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Abstract 
 

Regression testing, which plays an important role in 
software maintenance, usually relies on test adequacy 
criteria to select and prioritize test cases. However, 
with the wide use and reuse of black-box components, 
such as reusable class libraries and COTS components, 
it is challenging to establish test adequacy criteria for 
testing software systems built on components whose 
source code is not available. Without source code or 
detailed documents, the misunderstanding between the 
system integrators and component providers has 
become a main factor of causing faults in component-
based software. In this paper, we apply mutation on 
interface contracts, which can describe the rights and 
obligations between component users and providers, to 
simulate the faults that may occur in this way of 
software development. The mutation adequacy score 
for killing the mutants of interface contracts can serve 
as a test adequacy criterion. We performed an 
experimental study on three subject systems to 
evaluate the proposed approach together with four 
other existing criteria. The experimental results show 
that our adequacy criterion is helpful for both 
selecting good-quality test cases and scheduling test 
cases in an order of exposing faults quickly in 
regression testing of component-based software. 
 
1. Introduction 

In software maintenance, regression testing is 
frequently applied to ensure software quality. Due to 
limited budget or desired efficiency, software 
engineers usually select a subset of test cases from the 
original test suite [15] or prioritize existing test cases 
[30] in regression testing. Typically, both tasks use 
some test adequacy criteria.  

With the emergence of black-box components, such 
as reusable class libraries, commercial off-the-shelf 
(COTS) components, and web services, whose source 
code is not available, integrating black-box 

components to build new software systems has become 
an important way of software development. However, 
existing test adequacy criteria may not be effective to 
identify faults caused by misunderstandings between 
component providers and users.  

Let us consider the following piece of code, in 
which two black-box functions (i.e., abs and log) are 
used to define a function named f. Here, abs returns the 
absolute value of its input and log returns the 
logarithm of its input. Due to the misunderstanding of 
the log function, the author of function f thinks that log 
can take any non-negative value as input, while log 
actually can take only positive values as input. As a 
result, there is a bug: taking 0 as the input causes a 
failure in f. 

double f (int n){ 
int a=abs(n); 
return log(a); 

} 
Statement coverage and branch coverage are not 

good criteria for testing f, as any input for f could 
achieve one hundred percent statement coverage and 
branch coverage. In fact, if we treat abs and log only 
as black-box functions without considering that abs 
returns a non-negative value and log can take only 
positive values as input, the input (i.e., 0) inducing the 
fault does not look different from other inputs under 
any structural criteria. In practice, this preceding 
situation may be a common situation for testers due to 
the wide use of black-box components. Therefore, 
appropriate test adequacy criteria specific to testing 
component-based software should be developed. 

In this paper, we establish a suitable test adequacy 
criterion for testing software built on black-box 
components. Our basic idea is to define interface 
contracts for black-box components and use mutation 
operators defined on interface contracts to simulate 
faults possibly caused by the misunderstandings 
between the component provider and the system 
integrator. According to the notion of Design-by-

mailto:xie@csc.ncsu.edu


Contract [25], it is helpful to establish interface 
contracts between the provider and the user of a 
software component. When the source code of a 
component is not available, contracts defined on the 
interfaces of the reusable component can work as the 
“intermediary” between the component provider and 
the system integrator who reuse the component, 
because contracts can define the rights and the 
obligations of both providers and users to help 
distinguish their responsibility. Due to the nature of 
interface contracts, mismatches in component 
composition can be viewed as deviations from this 
intermediary by either side. Therefore, our approach 
uses mutants of interface contracts to simulate these 
deviations. Furthermore, we performed an 
experimental study on applying this criterion in two 
typical tasks in regression testing (i.e., test-suite 
reduction and test-case prioritization). The results 
confirm the effectiveness of our criterion.  

The rest of this paper is organized as follows. 
Section 2 discusses research related to our approach. 
Section 3 presents the details of our approach. Section 
4 describes an experimental study of the proposed 
criterion. Section 5 discusses the benefit and cost of 
using contracts. Section 6 presents conclusions. 
 
2. Related Work 

Some recent research [4,6,13,19,18] has focused 
on testing components. However, when testers need to 
test a software system built on black-box components, 
testing individual black-box components can ensure 
only the quality of these basic building blocks in the 
system. The quality of the entire system still cannot be 
ensured without adequate integration or system testing. 

As a component-based system can be viewed as 
the integration of components, test adequacy criteria 
for integration testing are related to our research. 
Typically, these criteria can be classified as program-
structure-based criteria, specification-based criteria, 
and design-information-based criteria. 

