
Reliability Assurance for Deep Neural Network
Architectures Against Numerical Defects

Linyi Li∗ Yuhao Zhang† Luyao Ren‡§ Yingfei Xiong‡§ Tao Xie‡§¶
∗Department of Computer Science, University of Illinois Urbana-Champaign, linyi2@illinois.edu
†Department of Computer Sciences, University of Wisconsin-Madison, yuhao.zhang@wisc.edu

‡School of Computer Science, Peking University, rly@pku.edu.cn, xiongyf@pku.edu.cn, taoxie@pku.edu.cn
§Key Laboratory of High Confidence Software Technologies, Ministry of Education (Peking University)

Abstract—With the widespread deployment of deep neural
networks (DNNs), ensuring the reliability of DNN-based systems
is of great importance. Serious reliability issues such as system
failures can be caused by numerical defects, one of the most
frequent defects in DNNs. To assure high reliability against
numerical defects, in this paper, we propose the RANUM ap-
proach including novel techniques for three reliability assurance
tasks: detection of potential numerical defects, confirmation
of potential-defect feasibility, and suggestion of defect fixes.
To the best of our knowledge, RANUM is the first approach
that confirms potential-defect feasibility with failure-exhibiting
tests and suggests fixes automatically. Extensive experiments
on the benchmarks of 63 real-world DNN architectures show
that RANUM outperforms state-of-the-art approaches across the
three reliability assurance tasks. In addition, when the RANUM-
generated fixes are compared with developers’ fixes on open-
source projects, in 37 out of 40 cases, RANUM-generated fixes
are equivalent to or even better than human fixes.

Index Terms—neural network, numerical defect, testing, fix

I. INTRODUCTION

Deep Neural Networks (DNNs) are successfully deployed
and show remarkable performance in many challenging ap-
plications, including facial recognition [22, 57], game play-
ing [39], and code completion [21, 4]. To develop and deploy
DNNs, one needs to attain a DNN architecture, which is
usually encoded by program code as the example shown in
Figure 2. First, for training, the user executes the program
with the architecture on the given training/validation data,
attains the model weights, and stores them in a weight file.
The architecture along with the weights is named a model.
Then, for inference, the user loads the weight file to CPU/GPU
memory or AI chips, executes the same program with the
given inference sample and weights as arguments, and gets
the model prediction result as the program output. With the
wide deployment of DNN models (resulted from training DNN
architectures), reliability issues of DNN-based systems have
become a serious concern, where malfunctioning DNN-based
systems have led to serious consequences such as fatal traffic
accidents [25].

To assure the reliability of DNN-based systems, it is highly
critical to detect and fix numerical defects for two main
reasons. First, numerical defects widely exist in DNN-based
systems. For example, in the DeepStability database [14], over

¶Corresponding author.

Input: DNN Architecture x
MatMul

w1
Add

w2

Softmax
Sub

1
Log

Log
ReLU

…

…

① Potential-Defect Detection
Locate Nodes with Numerical Defects

② Feasibility Confirmation
Step a: Generate Failure-Exhibiting Unit Tests

Step b: Generate Failure-Exhibiting System Tests

③ Fix Suggestion
Suggest to Add Clipping Operators

① Output:
Potential numerical defects at Log nodes

② Output:

After trained with xtrain, model has weights
(w1, w2) such that inputing x at
inference time triggers failures

Given imposing location: before SoftMax node,
③ Output: clip(input, 0, 40)

System test (xtrain, x)

Fig. 1. Workflow for reliability assurance against numerical defects in DNN
architectures. The left-hand side shows three tasks and the right-hand side
shows corresponding examples. RANUM supports all the three tasks, and is
the first automatic approach for system test generation and fix suggestion.

