
Selected as one ofthe Best Papers. Appears inProceedings of the 20th IEEE International Conference on Software Maintenance
An extended version is invited for submission to a special issue ofIEEE Transactions on Software Engineering (TSE)

Checking Inside the Black Box:
Regression Testing Based on Value Spectra Differences

Tao Xie David Notkin

Department of Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA

E-mail:{taoxie,notkin }@cs.washington.edu

Abstract

Comparing behaviors of program versions has become
an important task in software maintenance and regression
testing. Traditional regression testing strongly focuses on
black-box comparison of program outputs. Program spec-
tra have recently been proposed to characterize a program’s
behavior inside the black box. Comparing program spectra
of program versions offers insights into the internal behav-
ior differences between versions. In this paper, we present
a new class of program spectra, value spectra, which en-
riches the existing program spectra family. We compare the
value spectra of an old version and a new version to de-
tect internal behavior deviations in the new version. We
use a deviation-propagation call tree to present the devi-
ation details. Based on the deviation-propagation call tree,
we propose two heuristics to locate deviation roots, which
are program locations that trigger the behavior deviations.
We have conducted an experiment on seven C programs
to evaluate our approach. The results show that our ap-
proach can effectively expose program behavior differences
between versions even when their program outputs are the
same, and our approach reports deviation roots with high
accuracy for most programs.

1. Introduction

Regression testing retests a program after it is modified.
In addition to validating new added functionality, regression
testing compares the behavior of a new version to the behav-
ior of an old version to assure that no regression faults are
introduced. When the outputs produced by two versions are
different, regression faults are exposed. However, even if a
variable-value difference is caused immediately after a new
faulty statement is executed, the fault might not be prop-
agated to the observable outputs because of the informa-
tion loss or hiding effects. Checking inside the black box

has been used to expose faults complementing the tradi-
tional black box output checking approach. Runtime asser-
tion [2, 15] or inferred invariant checking [4, 6] is used to
validate that certain properties inside the black box are sat-
isfied during program execution. Recently program spectra
have been proposed to characterize a program’s behavior in-
side the black box [14]. Structural program spectra, such as
branch, path, data dependence, and execution trace spectra,
have been proposed in the literature [3, 7, 14].

In this paper, we propose a new class of program spec-
tra calledvalue spectra. The value spectra enrich the exist-
ing program spectra family [3, 7, 14], which primarily in-
clude structural spectra. Value spectra capture internal pro-
gram states during a test execution. An internal program
state is characterized by the values of the variables in scope.
We collect internal program states at each user-function en-
try and exit as the value spectra of a test execution. Ade-
viation is the difference between the value of a variable in
a new program version and the corresponding one in an old
version. We compare the value spectra from an old version
and a new version, and use the spectra differences to detect
behavior deviations in the new version. We use a deviation-
propagation call tree to show the details of the deviations.

A deviation rootis a program location in the new version
that triggers specific behavior deviations. A deviation root
is among a set of program locations that are changed be-
tween versions. We propose two heuristics to locate devia-
tion roots based on the deviation-propagation call tree. Iden-
tifying the deviation roots for deviations can help under-
stand the reasons for the deviations and determine whether
the deviations are regression-fault symptoms or just ex-
pected. Identified deviation roots can be additionally used
to locate regression faults if there are any.

This paper makes the following main contributions:
• We propose a new class of program spectra, called

value spectra, to enrich the existing program spectra
family. We present three variants of value spectra.

• We compare the value spectra from an old version and

28

a new version to detect behavior deviations in the new
version. We use a deviation-propagation call tree to
show the details of the deviations.

• We propose two heuristics to locate deviation roots
based on the deviation-propagation call tree.

• We conduct an experiment on seven C programs to
evaluate our new approach. The experimental results
show that our approach can effectively report internal
behavior differences between versions even when their
program outputs are the same. Our deviation-root lo-
calization reports deviation roots with high accuracy
for most programs.

The next section proposes value spectra. Section 3 de-
scribes how we exploit the differences between value spec-
tra of the same test on two versions. Section 4 describes the
experiment that we conduct to evaluate our approach. Sec-
tion 5 discusses related work and then Section 6 concludes.

2. Value Spectra

This section introduces value spectra, which are used
to characterize program behavior. We first describe inter-
nal program state transitions in the granularity of user func-
tions. Based on the internal program state transitions, we
next define three variants of value spectra.

2.1. Internal Program State Transitions

The execution of a program can be considered as a se-
quence of internal program states [21]. Each internal pro-
gram state comprises the program’s in-scope variables and
their values at a particular execution point. Each program
execution unit (in the granularity of statement, block, code
fragment, function, or component) receives an internal pro-
gram state and then produces a new one. The program ex-
ecution points can be the entry and exit of a user-function
execution when the program execution units are those code
fragments separated by user-function call sites. Program
output statements (usually I/O output operations) can ap-
pear within any of those program execution units. Since it
is relatively expensive in practice to capture all internal pro-
gram states between the executions of program statements,
we focus on internal program states in the granularity of
user functions, instead of statements.