Program-structure-based criteria focus on how the 
structure for integration has been covered during 
testing, including data-flow-based and control-flow-
based criteria. Data flow analysis concerns with the 
definitions and uses of variables, and control flow 
analysis examines the execution of statements, 
conditions, and branches. Jin and Offutt [20, 27] 
developed a series of coupling-based criteria for 
integration testing. They defined a set of coupling-
based test paths according to the definitions and uses 
of variables, and also proposed a set of testing criteria, 
including “call-coupling”, “all-coupling-defs”, “all-
coupling-uses”, and “all-coupling-paths”, to help 
measure the effectiveness of a test suite. Harrold et al. 
[14] and Linnenkugel et al. [23] analyzed inter-
procedural data- and control-flow information, and 

proposed integration testing criteria, such as 
“definition-use pairs” and “intraprocedural definition-
pairs” [14], “all-paths”, “all-edges”, “all-nodes”, and 
“all-p-uses” [23]. However, when source code is not 
available, the data-flow and control-flow information, 
which is essential to all the preceding structural criteria, 
cannot be easily acquired.    

With the cost of constructing formal and complete 
specifications for the software under test, Ammann et 
al. [3] proposed a specification-based coverage 
criterion to evaluate test suites. Using the detailed 
specification defining the states and transitions for 
each class of the system under test, Gallagher et al. [12] 
acquired data dependences among classes and 
constructed data flow graphs for the system under test. 
Based on the coverage of data flow graphs, they 
proposed several criteria for integration testing. Recent 
research has shown that information derived from 
software design, such as collaboration diagrams and 
statecharts, can be used to define testing criteria that 
can help test data generation and selection [1,16]. 
However, detailed specifications or design documents 
of the applications (especially the reusable components) 
under test are often unavailable in testing of software 
built on black-box components. 

Wu et al. [34] and Gao et al. [13] proposed a 
technique for testing component-based software based 
on the component interaction graph (CIG), which 
indicates the interactions and the dependence 
relationships among components. In particular, they 
proposed a family of test adequacy criteria, including 
all interfaces (AI), all events (AE), all context 
dependence relationships (ACD-1), and all content 
dependence relationships (ACD-2). However, when 
the source code of a component is not available, the 
content dependence relationship, which can be derived 
only from a class diagram, cannot always be acquired. 

Delamaro et al. [8] developed the interface 
mutation (IM) approach that applies mutation testing in 
software integration testing. Their approach analyzes 
three types of faults that may occur during the 
interactions between procedures, and designs two 
groups of interface mutation operators to simulate 
these faults. The first group is applied inside an 
interface to mutate the source code of implementation 
of the interface, and the second group is designed to 
mutate the declaration and invocations of the interfaces. 
Therefore, the component source code needs to be 
available if we want to apply the first group of 
operators in testing software built on black-box 
components. Although also based on mutation testing, 
our approach aims at mutating interface contracts to 
support integration testing of component-based 
software built on black-box components.  

From the preceding analysis, when facing 
software constructed with black-box components, the 



preceding criteria can hardly be fully applicable, as 
they more or less rely on the source code or detailed 

ocument of the components.  
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3. Interface-Contract Mutation (ICM

ting Component-Based Software 
To establish a suitable criterion for testing 

software built on black-box components, we mutate 
the interface contracts of each black-box component. 
Our approach focus on the faults that could possibly 
happen when the component users integrated reusable 
components in their applications. Like other mutation 
testing approaches, such as traditional mutation 
[9,17,26], interface mutation [8,33], class or object 
mutation [2,21,24], specification mutation [5,11,31], 
and conception-model mutation in database 
applications [7], our approach uses mutation operators, 
which simulate various types of faults in component 
composition to generate mutants, and uses a mutation 
score, which defines the capability o

easure the quality of test suites.  
In Section 3.1, we analyze possible faults caused 

by the misunderstanding between the component 
providers and the system integrators. We design a set 
of mutation operators to simulate these faults in 
Section 3.2. Because our mutation is applied on the 
interface contracts, the mutation oracle used in 
traditional mutation testing is not applicable. As a 
result, we give an algorithm to detect interface-contract 
mutants in Section 3.3. The algorithm works as a 
mutation oracle. Based on the oracle, 
contract mutation sc

 Fault Model 
Because we are mainly concerned with faults in 

component composition, our fault model focuses on 
faults caused by the misunderstanding between system 
integrators and component providers. As interface 
contracts are the agreements that both providers and 
integrators should adhere to, the misunderstanding 
would result in deviations from the agreements by one 
or both sides. Therefore, the main objective of our 
fault model is to characterize how component 
providers and integrators can deviate from interface 
contracts. We next present four cases of deviations. 
The first two cases describe how integrators can 
deviate from the contracts, whereas the last two cases 
describe how c
the contracts.  
(1) Precondition Weakening. A weaker precondition 
occurs when the constraints under which the 
component can perform correctly are wrongly 
broadened by the integrator. Thus, if the precondition 
of a component is weaker than it should be, the 
component may have to deal with more inputs than it 
actually can. This case simulates the situation that 