250 defects are identified in deep learning (DL) algorithms
where over 60% of them are numerical defects. Moreover,
since numerical defects exist at the architecture level, any
model using the architecture naturally inherits these defects.
Second, numerical defects can result in serious consequences.
Once numerical defects (such as divide-by-zero) are exposed,
the faulty DNN model will output NaN or INF instead of
producing any meaningful prediction, resulting in numerical
failures and system crashes [61, 59]. Thus, numerical defects
hinder the application of DNNs in scenarios with high relia-
bility and availability requirements such as threat monitoring
in cybersecurity [34] and cloud system controlling [37, 13].

To address numerical defects in DNN architectures in an
actionable manner [54], in this paper, we propose a workflow
of reliability assurance (as shown in Figure 1), consisting of
three tasks: potential-defect detection, feasibility confirmation,
and fix suggestion, along with our proposed approach to
support all these three tasks.

Potential-Defect Detection. In this task, we detect all po-
tential numerical defects in a DNN architecture, with a focus
on operators with numerical defects (in short as defective
operators) that potentially exhibit inference-phase numerical
failures for two main reasons, following the literature [62, 55].
First, these defective operators can be exposed after the model
is deployed and thus are more devastating than those that
potentially exhibit training-phase numerical failures [28, 62].
Second, a defective operator that potentially exhibits training-
phase numerical failures can usually be triggered to exhibit
inference-phase numerical failures, thus also being detected by

mailto:linyi2@illinois.edu
mailto:yuhao.zhang@wisc.edu
mailto:rly@pku.edu.cn
mailto:xiongyf@pku.edu.cn
mailto:taoxie@pku.edu.cn

our task. For example, the type of training-phase NaN gradient
failures is caused by an operator’s input that leads to invalid
derivatives, and this input also triggers failures in the inference
phase [55].

Feasibility Confirmation. In this task, we confirm the fea-
sibility of these potential numerical defects by generating
failure-exhibiting system tests. As shown in Figure 1, a system
test is a tuple of training example1 xtrain and inference
example x such that after the training example is used to train
the architecture under consideration, applying the resulting
model on the inference example exhibits a numerical failure.

Fix Suggestion. In this task, we fix a feasible numerical
defect. To determine the fix form, we have inspected the
developers’ fixes of the numerical defects collected by Zhang
et al. [61] by looking at follow-up Stack Overflow posts or
GitHub commits. Among the 13 numerical defects whose
fixes can be located, 12 fixes can be viewed as explicitly or
implicitly imposing interval preconditions on different loca-
tions, such as after inputs or weights are loaded and before
defective operators are invoked. Thus, imposing an interval
precondition, e.g., by clipping (i.e., chopping off the input
parts that exceed the specified input range) the input for
defective operator(s), is an effective and common strategy
for fixing a numerical defect. Given a location (i.e., one
related to an operator, input, or weight where users prefer to
impose a fix), we suggest a fix for the numerical defect under
consideration.

To support all the three tasks of the reliability assurance
process against DNN numerical defects, we propose the
RANUM approach in this paper.

For task 1⃝ and task 2⃝a, which are already supported by
two existing tools (DEBAR [62] and GRIST [55]), RANUM in-
troduces novel extensions and optimizations that substantially
improve the effectiveness and efficiency. (1) DEBAR [62] is
the state-of-the-art tool for potential-defect detection; however,
DEBAR can handle only static computational graphs and
does not support widely used dynamic graphs in PyTorch
programs [29]. RANUM supports dynamic graphs thanks to
our novel technique of backward fine-grained node labeling.
(2) GRIST [55] is the state-of-the-art tool for generating
failure-exhibiting unit tests to confirm potential-defect feasi-
bility; however, GRIST conducts gradient back-propagation by
using the original inference input and weights as the starting
point. Recent studies [24, 8] on DNN adversarial attacks
suggest that using a randomized input as the starting point
leads to stronger attacks than using the original input. Taking
this observation, we combine gradient back-propagation with
random initialization in RANUM.

For task 2⃝ and task 3⃝, which are not supported by any
existing tool, RANUM is the first automatic approach for them.