A function-entry stateis an internal program state at the
entry of a function execution. A function-entry state com-
prises the function’s argument values and global variable
values. A function-exit stateis an internal program state
at the exit of a function execution. A function-exit state
comprises the function return value, updated argument val-
ues, and global variable values. Note that a function-exit
state does not consider those local variable values. If any
of the preceding variables at the function entry or exit is
of a pointer type, the function-entry or function-exit state

#include <stdio.h>
int max(int a, int b) {

if (a >= b) {
return a;

} else {
return b;

}
}
int main(int argc, char *argv[]) {

int i, j;
if (argc != 3) {

printf("Wrong arguments!");
return 1;

}
i = atoi(argv[1]);
j = atoi(argv[2]);
if (max(i,j) >= 0){

if (max(i, j) == 0){
printf("0");

} else {
printf("1");

}
} else {

printf("-1");
}
return 0;

}

Figure 1. A sample C program

additionally comprises the variable values that are directly
or indirectly reachable from the pointer-type variable. A
function executionis characterized by its function-entry and
function-exit states.

To illustrate value spectra, we use a sample C program
shown in Figure 1. This program receives two integers as
command-line arguments. It outputs-1 if the maximum of
two integers is less than0, outputs0 if the maximum of
them is equal to0, and outputs1 if the maximum of them
is greater than0. When the program receives fewer or more
than two command-line arguments, it outputs an error mes-
sage.

Figure 2 shows the internal program state transitions of
the sample program with the command line arguments of
"0 1" . In the program execution, themain function calls
the max function twice with the same arguments, and then
outputs"1" as is shown inside the cloud in Figure 2.

2.2. Value Spectra Types

Several classes of program spectra are proposed in the
literature, including branch, path, data-dependence, execu-
tion trace, and output spectra [3, 7, 14]. Execution-trace
spectra record the sequence of program statements traversed
as a program executes. Output spectra record the output
values produced by a program as it executes [7]. Except
for output spectra, all these spectra are based on execu-
tion structure. We refer to these spectra as structural spec-
tra. We propose a new class of program spectra,value spec-

29

tra. Value spectra track the variable values in internal pro-
gram states, which are exercised as a program executes.

We propose three new variants of value spectra:
• User-function value hit spectra(in short asvalue hit

spectra). Value hit spectra indicate whether a user-
function execution is exercised.

• User-function value count spectra(in short asvalue
count spectra). Value count spectra indicate the num-
ber of times that a user-function execution is exercised.

• User-function value trace spectra(in short asvalue
trace spectra). Value trace spectra record the sequence
of the user-function executions traversed as a program
executes.

Table 1 shows the value spectra and the output spectra for
the sample C program execution with input"0 1" . We rep-
resent a user-function execution using the following form:
funcname(entry (argvals), exit (argvals,ret))

where funcname represents the function name,argvals

followed by entry represents the argument values and
global variable values at the function entry,argvals fol-
lowed byexit represents the updated argument values and
global variable values at the function exit, andret rep-
resents the return value of the function. Function execu-
tions in value hit spectra or value count spectra have no
ordering among them but those in value trace spectra do
have ordering. In value count spectra, a count marker of
"* num" is appended to the end of each function execu-
tion to show that the function execution is exercisednum

times. Note that if we change the secondmax function call
from max(i,j) to max(j,i) , we will have two distinct
entities formax in the value hit and value count spectra. It
is because these two function executions will become dis-
tinct with different function-entry or function-exit states. In
value trace spectra, the markers of" ∨" are inserted in the
function-execution sequence to indicate the returns of func-
tion executions [13]. The value trace spectra for the sample
program shows thatmain calls max twice. Without these
markers, the same function-execution sequence would re-
sult frommain calling max andmax calling max.

Harrold et al. define subsumption relationships among
program spectra [7]. Spectra typeS1 subsumes spectra type
S2 if and only if whenever theS2 spectra for programP, ver-
sionP’ , and inputi differ, theS1 spectra forP, P’ , andi

differ. Spectra typeS1 strictly subsumes spectra typeS2 if
S1 subsumesS2 and for some programP, versionP’ , and
i , the S1 spectra differ but theS2 spectra do not. Spectra
typesS1 andS2 are incomparable if neitherS1 strictly sub-
sumesS2 nor S2 strictly subsumesS1.

The value trace spectra strictly subsume the value count
spectra, and the value count spectra strictly subsume the
value hit spectra. The output spectra are incomparable with
any of the three value spectra, since the program’s output
statements inside a particular user function body might out-
put some constants or variable values that are not captured

main
entry
state

max
entry
state

max
exit

state

main
exit

state

argv[2]

3

“0”

“1”

argc

argv[1]

max
entry
state

max
exit

state

0

1

a

b

ret

0

1

1

a

b

argv[2]

3

“0”

“1”

0

argc

argv[1]

0

1

a

b

ret

0

1

1

a

b

ret

“1”

max function exec-1 max function exec-2

main function exec
Figure 2. Internal program state transitions of
the sample C program execution with input
"0 1"

in that user function’s entry or exit state. For example, when
we shuffle thoseprintf statements in themain function
body, the program still has the same value spectra but differ-
ent output spectra. On the other hand, the executions with
different value spectra might have the same output spec-
tra. However, when those function bodies containing output
statements are not modified in versionP’ , the value trace
spectra strictly subsumes the output spectra. In addition, if
we also collect the entry and exit states of system output
functions in the value trace spectra, the value trace spec-
tra strictly subsume the output spectra.

