was adapted in order to test this type of software
in our study) for two typical tasks in regression testing.
The experimental results show that our criterion is
more effective for both test-suite reduction and test-
case prioritization than previous criteria.

We have applied contract mutation in testing
black-box components [19,18] ([18] is the journal
version of [19] with two more subject components in
its experimental study). Compared with previous work,
the main contributions of our work are as follows:

 T aper aims to address a new problem. In our
previous work, we applied contract mutation to test
black-box components. However, when testers face a
software system built on black-box components,
testing individual components can ensure only the
quality of these building blocks in the system.
Testers still need to ensure the quality of the entire
system. In this paper, we aim at testing software built

on black-box components. Specifically, the primary
concern in this paper is the misunderstanding
between the component provider and the system
integrator.

his p

his p

edium-sized
stem

tomatically inferred contracts. In
e exp

egression
sting

le ents can help
prev

 T aper proposes a fault model and mutation
operators that are specific for testing component-
based software. The mutation operators in our
previous work simulated only the deviation from the
interface contracts by the component provider. When
composing a system using components, both the
component provider and the system integrator may
deviate from the interface contracts. Therefore, in
this paper, we analyzed the fault model for deviations
by both of them, and proposed four mutation
operators to simulate them. Among the operators,
PreStr and PostWk are totally new. Furthermore, the
mutation operators in this paper are based on the
normal form of contracts that are easier to implement.
 The evaluation in this paper uses m
sy s. We have used an in-house version of ATM
and Tritype in the evaluation of our initial research
on testing black-box components [19], and used two
more programs (i.e., Middle and a Siemens program
named Tcas) in its extension [18]. All these programs
are small-sized subjects whose LOCs are from 24 to
300. In this paper, we evaluated our approach by
conducting an experimental study on three subjects,
two of which are medium-sized programs with more
than 4700 and 5400 lines of code, respectively.
 This paper also evaluates the effectiveness of our
ICM approach on au
th erimental study of our previous work, we also
considered manually defined contracts for
components interfaces. In this paper, we not only
manually specified contracts for the subjects, but also
used a dynamic invariant detector (i.e., Daikon) to
infer contracts for reused components. Note that
mutating automatically inferred contracts provides a
potential solution to further automate our technique
and reducing the cost of defining contracts.
 The evaluation in this paper is based on comparison
with existing criteria for typical tasks in r
te . In the experimental study of our previous
work, we compared the contract-based mutation
operators with the five key traditional mutation
operators. In this paper, we compared our ICM with
other test adequacy criteria, including interface
mutation and CIG-based criteria. Furthermore, this
paper evaluates our approach in two important and
practical application scenarios of test adequacy
criteria in regression testing: test-suite reduction and
test-case prioritization.

In practice, many components are stateful and
gal operation sequences of compon

ent these components from reaching error states.
Currently, our approach does not support specifying
legal operation sequences in contracts. We plan to use

“trace” [25], which aims to define operation sequences
of classes in our interface contract. We also plan to
develop mutation operators for “trace” in our future
work.

7. Acknowledgements
This research is sponsored by

Key Basic Research and D
 the National 973

evelopment Program No.
2002

tatic Checking and Test Generation",

CB312003 and the National Science Foundation
of China No. 90412011and No.60403015.

8. References
[1] A. Abdurazik, J. Offutt, "Using UML Collaboration
Diagrams for S
Proc. UML, 2000, pp. 383-395.
[2] R.T. Alexander, J.M. Bieman, S. Ghosh, J. Bixia,
"Mutation of Java Objects", Proc. ISSRE, 2002, pp.341-
351.
[3] P. Ammann, P. Black, "A Specification-Based
Coverage Metric to Evaluate Test Sets", Proc. HASE,
1999, pp. 239-248.
[4] S. Beydeda, V. Gruhn, "State of The Art in Testing
components", Proc. QSIC, 2003, pp. 146-153.
[5] P. Black, V. Okun, Y. Yesha, "Mutation Operators
for Specifications", Proc. ASE, 2000, pp. 81–89.
[6] L.C. Briand, Y. Labiche, M. Sówka, "Automated,
Contract-based User Testing of Commercial-Off-The-
Shelf Components", Proc. ICSE, 2006, pp.92-101.
[7] W.K. Chan, S.C. Cheung, T.H. Tse, "Fault-Based
Testing of Database Application Programs with
Conceptual Data Model", Proc. QSIC, 2005, pp.187-196.
[8] M.E. Delamaro, J.C. Maldonad, A.P. Mathur,
"Interface Mutation: An Approach for Integration
Testing", IEEE Transactions on Software Engineering,
27(3), 2001, pp.228-247.
[9] R.A. DeMillo, R.J. Lipton, F.G. Sayward, "Hints on
Test Data Selection: Help for the Practicing
Programmer", IEEE Computer, 11(4), 1978, pp. 34-41.
[10] M.D. Ernst, J. Cockrell, W.G. Griswold, D. Notkin,
"Dynamically Discovering Likely Program Invariants to
Support Program Evolution", IEEE Transactions on
Software Engineering, 27(2), 2001, pp.99-123.
[11] S.C.P.F. Fabbri, J.C. Maldonado, P.C. Masiero, M.E.
Delamaro, "Mutation Analysis Testing for Finite State
Machines", Proc. ISSRE, 1994, pp 220-229.
[12] L. Gallagher, A.J. Offutt, A. Cincotta, "Integration
Testing of Object-Oriented Components Using Finite
State Machines", Software Testing, Verification, and
Reliability, 16(4), 2006, pp.215-266.
[13] J. Gao, H.J. Tsao, Y. Wu, Testing and Quality
Assurance for Component-Based Software, Artech House,
Boston, London, 2003, ISBN 1580534805.
[14] M.J. Harrold, M.L. Soffa, "Selecting and Using Data
for Integration Testing," IEEE Software, 8(2), 1991,
pp.58-65.
[15] M.J. Harrold, R. Gupta, M.L. Soffa, "A
Methodology for Controlling the Size of a Test Suite",
ACM Transactions on Software Engineering and
Methodology, 2(3), 1993, pp.270-285.
[16] J. Hartmann, C. Imoberdorf, M. Meisinger, "UML-
Based Integration Testing", Proc. ISSTA, 2000, pp. 60-70.