For feasibility confirmation, RANUM is the first approach
that generates failure-exhibiting system tests that contain train-

1In real settings, multiple training examples are used to train an architecture,
but generating a single training example to exhibit failures (targeted by our
work) is desirable for ease of debugging while being more challenging than
generating multiple training examples to exhibit failures.

ing examples. Doing so is a major step further from the exist-
ing GRIST tool, which generates failure-exhibiting unit tests
ignoring the practicality of generated model weights. Given
that in practice model weights are determined by training
examples, we propose the technique of two-step generation
for this task. First, we generate a failure-exhibiting unit test.
Second, we generate a training example that leads to the
model weights in the unit test when used for training. For the
second step, we extend the deep-leakage-from-gradient (DLG)
attack [64] by incorporating the straight-through gradient
estimator [3].

For fix suggestion, RANUM is the first automatic approach.
RANUM is based on the novel technique of abstraction
optimization. We observe that a defect fix in practice is
typically imposing interval clipping on some operators such
that each later-executed operator (including those defective
ones) can never exhibit numerical failures. Therefore, we
propose the novel technique of abstraction optimization to
“deviate away” the input range of a defective operator from the
invalid range, falling in which can cause numerical failures.

For RANUM, we implement a tool2 and evaluate it on the
benchmarks [55] of 63 real-world DNN architectures contain-
ing 79 real numerical defects; these benchmarks are the largest
benchmarks of DNN numerical defects to the best of our
knowledge. The evaluation results show that RANUM is both
effective and efficient in all the three tasks for DNN reliability
assurance. (1) For potential-defect detection, RANUM detects
>60% more true defects than the state-of-the-art DEBAR
approach. (2) For feasibility confirmation, RANUM generates
failure-exhibiting unit tests to confirm potential numerical
defects in the benchmarks with 100% success rate; in contrast,
with the much higher time cost (17.32X), the state-of-the-
art GRIST approach generates unit tests to confirm defects
with 96.96% success rate. More importantly, for the first time,
RANUM generates failure-exhibiting system tests that confirm
defects (with 92.78% success rate). (3) For fix suggestion,
RANUM proposes fix suggestions for numerical defects with
100% success rate. In addition, when the RANUM-generated
fixes are compared with developers’ fixes on open-source
projects, in 37 out of 40 cases, RANUM-generated fixes are
equivalent to or even better than human fixes.

This paper makes the following main contributions:
• We formulate the reliability assurance problem for DNN

architectures against numerical defects and elaborate on
three important tasks for this problem.

• We propose RANUM—the first automatic approach that
solves all these three tasks. RANUM includes three novel
techniques (backward fine-grained node labeling, two-step
test generation, and abstraction optimization) and solves
system test generation and fix suggestion for the first time.

• We implement RANUM and apply it on 63 real-world
DNN architectures, showing the high effectiveness and
efficiency of RANUM compared to both the state-of-the-
art approaches and developers’ fixes.

2Open source at https://github.com/llylly/RANUM.

https://github.com/llylly/RANUM

input_data = tf.placeholder("float", [1, n_features], name='x-input')
input_labels = tf.placeholder("float", [1, n_classes], name='y-input’)
self.W_ = tf.Variable(tf.zeros([n_features, n_classes]),

name='weights')
self.b_ = tf.Variable(tf.zeros([n_classes]),

name='biases')
model_output = tf.nn.softmax(tf.matmul(input_data, self.W_) +

self.b_)
cost = -tf.reduce_mean(input_labels * tf.log(model_output) +

(1 - input_labels) * tf.log(1 - model_output),
name='cost')

self.obj_function = tf.reduce_min(tf.abs(model_output),
name='obj_function')

1
2
3
4
5
6
7
8
9
10
11
12
13

Fig. 2. A DL program snippet that defines a linear regression model from
benchmarks of real-world numerical defects (Case 2a in [55]).

II. BACKGROUND AND APPROACH OVERVIEW

In this section, we introduce the background of DNN
numerical defects and failures, and then give an overview of
the RANUM approach with a running example.