while reusing a component, the integrator passes to an 
interface some illegal inputs that cannot be corre
handled by the component providing the interface. 
(2) Postcondition Strengthening. A stronger 
postcondition occurs when the integrator imposes 
stricter constraints on the outputs of the component. 
Thus, if the postcondition of a component is stronger 
than it should be, some correct outputs of the 
component may be viewed as incorrect by the 
integrator. This case simulates the situation that the 
integrator misunderstands the functionality of the 
component and treats some legal 
unacceptable when using some interfaces.  
(3) Precondition Strengthening. A stronger 
precondition occurs when the provider imposes a 
stricter requirement on the component integrator who 
intends to reuse a component. Thus, if the precondition 
of a component is stronger than it should be, the 
component may not provide correct functionality when 
the inputs do not satisfy the strengthened precondition. 
This case simulates the situation that the componen
fails to handle some legal inputs as it is supposed to.  
(4) Postcondition Weakening. A weaker 
postcondition occurs when the constraints that the 
outputs of the component should satisfy are wrongly 
broadened by the provider. Thus, if the postcondition 
of a component is weaker than it should be, the 
integrator has to face some illegal outputs from the 
component. This case simulates the situation that the 
component fa
supposed to. 

 Interface-Contract Mutation Operators 
We first translate interface contracts into 

conjunctive normal forms for the convenience of 
defining mutation operators (Section 3.2.1), and then 
describe the mutation operators, which are designed to 
simulate faults charact
model (Section 3.2.2). 

. Normal Form for Contracts  
In our new approach, we adopt the grammar of 

component-interface contracts defined in our previous 
work [19], and we do not repeat the defining grammar 
due to space limit. For the convenience of defining 
mutation operators for interface contracts, we 
transform preconditions and postconditions into the 
conjunct
below.  
Definition 1.  A contract is a pair <Cpre, Cpost> where 
Cpre is a precondition and Cpost is a postcondition. A 
precondition or postcondition is in its conju ive 
normal fo  if and only if it is in the form C

nct
i = 

0 j n≤ ≤
∧ Cij, 

where Cij is in disjunctive normal form Cij=
0 k s≤ ≤
∨

 an item and Cijk is called an atomic 
expression. 

Cijk . 

Cij is called



Algorithm  DetectMutants 
Input    E: the execution trace of the test case t 

Mall: the set of interface-contract mutants of the components invoked in E 
Output:  Mkilled: the set of killed interface-contract mutants 
begin   

for each invocation of an interface (denoted as fi) of a component invoked in E do 
for each interface-contract mutant (denoted as mj) in Mall do 

if mj is a mutant produced by mutating the precondition of fi 
then if the result of the mutated precondition differs from that of the original precondition 

then Remove mj from Mall; Add mj into Mkilled 
end if 

else if mj is a mutant produced by mutating the postcondition of fi 
then if the result of the mutated postcondition differs from that of the original postcondition 

then Remove mj from Mall; Add mj into Mkilled 
end if 

end if 
end do 

end do 
end 

Figure 1. Algorithm  DetectMutants for determining which mutants are killed by one test case

Because both the precondition and the 
postcondition of each contract are logical expressions, 
we can normalize them according to the rule of 
normalization of logical expressions. Consider the 
TriTyp [26] example, whose contract prescribes the 
calculation of the triangle type according to the three 
sides. The contract is as follows. 
    / *    @pre a>0; 

@pre b>0;  
@pre c>0; 
@post  Result ==3 implies (a==b && b==c);  * / 

     public int TriTyp ( int a, int b, int c) 
The contract in the Javadoc form requires that the 

length of each side should be larger than 0, and when 
the output is 3 (indicating an equilateral triangle), the 
inputs a, b, and c should be equal. Thus, we can 
transform the precondition as (1) and the postcondition 
as (2). 
Cpre = a>0∧b>0∧ c>0                                             (1) 
Cpost= (Result !=3∨a==b) ∧(Result !=3∨b==c)      (2) 
       
3.2.2. Interface-contract Mutation Operators 

Table 1 shows a set of interface-contract mutation 
operators (ICMOs) defined for the four cases in the 
fault model (Section 3.1). Each operator in the first 
column is designed to simulate the fault that is induced 
by the fault model showed in the second column. The 
third column describes the rules of implementing 
ICMOs. We can implement the rule of deleting a 
precondition/postcondition item by replacing the item 
with “true”. Detailed rules of weakening and 
strengthening atomic expressions are listed in Table 2. 
Each ICMO should be used to mutate each contract of 
the interfaces of a black-box component. 