[17] W.E. Howden, "Weak Mutation Testing and
Completeness of Test Sets", IEEE Transactions on
Software Engineering, 8(4), 1982, pp. 371-379.
[18] Y. Jiang, S.S. Hou, J.H Shan, L. Zhang, B. Xie, "An
Approach to Testing Black-Box Components Using
Contract Mutation", accepted by International Journal of
Software Engineering and Knowledge Engineering, 2006
[19] Y. Jiang, S.S. Hou, J.H Shan, L. Zhang, B. Xie,
"Contract-Based Mutation for Testing Components",
Proc. ICSM, 2005, pp.483-492.
[20] Z. Jin, A.J. Offutt, "Coupling-based Criteria for
Integration Testing", Software Testing, Verification, and
Reliability, 8(3), 1998, pp.133-154.
[21] S. Kim, J. Clark, J. McDermid, "Class Mutation:
Mutation Testing for Object-Oriented Programs", Proc.
FMES, 2000.
[22] G. Kovacs, Z. Pap, D.L. Viet, H.C. Wu, G. Csopaki,
"Applying Mutation Analysis to SDL Specifications",
Proc. SDL, 2003, pp.269-284.
[23] U. Linnenkugel, M. Mullerburg, "Test Data
Selection Criteria for (Software) Integration Testing",
Proc. International Conference on Systems Integration,
1990, pp. 709-717.
[24] Y.S. Ma, Y.R. Kwon, A.J. Offutt, "Inter-Class
Mutation Operators for Java", Proc. ISSRE, 2002,
pp.352-363.
[25] B. Meyer, Object-oriented Software Construction,
Prentice Hall, New York, second edition, 1997.
[26] A.J. Offutt, G. Rothermel, C. Zpf, "An Experimental
Evaluation of Selective Mutation", Proc. ICSE, 1993,
pp.100-107.
[27] A.J. Offutt, A. Abdurazik, R.T. Alexander, "An
Analysis Tool for Coupling-based Integration Testing",
Proc. ICECCS, 2000, pp.172 -178.
[28] G. Rothermel, M.J. Harrold, J. V. Ronne, C. Hong,
"Empirical Studies of Test-Suite Reduction", Software
Testing, Verification and Reliability, 12(4), 2002, pp.
219-249.
[29] G. Rothermel, R.J. Untch, C. Chu, "Prioritizing Test
Cases For Regression Testing", IEEE Transactions on
Software Engineering, 27(10), 2001, pp. 929-948.
[30] G. Rothermel, R.H. Untch, C.Chu, M.J. Harrold,
"Test case prioritization: an empirical study", Proc.
ICSM, 1999, pp.179-188.
[31] T. Sugeta, J.C. Maldonado, W.E. Wong, "Mutation
Testing Applied to Validate SDL Specifications ", Proc.
IFIP, 2004. pp. 193-208.
[32] C. Szyperski, "Components and Architecture",
Software Development, 8(10), 2001 .
[33] A.M.R. Vincenzi, J.C. Maldonado, E.F. Barbosa,
M.E. Delamaro, "Unit and integration testing strategies
for C programs using mutation", Software Testing,
Verification, and Reliability, 11(3), 2001, pp.249- 268.
[34] Y. Wu, D. Pan, M. Chen, "Techniques for Testing
Component-Based Software", Proc. ICECCS, 2001,
pp.222-232.
[35] H. Yuan, T. Xie, "Substra: A Framework for
Automatic Generation of Integration Tests", Proc. AST,
2006, pp. 64-70.

	1. Introduction
	2. Related Work
	3. Interface-Contract Mutation (ICM) for Testing Component-Based Software
	3.1. Fault Model
	3.2. Interface-Contract Mutation Operators
	3.3. Interface-Contract Mutation Detection
	3.4. Interface-Contract Mutation Score

	4. An Experimental Study
	4.1. Experimental Setup
	4.2. Result and Analysis
	4.3. Threat to Validity

	5. Benefits and Costs of Using Interface Contracts
	6. Conclusions
	7. Acknowledgements
	8. References