Execution-trace spectra strictly subsume any other pro-
gram spectra, including the three value spectra. Tra-
ditional structural spectra, such as branch, path, and
data-dependence spectra are incomparable with any of the
three value spectra. For example, when we change the state-
ment of i = atoi(argv[1]) to i = atoi(argv[1])

+ 1, we will have the same traditional structural spec-
tra but different value spectra with input"0 1" run-
ning on the two versions. On the other hand, when we
move the statement ofprintf("1") from within the in-
nerelse branch to after the innerelse branch, and add a
redundant statementi = i + 1 after theprintf("1")

statement, we will have different traditional structural spec-
tra, but the same value spectra with input"0 1" running
on the two versions.

3. Value Spectra Differences

This section presents how we exploit the differences be-
tween value spectra of the same test on two versions. We
first describe how we compare value spectra. We then de-
scribe the deviation propagations exhibited by spectra dif-

30

spectra profiled entities
value hit spectra main(entry (3,"0","1"), exit (3,"0","1",0)), max(entry (0,1), exit (0,1,1))
value count spectra main(entry (3,"0","1"), exit (3,"0","1",0))*1, max(entry (0,1), exit (0,1,1))*2
value trace spectra main(entry (3,"0","1"), exit (3,"0","1",0)), max(entry (0,1), exit (0,1,1)), ∨,

max(entry (0,1), exit (0,1,1)), ∨, ∨
output spectra "1"

Table 1. Value spectra for the sample program with input "0 1"

ferences. We finally present two heuristics to locate devia-
tion roots based on deviation propagation.

3.1. Spectra Comparison

In this paper, we primarily focus on the comparison of
value spectra from the same test running on an old version
and a new version. We need to compare function execu-
tions from two versions when comparing the value spec-
tra from these versions. We can reduce the comparison of
two function executions to the comparison of the function
names, signatures, and the corresponding variable values in
the function-entry and function-exit states from these two
function executions. When some variables in a function en-
try or exit state are pointers, their variable values are mem-
ory addresses. In the presence of these pointer variables,
running a test on the same program twice might produce dif-
ferent value spectra. If we just ignore these pointer-variable
values, we lose the referencing relationships among vari-
ables. To address this problem, we perform a linearization
algorithm on each function-entry or function-exit state. In
this paper, we omit the details of the algorithm, which is
described elsewhere [19]. This mechanism avoids compar-
ing memory addresses but still compares referencing rela-
tionships. If two function executions have the same func-
tion name, signature, linearized function-entry state, and
linearized function-exit state, these two function executions
are equivalent.

The comparison of value count spectra additionally con-
siders the times that equivalent function executions are ex-
ercised. The value hit or value count spectra do not distin-
guish two equivalent function executions that are called by
different callers or in different sequence order. In the com-
parison of value hit or value count spectra, given a function
execution in the new version, the compared function exe-
cution in the old version is the one that has the same func-
tion name, signature, and the same function-entry state. If
we cannot find such a function execution in the old version,
the compared function execution is anempty function exe-
cution. An empty function execution has a different function
name, function signature, function-entry state, or function-
exit state from any other regular function executions.

The comparison of value trace spectra further consid-
ers the calling context and sequence order in which func-

tion executions are exercised. If we want to determine just
whether two value trace spectra are the same, we can sim-
ply compare the concatenated function-execution sequence
to see whether they are the same. If we want to deter-
mine the detailed function-execution differences between
two value trace spectra, we can use the constructed dynamic
call tree and the GNU Diffutils [5] to match up the com-
pared function executions from two value trace spectra. Af-
ter the matching, when a function executionf is present
in the old (new) version but absent in the new (old) ver-
sion, we can consider that an empty function execution in
the new (old) version is compared withf .

3.2. Deviation Propagation

Assumefe is a function execution in the new version
and fe’ is its compared function execution in the old ver-
sion. If fe andfe’ are equivalent, thenfe is anon-deviated
function execution. If fe and fe’ are not equivalent, then
fe is adeviated function execution. We have categorized a
deviated function execution into one of the following two
types:

• Deviation container. fe is a deviation container, iffe
has the same function name and signature, and the
same function-entry state asfe’ , but has a different
function-exit state fromfe’ . There is a certain behav-
ior deviation inside a deviation container. Note that
when there is a certain behavior deviation inside a
function execution, the function execution might not
be observed to be a deviation container, since the be-
havior deviation might not be propagated to the func-
tion exit.

• Deviation follower. fe is a a deviation follower, iffe
does not have the same function-entry state asfe’ .
There is a certain behavior deviation before a deviation
follower. For value count spectra, there is an additional
situation that a function execution is categorized as a
deviation follower besides the preceding condition. If
the count of an equivalent function execution from two
versions are different, we need to use a matching tech-
nique (similar as the one used in the value trace spec-
tra comparison) to identify which particular function
executions in one version are absent in the other ver-
sion.