The Constant in Table 2 is the minimum 
incremental value of Q’s data type or is an incremental 
value that the tester has suggested. Because the forall  

Table 1. Interface-contract mutation operators 
Name Fault Model Rules 

Delete a precondition item PreWk Precondition 
Weakening Weaken  an atomic expression 

PreStr Precondition 
Strengthening Strengthen an atomic expression

Delete a postcondition item PostWk Postcondition 
Weakening Weaken an atomic expression 

PostStr Postcondition 
Strengthening Strengthen an atomic expression

Table 2. Detailed mutation rules 
Mutated Atomic Expression Original 

Atomic 
Expression Strengthening Weakening 

P==Q ------------------ P>=Q, P<=Q 
P!=Q P>Q, P<Q -------------------- 
P>Q P>Q +Constant P>=Q, P!=Q 
P<Q P<Q - Constant P<=Q, P!=Q 
P>=Q P>Q, P==Q P>=Q - Constant 
P<=Q P<Q, P==Q P<=Q + Constant 

 
and exists expressions can be translated to a group of 
expressions, these two expressions are not listed in the 
table. For example, “forall x in {1, 3, 5} Result>0” can 
be translated to “!(x==1 || x==3 || x==5) || Result>0”. 

3.3. Interface-Contract Mutation Detection 
In mutation testing, a mutation oracle, which is a 

person or a program to distinguish the original 
program from the mutant [22], is also a necessity 
besides the original program and its mutants. Figure 1 
illustrates an algorithm (named DetectMutants) for 
determining which mutants are killed by a test case. 
The algorithm works as an oracle of our interface-
contract mutation. In the algorithm, we record one 
execution trace for each test case, and for each 



execution trace we concentrate on each invocation of 
an interface of a component. Before the invocation, we 
check whether the result of any mutant of the 
precondition differs from that of the original 
precondition, which means the value of one of them is 
true and the other is false. For example, if we check a 
precondition (a>0)∧(b<0) (denoted as P) and its 
mutant (a>0)∧(b<=0)(denoted as M)  using a test 
case (a=1, b=0) (denoted as t), the value of P is false 
and the value of M is true. Therefore, M is killed by t. 
Similar checking for mutants of postconditions is also 
performed after the invocation is returned. Based on 
DetectMutants, whether a mutant is killed by a test 
suite can be determined as follows. If a mutant is killed 
by at least one test case in a test suite, the mutant is 
said to be killed by the test suite.    

Compared with traditional mutation testing, our 
interface-contract mutation using DetectMutants is a 
low-cost mutation testing approach for reducing the 
high cost of executing a large number of mutants. First, 
as our ICM mutates only the interface contracts, whose 
size is usually much smaller than that of source code, 
the number of mutants is significantly smaller than that 
of source-code mutation. Second, as mutating only 
interface contracts cannot affect the execution results 
of the original program, when detecting which mutants 
can be killed by a test case, we can instrument all 
mutated preconditions and postconditions in the 
program and evaluate all of them during one program 
execution with the test case. 

3.4. Interface-Contract Mutation Score 
The mutation score is the ultimate metric of test 

adequacy in mutation testing. In our approach, the 
definition of the mutation score is the same as 
traditional mutation testing. If we use N to denote the 
number of interface-contract mutants of a system S, NE 
to denote the number of the equivalent interface-
contract mutants that cannot be killed by any test case, 
and ND to denote the number of the mutants killed by a 
test suite T, then the interface-contract mutation score 
MS is defined as: 

MS(S, T) = ND / (N - NE)                               (3) 
 

4. An Experimental Study 
This section presents an experimental study that 

we conducted to evaluate the effectiveness of the 
proposed approach. We applied interface-contract 
mutation on three subjects (Section 4.1), and compared 
the experimental results of interface-contract mutation 
criterion with other criteria (Section 4.2). Finally we 
discuss some threats to the validity of our evaluation 
(Section 4.3). 

4.1. Experimental Setup 
We conducted our experimental study on three  

Table 3.  Summary information of subjects 
Subjects Triangle ATM Finance 

Lines of Code 192 >4700 >5500 
# Seeded Faults 5 12 9 
# Atomic Expressions (Manually) 30 10 13 
# Atomic Expressions (Daikon) 18 61 20 

subject systems (Section 4.1.1), each of which has two 
groups of contracts and an initial test suite (Section 
4.1.2). To evaluate the effectiveness of interface- 
contract mutation criterion, we compared it with IM 
and CIG-based criteria (Section 4.1.3) on test-suite 
reduction and test-case prioritization (Section 4.1.4). 

4.1.1. Subjects 
In this experimental study, we use the Triangle 

system, the ATM system, and the Finance system as 
subjects. We suppose the source code of some parts of 
each system is not available to present various black-
box components. The number of Lines of Code (LOC) 
and the number of faults seeded in the source code of 
each subject are summarized in Table 3. 

The Triangle system can accept a group of 
integers as input, calculate the maximum, the minimum, 
and the middle value, and determine the triangle’s type 
with the three values as sides. Some classical programs 
such as Max, Min, Mid, and Trityp [26] have been 
reused as reusable classes and they are the black-box 
components of Triangle.  