31

The details of value spectra differences can provide in-
sights into deviation propagation in the execution of the
new version. We first construct a regular dynamic call tree
from the data trace collected during a test execution. We
then annotate the call tree with deviation information to
form a deviation-propagation call tree. Figure 3 shows the
deviation-propagation call trees of two test executions on a
new (faulty) version of thetcas program. Thetcas pro-
gram, its faulty versions, and test suite are contained in a
set ofsiemens programs [8], which are used in the exper-
iment described in Section 4. In the call trees, each node is
associated with a function execution, and parent node calls
its children nodes. For brevity, each node is marked with
only the corresponding function name. The execution order
among function executions is from the top to the bottom,
with the earliest one at the top. If there is any deviated func-
tion execution, its deviation type is marked in the end of the
function name.

Usually behavior deviations are originated from certain
program locations that are changed in the new version.
These program locations are calleddeviation roots. The
function that contains a deviation root is calleddeviation-
root container. In the new (faulty) version of thetcas pro-
gram, a relational operator> in the old (correct) version is
changed to>=. The function that contains this changed line
is Non Crossing Biased Descend .

Some variable values at later points after a deviation-
root execution might differ from the ones in the old ver-
sion because of the propagation of the deviations at the
deviation root. The deviations at the function exit of the
deviation-root container might cause the deviation-root con-
tainer to be observed as a deviation container. Note that
some callers of the deviation-root container might also
be observed as deviation containers. For example, in the
lower call tree of Figure 3, the deviation-root container
Non Crossing Biased Descend is observed as a devia-
tion container and its calleralt sep test is also observed
as a deviation container.

Sometimes deviations after a deviation-root execution
might not be propagated to the exit of the deviation-root
container, but the deviations might be propagated to the en-
tries of some callees of the deviation-root container, causing
these callees to be observed as deviation followers. For ex-
ample, in the upper call tree of Figure 3, the deviation-root
container’s calleesOwnBelow Threat and ALIM are ob-
served as deviation followers.

3.3. Deviation-Root Localization

In the previous section, we have discussed how devia-
tions are propagated given a known deviation root. This sec-
tion explores the reverse direction: locating deviation roots

(The execution of the 58th test)
main

|__initialize
|__alt_sep_test

|__Non_Crossing_Biased_Climb
| |__Inhibit_Biased_Climb
| |__Own_Above_Threat
|__Non_Crossing_Biased_Descend
| |__Inhibit_Biased_Climb
| |__Own_Below_Threat--------[dev follower]
| |__ALIM--------------------[dev follower]
|__Own_Above_Threat

(The execution of the 91st test)
main

|__initialize
|__alt_sep_test-------------------[dev container]

|__Non_Crossing_Biased_Climb
| |__Inhibit_Biased_Climb
| |__Own_Above_Threat
| |__ALIM
|__Own_Below_Threat
|__Non_Crossing_Biased_Descend-[dev container]

|__Inhibit_Biased_Climb
|__Own_Below_Threat

Figure 3. Deviation-propagation call trees of
a new version (the 9th faulty version) of the
tcas program

by observing value spectra differences. This task is called
deviation-root localization.

A deviation container’s function-entry state is not devi-
ated but its function-exit state is deviated. In contrast, a de-
viation follower’s function-entry state has already been de-
viated. The function-entry or function-exit state of a non-
deviated function execution is usually not deviated. Devia-
tion roots are likely to be within those statements executed
within a deviation container or before a deviation follower.
The following two heuristics are to narrow down the scope
for deviation roots based on deviation propagation effects:

Heuristic 1 Assumef is a deviation follower andg is
the caller off . If (1) g is not a deviation follower, but a de-
viation container or a non-deviated function execution, and
(2) neither a deviation container nor a deviation follower is
present between the entry ofg and the call site off , de-
viation roots are likely to be among those statements exe-
cuted between the entry ofg and the call site off , exclud-
ing user-function-call statements.

Heuristic 2 Assumef is a deviation container. If none of
f ’s callees is a deviation follower, deviation roots are likely
to be among those statements executed withinf ’s function
body, excluding user-function-call statements.

For example, in the upper and lower call trees of Fig-
ure 3, we use Heuristic 1 and Heuristic 2 to accurately
locate the deviation root to be among those statements in
Non Crossing Biased Descend , respectively.

When multiple changes are made at different program lo-
cations in the new version, there might be more than one de-

32

viation root that causes behavior deviations. If a deviation
root’s deviation effect is not propagated to the execution of
another deviation root, and each deviation root causes their
own value spectra differences, our heuristics can locate both
deviation roots at the same time.

4. Experiment

This section presents the experiment that we conduct to
evaluate our approach. We first describe the instrumenta-
tion, objective, and measures of the experiment. We then
present and discuss the experimental results. We finally dis-
cuss scalability issues and threats to validity.

4.1. Instrumentation

We prototype our approach to determine the practical
utility. Our prototype is based on the Daikon [4] front end
for C programs. Daikon is a system for dynamically detect-
ing likely program invariants. It runs an instrumented pro-
gram, collects and examines the values that it computes, and
detects patterns and relationships among those values. The
Daikon front end instruments C program code for collect-
ing data traces during program executions. We have devel-
oped several Perl scripts to compute and compare all three
variants of value spectra and output spectra from the col-
lected data traces. In the experiment, we have implemented
the deviation-root localization for only value hit spectra,
and we plan to implement and experiment the deviation-
root localization for value count and value trace spectra in
future work. Given two spectra, our tools report in textual
form whether these two spectra are different. For value hit
spectra, our tools can display value spectra differences in
deviation-propagation call trees in plain text (as is shown
in Figure 3) and report deviation-root locations also in tex-
tual form.

We use seven C programs as subjects in the experiment.
The researchers at Siemens Research created these seven
programs with faulty versions and a set of test cases [8];
these programs are popularly referred as thesiemens pro-
grams. The researchers constructed the faulty versions by
manually seeding faults that were as realistic as possible.
Each faulty version differs from the original program by one
to five lines of code. The researchers kept only the faults that
were detected by at least three and at most 350 test cases in
the test suite. Columns 1–4 of Table 2 show the program
names, number of functions, lines of executable code, and
number of tests of these seven subject programs, respec-
tively. Column 5 contains two numbers separated by"/" .
The first number is the number of the faulty versions se-
lected in this experiment and the second number is the to-
tal number of faulty versions. Column 6 shows the average

program funcs loc tests vers |trc|(kb/t)

printtok 18 402 4130 7/7 36
printtok2 19 483 4115 10/10 50
replace 21 516 5542 12/32 71
schedule 18 299 2650 9/9 982
schedule2 16 297 2710 10/10 272
tcas 9 138 1608 9/41 8
totinfo 7 346 1052 6/23 27

Table 2. Subject programs used in the exper-
iment

space cost (in kilobytes) of storing data traces collected for
a test.

We perform the experiment on a Linux machine with a
Pentium IV 2.8 GHz processor. In the experiment, we use
the original program as the old version and the faulty pro-
gram as the new version. We use all the test cases in the
test suite for each program. To control the scale of the ex-
periment, for those programs with more than 10 faulty ver-
sions, we select only those faulty versions in an order from
the first version to make each selected version have at least
one faulty function that has not yet occurred in previously
selected versions.

4.2. Objective and Measures

The objective of the experiment is to investigate the fol-
lowing questions:

1. How different are the three value spectra types and out-
put spectra type in terms of their deviation-exposing
capability?

2. How accurately do the deviation-root localiza-
tion heuristics locate the deviation root?

Given spectra typeS, program P , new versionP ′,
and the setCT of tests that cover the changed lines, let
DT (S, P, P ′, CT) be the set of tests each of which ex-
hibits S spectra differences andLT (S, P, P ′, CT) be
the set of tests each of which exhibits spectra differ-
ences and we use these differences to accurately locate de-
viation roots. To answer Questions 1 and 2, we use the
following two measures respectively:

• Deviation exposure ratio. The deviation exposure ra-
tio for spectra typeS is the number of the tests in
DT (S, P, P ′, CT) divided by the number of the tests

in CT , given by the equation:|DT (S,P,P ′,CT)|
|CT |

• Deviation-root localization ratio. The deviation-root
localization ratio for spectra typeS is the number of
the tests inLT (S, P, P ′, CT) divided by the number
of the tests inDT (S, P, P ′, CT), given by the equa-

tion: |LT (S,P,P ′,CT)|
|DT (S,P,P ′,CT)|

33

Higher values of either measure indicate better results.
In the experiment, we measure the deviation-root localiza-
tion ratio in the function granularity for the convenience of
measurement. That is, when the deviation-root localization
locates the deviation-root containers (the functions that con-
tain changed lines), we consider that the localization accu-
rately locates the deviation root. For those changed lines
that are in global data definition portion, we consider the
deviation-root containers to be those functions that contain
the executable code referencing the variables containing the
changed data.

We measure deviation exposure ratios for each combina-
tion of a program, its new version, and a spectra type. We
measure deviation-root localization ratios for each combi-
nation of a program, its new version, and value hit spectra
type.

4.3. Results

Figures 4 and 5 use boxplots to present the experimen-
tal results. The box in a boxplot shows the median value as
the central line, and the first and third quartiles as the lower
and upper edges of the box. The whiskers shown above and
below the boxes technically represent the largest and small-
est observations that are less than 1.5 box lengths from the
end of the box. In practice, these observations are the low-
est and highest values that are likely to be observed. Small
circles beyond the whiskers are outliers.

Figure 4 shows the experimental results of deviation ex-
posure ratios. The vertical axis lists deviation exposure ra-
tios and the horizontal axis lists four spectra types: out-
put, value hit, value count, and value trace spectra. Fig-
ure 5 shows the experimental results of deviation-root lo-
calization ratios for value hit spectra. The vertical axis lists
deviation-root localization ratios and the horizontal axis
lists subject names.

We observed that checking value spectra differences in-
creases the deviation exposure ratio about a factor of three
compared to checking program output differences. This in-
dicates that a relatively large portion of deviations could not
be propagated to program outputs. There are no significant
differences of the deviation exposure ratios among the three
value spectra, except that the third quartile of the value trace
spectra is slightly higher than the one of the value hit or
value count spectra.