The ATM system 1 , which has been used in 
previous research of Yuan and Xie [35], simulates 
functions provided by an ATM machine and we treat 
Balance Inquiry, Deposit, Withdrawal, and Transfer as 
reusable classes without source code. Note that ATM 
used in this experimental study is not the one used in 
our previous work [19,18], which is made in-house 
and contains only about 300 lines of code.  

The Finance system reuses interfaces provided by 
an open source Java library MoneyJar.jar 2 , and its 
main program is based on MoneyJar’s example 
program invoicer.java. Finance can generate invoices 
including detailed charges and taxes for customers. 
APIs provided by MoneyJar.jar, which are used to 
compute calendars, charges, and taxes, are treated as 
black-box components. 

4.1.2. Interface Contracts and Test Suites 
Contracts are the agreements between the 

component provider and system integrator, and they 
can be defined manually or be inferred using a tool. 
Daikon3  [10] is a dynamic invariant detector, which 
can report invariants at different program points in 
                                                           
1  Source code and design documents can be downloaded from 

http://courses.knox.edu/cs292/ATMExample/Intro.html
2  Source code and example programs can be downloaded from 

http://sourceforge.net/projects/moneyjar/
3  The Daikon tool and user manual can be downloaded from 

http://pag.csail.mit.edu/daikon/

http://courses.knox.edu/cs292/
http://sourceforge.net/projects/moneyjar/
http://pag.csail.mit.edu/daikon/


several formats. The DBC-format invariants (inferred 
by Daikon), which are generated at the entry and exit 
points of an interface, can be viewed as that interface’s 
precondition and postcondition, respectively. 
Therefore, component providers can infer contracts for 
their components using a tool such as Daikon, and 
published these contracts together with their 
components. In our experimental study, each reused 
component interface has two contracts: one is specified 
manually and the other is inferred by Daikon. The test 
cases for Daikon are randomly generated according to 
the parameters’ data type of the reused interfaces. For 
example, the Triangle system reuses two interfaces 
from the reusable classes, and one is the interface 
“getTriTyp”, which can calculate the triangle type 
according to the input of three sides. The interface 
contract defined manually is shown in Figure 2 and the 
contract inferred by Daikon is listed in Figure 3. 

For each subject, the numbers of atomic 
expressions (see Definition 1 in Section 3.2.1) 
included in these two kinds of contracts are listed in 
Table 3, respectively. Note that although Daikon often 
infers many invariants, it does not mean that the 
quality of the inferred contracts is always good. For 
example, for the Deposit interface of ATM, Daikon 
infers “Deposit_Amount != Account_Number”. This 
invariant compares two integer parameters that are not 
comparable. Thus it is not helpful for testing. 

To evaluate the preceding criteria, we manually 
generated an initial test suite for each subject based on 
the preconditions of their interface contracts, using 
equivalence-class partitioning and boundary-value 
analysis. The number of test cases and fault-exposure 
ratio (abbreviated as FER) for each test suite are listed 
in Table 4. The rows of Quantity, M-FER, C-FER and 
S-FER show the number of test cases, the fault-
exposure ratios of the faults seeded in the main 
program, the components, and the entire system of 
each initial test suites, respectively. The fault-exposure 
ratio of Finance cannot achieve 100% because the test 
suite cannot reveal faults seeded in the code for the 
determination of “TaxOnTax”. We checked the code of 
“TaxOnTax” manually and found that it is dead code, 
but we are not sure if there is other dead code in 
Finance. 

4.1.3. Studied Criteria 
We conducted our experimental study by 

comparing our approach with interface mutation (IM) 
[8,33] and techniques based on component interaction 
graphs (CIG), including All Interfaces (AI), All Events 
(AE), and All Context Dependences (ACD-1) [34, 13]. 
Because of the unavailability of source code of reused 
components, the first group of IM operators requiring 
source code was not applied, and the ACD-2 criterion 
using content dependence relationships derived from 
detailed design documents was not considered.  

 /* @pre a>0 && b>0 && c>0; 
@post Result==1||Result==2||Result==3||Result==4;  
@post Result ==1 implies (a!=b && b!=c); 
@post Result ==2 implies (a==b || b==c || a==c); 
@post Result ==3 implies (a==b && b==c); 

*/ 
     public int getTriTyp ( int a, int b, int c) 

Figure 2. Interface contract defined manually 

Tri.getTriTyp(int, int, int):::ENTER 
a>= b 
b>=c 
a>=c 
Tri.getTriTyp(int, int, int):::EXIT 
return >= 1 
return != orig(a) 
return != orig(b) 
return != orig(c) 
Figure 3. Interface contract inferred by Daikon 

Table 4.  Initial test suites of subject systems 
Subjects Triangle ATM Finance 

Quantity 183 79 120 
M-FER① (%) 100.00 100.00 100.00 
C-FER② (%) 100.00 100.00 75.00 
S-FER③ (%) 100.00 100.00 77.78 
①M-FER: the FER of the faults seeded in the main program 

C② -FER: the FER of the faults seeded in components 
S③ -FER: the FER of the faults seeded in the entire system 