In Figure 5, the deviation-root localization ratios are near
1.0 for all subjects except for theschedule2 program;
therefore, their boxes are collapsed to almost a straight
line near the top of the figure. The results show that our
heuristics for value hit spectra can accurately locate devi-
ation roots for all subjects except for theschedule2 pro-
gram. We inspectedschedule2 ’s traces carefully to find
out the reasons. By default, the Daikon front end instru-

output value hit value count value trace

0
0.

2
0.

4
0.

6
0.

8
1.

0

Figure 4. Experimental results of deviation
exposure ratios

printtok printtok2 replace schedule schedule2 tcas totinfo

0
0.

2
0.

4
0.

6
0.

8
1.

0

Figure 5. Experimental results of deviation-
root localization ratios for value hit spectra

ments nested or recursive types (structs that have struct
members) with the instrumentation depth of three. For ex-
ample, given a pointer to the root of a tree structure, we
collect the values of only those tree nodes that are within
the tree depth of three. Inschedule2 , we did not col-
lect complete program state information in a key linked-list
struct using the instrumentation depth of three. In some of
schedule2 ’s faulty versions, deviations occur on the key
linked-list struct beyond the depth of three. Therefore we
could not detect the deviations at the exits of deviation roots.
We expect that we could increase the deviation-root local-
ization ratios after increasing the instrumentation depth.

The experiment simulates the scenario of introducing re-
gression faults into programs during program modifications.
When programmers perform a modification that is not ex-

34

pected to change program behavior, our spectra compari-
son approach can show the occurrences of unintended devi-
ations and our deviation-root localization accurately locates
the regression faults. Moreover, we can reverse the version
order by treating the faulty version as the old version and the
correct version as the new version. Then we can conduct a
similar experiment on them. This simulates the scenario of
fixing program bugs. Since our spectra comparison is sym-
metry, we expect to get the same experimental results. This
shows that when programmers perform a bug-fixing modi-
fication, our approach can show them the occurrences of the
intended deviations.

4.4. Scalability

The space cost of our approach is primarily the space
for storing collected data traces. The last column of Table 2
shows the average space in kilobytes (KB) required for stor-
ing data trace for a test. The average required space for a
test ranges from 8 to 71 KB except for theschedule and
schedule2 programs (with the space of 982 and 272 KB,
respectively), because these two programs contain global
linked-list structs, whose collected values require much
space.

The time cost of our approach is primarily the time
of running instrumented code (collecting and storing data
traces) as well as computing and comparing value spectra.
The slowdown ratio of instrumentation is the time of run-
ning a test on instrumented code divided by the time of run-
ning the same test on uninstrumented code. We observed
that the average slowdown ratio of instrumentation ranges
from 2 to 7 except for theschedule andschedule2 pro-
grams (with the ratios of 48 and 31, respectively). The av-
erage elapsed real time for running a test on instrumented
code ranges from 7 to 30 milliseconds (ms) except for
the schedule and schedule2 programs (with the time
of 218 and 137 ms, respectively). The elapsed real time
for computing and comparing two value spectra of a test
ranges from 24 to 170 ms except for theschedule and
schedule2 programs (with the time of 3783 and 1366 ms,
respectively).

We speculate that applying our approach on larger pro-
grams could achieve better improvement of deviation expo-
sure over program output checking, because deviations are
probably less likely to be propagated to the outputs of larger
programs. We speculate that deviation-root localization ra-
tios might be less affected by the scale of programs than
the type of variables used by programs (e.g., simple versus
complex data structures). In future work, we plan to vali-
date these speculations empirically.

Larger programs require higher space and time costs.
The time or space cost of our approach can be character-
ized as

Cost = O(|vars| × |userfuncs| × |testsuite|)
where |vars| is the number of variables at the entry and
exit of a user function,|userfuncs| is the number of in-
strumented user functions, and|testsuite| is the size of the
test suite. To address scalability, we can reduce|testsuite|
by applying our approach on only those tests selected by
regression test selection techniques [16]. In addition, we
can also reduce|userfuncs| by instrumenting only those
modified functions and their (statically determined) up-to-
n-level callers. The reduced scope of instrumentation trades
a global view of deviation propagation for efficiency.

4.5. Threats to Validity

The threats to external validity primarily include the
degree to which the subject programs, faults or program
changes, and test cases are representative of true practice.
The siemens programs are small and most of the faulty
versions involve simple, one- or two-line manually seeded
faults. Moreover, the new versions in our experiment do not
incorporate other fault-free changes since all the changes
made on faulty versions deliberately introduce regression
faults. These threats could be reduced by more experiments
on wider types of subjects in future work. The threats to in-
ternal validity are instrumentation effects that can bias our
results. Faults in our prototype and the Daikon front end
might cause such effects. To reduce these threats, we man-
ually inspected the spectra differences on a dozen of traces
for each program subject. One threat to construct validity is
that our experiment makes use of the data traces collected
during executions, assuming that these precisely capture the
internal program states for each execution point. However,
in practice the Daikon front end explores nested structures
up to the depth of only three by default.

5. Related Work

Reps et al. use program spectra to characterize a pro-
gram’s behavior inside the black box [14]. They compare
path spectra from two test executions on the same program
to tackle the Year 2000 problem. Harrold et al. empirically
investigate the relationship between structural spectra dif-
ferences and output spectra differences of two program ver-
sions in regression testing [7]. The structural program spec-
tra that they investigate include branch, path, data depen-
dence, and execution trace spectra. Their experimental re-
sults show that when a test input causes program output dif-
ferences between versions, the test input is likely to cause
structural spectra differences. However their results show
that the reverse is not true. In future work, we plan to ex-
tend our approach to work on structural spectra. For exam-
ple, we can similarly annotate a regular dynamic call tree
with marks for structurally-deviated function executions.

35

However, we cannot further categorize structurally-deviated
function executions into deviation containers or deviation
followers, because based on only structural spectra we can-
not determine whether the entry state of a structurally-
deviated function execution is deviated. Since the propaga-
tion information is coarser, we speculate that our adapted
approach for structural spectra would be less effective for
deviation propagation and deviation-root localization. How-
ever, we need to empirically validate this hypothesis. In fu-
ture work, we plan to empirically compare the approaches
for structural spectra and value spectra.

Memon et al. model a GUI state in terms of the widgets
that the GUI contains, their properties, and the values of the
properties [11]. A GUI state corresponds to a function-entry
or function-exit state in our approach. Their experimental
results show that comparing more-detailed GUI states (e.g.,
GUI states associated with all or visible windows) from two
versions can detect faults more effectively than comparing
less-detailed GUI states (e.g., GUI states associated with the
active window or widget). Our experiment shows a simi-
lar result: checking more-detailed behavior inside the black
box can more effectively expose behavior deviations than
checking just the black-box output. Our work differs from
their work in two main aspects: our approach is not limited
for GUI applications and our approach additionally investi-
gates deviation propagation and deviation-root localization.

Abramson et al. develop the relative debugging tech-
nique to use a series of user-defined assertions between a
reference program and a suspect program [1]. These asser-
tions specify key data structures that must be equivalent at
specific locations in two programs. Then a relative debugger
automatically compares the data structures and reports any
differences while both versions are executed concurrently.
Our approach does not require user-defined assertions but
compares states at the entries and exits of user functions.

Jaramillo et al. develop the comparison checking ap-
proach to compare the outputs and values computed by
source level statements in the unoptimized and optimized
versions of a source program [9]. Their approach requires
the optimizer writer to specify the mappings between the
unoptimized and optimized versions in the optimization
implementation. Their approach locates the earliest point
where the unoptimized and optimized programs differ dur-
ing the comparison checking. Our approach operates at the
granularity of user-function executions and uses two heuris-
tics to locate deviation roots instead of using the earliest de-
viation points. Moreover, our approach does not require any
extra user inputs and targets at testing general applications
rather than optimizers.

McCamant and Ernst use the Daikon tool [4] to com-
pare the inferred program properties for the old component
in the context of the system and for the new component in
the context of its test suite [10]. If the comparison shows

that the new component does not make all the guarantees
that the old one did, then their tool predicts that the upgrade
may affect system behavior, and should not be performed
before further scrutiny. Their approach operates on the com-
ponent black-box boundary, whereas our approach operates
inside the black box of the component or program. In ad-
dition, their approach compares abstracted behavior using
different tests for two versions, whereas our approach com-
pares the actual variable values using the same test for two
versions.

Zeller develops the delta debugging algorithm to sys-
tematically determine the minimal set of failure-inducing
changes between versions given external failure symptoms
[20]. His algorithm achieves this goal by rerunning the same
test on the old version with different subsets of changes. Our
approach runs the same test on two versions, observes their
internal behavior deviations, and locates deviation roots.
Zeller’s later work isolates the relevant variables and val-
ues by systematically narrowing the internal program state
differences between a passing and a failing test execution
on a faulty version [21]. Our approach observes the inter-
nal program state differences between the same test’s exe-
cutions on two versions. Zeller’s approach requires the user
to specify program locations where to compare internal pro-
gram states, whereas our approach compares the program
states at user-function entries and exits.

Fault propagation has been investigated in the testing lit-
erature. Thompson et al. propose the RELAY model to un-
derstand how a fault may or may not cause a failure on some
test executions [17]. Voas presents the PIE (Propagation,
Infection, and Execution) analysis to assess the probabil-
ity that under a given input distribution, if a fault exists in
a code component, it will result in a failure [18]. The PIE
analysis focuses on the estimation and analysis of fault ex-
posure probability with the goal of generating or selecting
test cases that propagate the faults to outputs. Our approach
focuses on regression testing and proactively exposes be-
havior deviations by checking inside the black box instead
of checking only black-box outputs. Our approach also of-
fers an empirical way of studying fault propagation behav-
ior complementing existing analytic approaches.