4.1.4. Application Scenarios 
Test-suite reduction and test-case prioritization 

are two typical scenarios of applying a test adequacy 
criterion in regression testing. We evaluated the 
effectiveness of applying the studied criteria in these 
two scenarios in our study. To be fair with all the five 
criteria, we used the algorithm proposed by Harrold et 
al. [15] in test-suite reduction, and used the strategy for 
achieving additional coverage in prioritization 
(Rothermel et al. [29] show different strategies in test-
case prioritization). To evaluate the effectiveness of 
interface mutation (IM), Delamaro et al. [8] seeded 
faults in both components and their callers, and used 
fault-exposure ratios as the metric. Similar to IM, our 
ICM is also a mutation-based testing approach. 
Therefore, we seeded faults in the main program and 
source code of the reused components, and adopted 
fault-exposure ratios as the metric for test-suite 
reduction in our experimental study. We seeded faults 
in reused components because developers cannot 
ensure that there is no fault in published components, 
and some research has focused on testing black-box 
components [6,13,19,18]. The metric used in test-case 
prioritization is the average of the percentage of faults 
detected (APFD) metric proposed by Rothermel et al. 
[29].  We mutate some lines of source code using 
traditional mutation operators CRP, SVR, AOR, LCR, 
and ROR [26] to seed faults, including wrong 
constants and variables, faults in arithmetic, logical, 
and relational operators.  



4.2. Result and Analysis 
In this section, we report the experimental results 

of test-suite reduction (Section 4.2.1) and test-case 
prioritization (Section 4.2.2) using the interface-
contract mutation (ICM), IM, AI, AE, and ACD-1 
(denoted as ACD in this section). In order to 
distinguish the two groups of contracts inferred by 
Daikon and defined manually in our approach, we 
denote them as ICM_D and ICM, respectively. 

4.2.1. Test-Suite Reduction 
The major experimental results for test-suite 

reduction are listed in Table 5. The rows of Adequacy, 
Quantity, M-FER, C-FER, and S-FER show the scores 
of adequacy criteria, the number of test cases, the fault-
exposure ratios of the faults seeded in the main 
program, the components, and the entire system using 
the reduced test suites, respectively. From the table, we 
can observe that all the studied criteria can help reduce 
the initial test suites significantly. Our ICM seems to 
be more effective in finding faults, as the exposure 
ratios of our ICM are always higher than those of the 
others for the three subjects. Actually, the test cases 
selected by our ICM can achieve most of the fault-
exposure ratios of initial test suites, whereas the other 
criteria cannot. The research of Rothermel et al. [28] 
has shown that test-suite reduction may reduce the 
ability of exposing faults. In our study, the test cases 
selected by our ICM seem to be more likely to 
preserve the ability of exposing faults. For Triangle 
and Finance, the fault-exposure ratios of the test cases 
selected by our ICM are the same as those of the initial 
test suites. For ATM, although the fault-exposure ratio 
of the test cases selected by our ICM is not the same as 
the initial test suite, it is still higher than those of the 
test cases selected by other criteria. 

Table 5 illustrates that our ICM_D is not as 
helpful as our ICM, because the fault-exposure ratio of 
our ICM_D is higher than that of IM, AI, AE, and 
ACD in the Triangle System but lower than AE and 
ACD in the Finance System. We analyzed the 
contracts inferred by Daikon and found that these 
contracts exclude some useful information that 
integrators may be quite interested in. These contracts 
are inferred from executions of each independent 
component or interface but not from executions of the 
integrated system. The relationships of the interface 
outputs and some variables in the main program are 
not considered. It indicates that contracts representing 
only component providers’ requirements but not 
expressing integrators’ requirements are not enough. In 
addition, the version of Daikon that we used can detect 
only invariants including three variables at most, so 
contracts that consider the relationships of more than 
three variables are omitted. At last, when an interface 
parameter is a class X whose private member x can be 
accessed only through a getx()method, or when a 

Table 5. Comparison of selected test cases 
Triangle System 

Criteria IM AI AE ACD ICM_D ICM 
Adequacy①(%) 100.00 100.00 85.77 75.00 100.00 98.53 
Quantity 6 1 2 2 4 8 
M-FER (%) 0.00 100.00 100.00 100.00 100.00 100.00 
C-FER (%) 50.00 50.00 50.00 50.00 75.00 100.00 
S-FER (%) 40.00 60.00 60.00 60.00 80.00 100.00 

ATM System 
Criteria IM AI AE ACD ICM_D ICM 
Adequacy (%) 91.45 100.00 100.00 85.00 71.11 85.56 
Quantity 4 2 3 8 5 6 
M-FER (%) 66.67 66.67 66.67 66.67 50.00 66.67 
C-FER (%) 33.33 33.33 50.00 50.00 66.67 66.67 
S-FER (%) 50.00 50.00 58.33 58.33 58.33 66.67 

Finance System 
Criteria IM AI AE ACD ICM_D ICM 
Adequacy (%) 83.87 100.00 100.00 100.00 60.00 71.43 
Quantity 1 1 2 4 3 4 
M-FER (%) 100.00 100.00 100.00 100.00 100.00 100.00 
C-FER (%) 12.50 37.50 50.00 62.50 37.50 75.00 
S-FER (%) 22.22 44.44 55.56 66.67 44.44 77.78 
①Adequacy: Adequacy stands for mutation scores (MS) in IM and 

ICM; Adequacy stands for coverage in AI, AE, and ACD (see CIG 
approaches in Section 2.2 and Section 4.1.3. 