Reese and Leveson present the software deviation anal-
ysis technique to determine whether a software specifica-
tion can behave well when there are deviations in data in-
puts from an imperfect environment [12]. Given a require-
ments specification, a list of safety-critical program outputs,
assumptions about particular deviations in program inputs,
their technique produces the constraints on the internal pro-
gram states that are sufficient to lead to an output devia-
tion in a safety-critical program output. Our approach oper-
ates on two program versions and the deviations are rooted
from some program locations that are changed between ver-
sions, rather than from program inputs.

36

6. Conclusion

We have developed a new class of program spectra called
value spectra, which enrich the existing program spectra
family. We exploit value spectra differences between an old
version and a new version in regression testing. We use
these value spectra differences to expose internal behavior
deviations inside the black box. We also investigate devia-
tion propagation and develop two heuristics to locate devi-
ation roots. If there are regression faults, our deviation-root
localization additionally addresses the regression fault lo-
calization problem. We have conducted an experiment on
seven C program subjects. The experimental results show
that our new approach can effectively detect behavior de-
viations even before deviations are (or even if they are
not) propagated to outputs. The results also show that our
deviation-root localization can accurately locate the devia-
tion roots for most subjects.

Acknowledgments

We thank Michael Ernst, the Daikon project members at
MIT, Mary Jean Harrold, and Gregg Rothermel for helping
with experiment instrumentation. We thank Miryung Kim,
Andrew Peterson, Vibha Sazawal, and the anonymous re-
viewers for their valuable feedback on an earlier version of
this paper. This work was supported in part by the National
Science Foundation under grant ITR 0086003. We acknowl-
edge support through the High Dependability Computing
Program from NASA Ames cooperative agreement NCC-
2-1298.

References

[1] D. Abramson, I. Foster, J. Michalakes, and R. Socic. Rela-
tive debugging: a new methodology for debugging scientific
applications. Communications of the ACM, 39(11):69–77,
1996.

[2] D. M. Andrews. Using executable assertions for testing and
fault tolerance. InProceedings of the 9th International Sym-
posium on Fault-Tolerant Computing, pages 102–105, 1979.

[3] T. Ball and J. R. Larus. Efficient path profiling. InProceed-
ings of the 29th ACM/IEEE International Symposium on Mi-
croarchitecture, pages 46–57, 1996.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dy-
namically discovering likely program invariants to support
program evolution.IEEE Trans. Softw. Eng., 27(2):99–123,
2001.

[5] GNU. GNU diffutils. http://www.gnu.org/
software/diffutils/ , 2002.

[6] S. Hangal and M. S. Lam. Tracking down software bugs us-
ing automatic anomaly detection. InProceedings of the 24th
International Conference on Software Engineering, pages
291–301, 2002.

[7] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An
empirical investigation of the relationship between spectra
differences and regression faults.Journal of Software Test-
ing, Verification and Reliability, 10(3):171–194, 2000.

[8] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-
periments of the effectiveness of dataflow- and controlflow-
based test adequacy criteria. InProceedings of the 16th Inter-
national Conference on Software Engineering, pages 191–
200, 1994.

[9] C. Jaramillo, R. Gupta, and M. L. Soffa. Debugging and test-
ing optimizers through comparison checking. In J. Knoop
and W. Zimmermann, editors,Electronic Notes in Theoreti-
cal Computer Science, volume 65. Elsevier, 2002.

[10] S. McCamant and M. D. Ernst. Predicting problems
caused by component upgrades. InProceedings of the 10th
ESEC/FSE, pages 287–296, 2003.

[11] A. M. Memon, I. Banerjee, and A. Nagarajan. What test or-
acle should I use for effective GUI testing? InProceedings
of 18th IEEE International Conference on Automated Soft-
ware Engineering, pages 164–173, 2003.

[12] J. D. Reese and N. G. Leveson. Software deviation analy-
sis. InProceedings of the 19th International Conference on
Software Engineering, pages 250–260, 1997.

[13] S. P. Reiss and M. Renieris. Encoding program executions.
In Proceedings of the 23rd International Conference on Soft-
ware Engineering, pages 221–230, 2001.

[14] T. Reps, T. Ball, M. Das, and J. Larus. The use of program
profiling for software maintenance with applications to the
year 2000 problem. InProceedings of the 6th ESEC/FSE,
pages 432–449, 1997.

[15] D. S. Rosenblum. Towards a method of programming with
assertions. InProceedings of the 14th International Confer-
ence on Software Engineering, pages 92–104, 1992.

[16] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique.ACM Trans. Softw. Eng. Methodol.,
6(2):173–210, 1997.

[17] M. C. Thompson, D. J. Richardson, and L. A. Clarke. An in-
formation flow model of fault detection. InProceedings of
the International Symposium on Software Testing and Anal-
ysis, pages 182–192, 1993.

[18] J. M. Voas. PIE: A dynamic failure-based technique.
IEEE Transactions on Software Engineering, 18(8):717–
727, 1992.

[19] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. InProceed-
ings of 19th IEEE International Conference on Automated
Software Engineering, 2004.

[20] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? InProceedings of the 7th ESEC/FSE, pages 253–267,
1999.

[21] A. Zeller. Isolating cause-effect chains from computer pro-
grams. InProceedings of the 10th ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering, pages 1–10,
2002.

37