Table 6.  Mutants quantity comparison 
Approach Mutants Killed 

Mutants 
Equivalent 
 Mutants 

IM 95 84 8 
ICM_D 48 24 24 Triangle 

ICM 101 67 33 
IM 120 107 3 

ICM_D 73 32 28 ATM 
ICM 27 18 6 
IM 31 26 0 

ICM_D 27 12 7 Finance 
ICM 17 10 3 

component provides some query interfaces, such as a 
top() method of a Stack component, testers can 
heuristically write X.getx() or top() in contracts, but 
Daikon cannot. All these limitations may cause 
ICM_D not to be as effective as ICM. 

Note that actual capabilities for exposing faults of 
our ICM criteria are considerable when their reduced 
test suites cannot achieve very high contract mutation 
scores. This observation further confirms that our ICM 
seems to be more practical in exposing faults than IM 
and CIG-based criteria as an adequacy criterion for 
testing systems built on black-box components.  

Because ICM, ICM_D, and IM are mutation-
based criteria, we performed a further comparison of 
them in Table 6. The research results of Vincenzi et al. 
[33] show that the computational cost of IM is not 
greatly reduced compared to traditional mutation 
testing. The reason is that the first group of mutation 
operators, which are applied to mutate the 
implementation of interfaces, can generate thousands 
of mutants. As our experiments have not applied these 
IM operators, the number of IM mutants is small. 
Table 6 shows that the number of ICM mutants is 



almost as small as or much smaller than that of IM 
mutants in all systems. This obervation indicates that 
all the mutation techniques are efficient in this context. 
Furthermore, all the mutation techniques produced a 
group of equivalent mutants in our experiment. This 
result indicates that more efforts for identifying 
equivalent mutants would be needed in both IM and 
our ICM (as well as ICM_D). 

4.2.2. Test-Case Prioritization 
The results for test-case prioritization are shown 

in Figures 4-6. These figures show changes of the 
percentage of faults detected (the vertical axis) 
corresponding to the increase of the number of test 
cases (the horizontal axis). Due to space limit, the 
figures do not show the curves after achieving highest 
fault-exposure ratios. Figures 4-6 show the results of 
exposing faults in the entire subject systems. The 
results in all these figures confirm that our ICM and 
ICM_D can usually achieve better fault-exposure 
ratios than other criteria with the same number of test 
cases. We can also observe that our ICM or ICM_D 
always first achieves the highest fault-exposure ratios 
in the three subjects. 

In Figures 4-5, the number of test cases for 
achieving 100% FER using ICM in Triangle and ATM 
is much larger than that in test-suite reduction, and we 
suspect that it is probably because our interface-
contract mutation operators produced easily-killed 
mutants. When prioritizing test cases according to the 
mutation score (MS), once MS achieves its highest 
value early, the remaining test cases would not be 
prioritized.  

4.3. Threat to Validity 
Threats to internal validity mainly include factors 

that may also be responsible for experimental results 
except for the factors studied in the experiments. In our 
experiments, the algorithm of test-suite reduction, the 
strategy and the metric of test-case prioritization, and 
the metric for evaluating the quality of a test suite may 
affect our experimental results. In order to reduce this 
threat, we adopted algorithms, strategies, and metrics 
from previous work. We used the test-suite reduction 
algorithm proposed by Harrold et al. [15], the 
additional coverage strategy and the APFD metric for 
test-case prioritization proposed by Rothermel et al. 
[29], and the fault-seeding approach and the fault-
exposure-ratio metric adopted by Delamaro et al. [8]. 

One issue raised in the experiments is that there is 
no powerful evidence for the reliability of using fault-
exposure ratios as metrics. Thus we are not very sure if 
faults seeded in the main program and components’ 
source code could precisely simulate faults appearing 
in practice.  However, we have not found more 
realistic techniques for validating the effectiveness of 
test suites in testing component-based software. So we  

 

 

 
used fault-exposure ratios as metrics, which have been 
widely used in testing and are also adopted in interface 
mutation [8]. Because our fault model is based on the 
deviation of contracts, we expect that our approach 
could perform better than what the experimental results 
have shown if the seeded faults can precisely simulate 
faults appearing in testing software built on black-box 
components in practice. 

Factors that may affect the generalization of 
experimental results are threats to external validity. In 
our study, we used only one small subject and two 
medium-sized subjects built on Java reusable class 
libraries. Although these subjects are programs from 
public software libraries or used in previous work, our 
experimental results may not be generalized to other 



different programs. To reduce this threat, we plan to do 
more experiments with large-sized systems that reuse 
more kinds of black-box components in our future 
work, such as large distributed systems built on EJBs 
and Web Services. 

5. Benefits and Costs of Using Interface 
Contracts 

The main reason for the effectiveness of interface-
contract mutation lies in the use of interface contracts. 
Interfaces of black-box components alone contain little 
information of the components, whereas interface 
contracts can provide the tester with more valuable 
information. Another benefit of interface contracts is 
that they themselves can help reveal faults, because 
interface contracts can capture invalid inputs and 
outputs between the components and the main program.  

The preceding benefits are achieved with costs of 
specifying interface contracts, which are essential for 
the use of interface-contract mutation. However, 
contracts are not defined only for the purpose of 
providing information for testing. Meyer [25] pointed 
out that contracts can help programmers write high-
quality programs, and Szyperski [32] also pointed out 
that contracts can make reusable building blocks easier 
to implement and compose. Therefore, the effort for 
defining contracts is not just the cost of providing 
information for testing, but actually the expense paid 
to achieve all the preceding advantages. Consequently, 
interface-contract mutation can be considered as a low-
cost approach in this context. 

6. Conclusions 
Because of unavailability of source code, testing 

software built on black-box components becomes a 
challenging issue. In our research, we proposed a new 
adequacy criterion for testing this type of software. We 
performed an experimental study on our criterion 
together with four other previously proposed criteria 
(IM was adapted in order to test this type of software 
in our study) for two typical tasks in regression testing. 
The experimental results show that our criterion is 
more effective for both test-suite reduction and test-
case prioritization than previous criteria.  

We have applied contract mutation in testing 
black-box components [19,18] ([18] is the journal 
version of [19] with two more subject components in 
its experimental study).  Compared with previous work, 
the main contributions of our work are as follows: 

 T aper aims to address a new problem. In our 
previous work, we applied contract mutation to test 
black-box components. However, when testers face a 
software system built on black-box components, 
testing individual components can ensure only the 
quality of these building blocks in the system. 
Testers still need to ensure the quality of the entire 
system. In this paper, we aim at testing software built 

on black-box components. Specifically, the primary 
concern in this paper is the misunderstanding 
between the component provider and the system 
integrator.  

his p
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tomatically inferred contracts. In 
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le ents can help 
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 T aper proposes a fault model and mutation 
operators that are specific for testing component-
based software. The mutation operators in our 
previous work simulated only the deviation from the 
interface contracts by the component provider. When 
composing a system using components, both the 
component provider and the system integrator may 
deviate from the interface contracts. Therefore, in 
this paper, we analyzed the fault model for deviations 
by both of them, and proposed four mutation 
operators to simulate them. Among the operators, 
PreStr and PostWk are totally new. Furthermore, the 
mutation operators in this paper are based on the 
normal form of contracts that are easier to implement. 
 The evaluation in this paper uses m
sy s. We have used an in-house version of ATM 
and Tritype in the evaluation of our initial research 
on testing black-box components [19], and used two 
more programs (i.e., Middle and a Siemens program 
named Tcas) in its extension [18]. All these programs 
are small-sized subjects whose LOCs are from 24 to 
300. In this paper, we evaluated our approach by 
conducting an experimental study on three subjects, 
two of which are medium-sized programs with more 
than 4700 and 5400 lines of code, respectively.  
 This paper also evaluates the effectiveness of our 
ICM approach on au
th erimental study of our previous work, we also 
considered manually defined contracts for 
components interfaces. In this paper, we not only 
manually specified contracts for the subjects, but also 
used a dynamic invariant detector (i.e., Daikon) to 
infer contracts for reused components. Note that 
mutating automatically inferred contracts provides a 
potential solution to further automate our technique 
and reducing the cost of defining contracts. 
 The evaluation in this paper is based on comparison 
with existing criteria for typical tasks in r
te . In the experimental study of our previous 
work, we compared the contract-based mutation 
operators with the five key traditional mutation 
operators. In this paper, we compared our ICM with 
other test adequacy criteria, including interface 
mutation and CIG-based criteria. Furthermore, this 
paper evaluates our approach in two important and 
practical application scenarios of test adequacy 
criteria in regression testing: test-suite reduction and 
test-case prioritization. 

In practice, many components are stateful and 
gal operation sequences of compon

ent these components from reaching error states. 
Currently, our approach does not support specifying 
legal operation sequences in contracts. We plan to use 



“trace” [25], which aims to define operation sequences 
of classes in our interface contract. We also plan to 
develop mutation operators for “trace” in our future 
work. 
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