A. Background

DL developers define the DNN architecture with code using
modern DL libraries such as PyTorch [29] and TensorFlow [1].
The DNN architecture can be expressed by a computational
graph. Figures 2 and 3 depict a real-world example. Specifi-
cally, the DNN architecture in a DL program can be automati-
cally converted to an ONNX-format computational graph [44].

The computational graph can be viewed as a Directed
Acyclic Graph (DAG): G = ⟨V, E⟩, where V and E are sets
of nodes and edges, respectively. We call nodes with zero in-
degree as initial nodes, which correspond to input, weight,
or constant nodes. Initial nodes provide concrete data for the
DNN models resulted from training the DNN architecture.
The data from each node is formatted as a tensor, i.e., a
multidimensional array, with a specified data type and array
shape annotated alongside the node definition. We call nodes
with positive in-degree as internal nodes, which correspond
to concrete operators, such as matrix multiplication (MatMul)
and addition (Add). During model training, the model weights,
i.e., data from weight nodes, are generated by the training al-
gorithm. Then, in the deployment phase (i.e., model inference),
with these trained weights and a user-specified input named
inference example, the output of each operator is computed
in the topological order. The output of some specific node is
used as the prediction result.

We let x and w denote the concatenation of data from all
input nodes and data from all weight nodes, respectively.3

For example, in Figure 3, x concatenates data from nodes
1 and 11; and w concatenates data from nodes 2 and 4. Given
specific x and w, the input and output for each node are
deterministic.4 We use f in

n (x;w) and fout
n (x;w) to express

input and output data of node n, respectively, given x and w.
Numerical Defects in DNN Architecture. We focus on
inference-phase numerical defects. These defects lead to nu-
merical failures when specific operators receive inputs within
invalid ranges so that the operators output NaN or INF.

3A bolded alphabet stands for a vector or tensor throughout the paper.
4An architecture may contain stochastic nodes. We view these nodes as

nodes with randomly sampled data, so the architecture itself is deterministic.

1 x-input

3 MatMul 2
weights

5 Add 4
biases

6 Softmax

8 Sub
7

Const
= 1

9 Log
10 Log11

y-input

12 Const
= 1

13 Sub

16 Add

19 ReduceMin
cost

17 Abs

18 ReduceMin
obj_function

15 Mul

14 Mul

Brown circles = input nodes
(node 1 and 11)
Purple circles = weight/constant nodes
(node 2, 4, 7, 12)
Green and yellow rectangles = operators
(node 3, 5, 6, 8, 13, 14, 15, 16, 17, 18, 19)
Yellow rectangles = operator with defects
(node 9 and 10)

Fig. 3. Computational graph encoded by the snippet in Figure 2.

DNN Architecture

Task①:
Potential

Numerical Defects

Task②:
Failure-Exhibiting

System Test

Fix Locations 𝒱!"#

Task③:
Defect Fix

DNN Static Analysis
Framework with

Backward Fine-grained
Node Labelling
(Section III.A)

𝒢 = ⟨𝒱, ℰ⟩

Abstraction
Optimization
(Section III.C)

Potential Defects Node Input/Output
Abstractions

Two-Step Test
Generation

Step b: Training
Example Generation

Step a: Unit Test Generation

Inference
Example

Training Example

Model Weights

(Section III.B)

Combination

Fig. 4. Overview of the RANUM approach. The output of RANUM indicates
confirmation and manifestation of numerical defects (that can be feasibly
exposed at the system level) for a given DNN architecture and effective fixes
for the architecture’s confirmed defects.

Definition 1. For the given computational graph G = ⟨V, E⟩, if
there is a node n0 ∈ V , such that there exists a valid input and
valid weights that can let the input of node n0 fall within the
invalid range, we say there is a numerical defect at node n0.
Formally,∃x0 ∈ Xvalid,w0 ∈ Wvalid, f

in
n0
(x0;w0) ∈ In0,invalid

=⇒∃ numerical defect at node n0.

In the definition, Xvalid and Wvalid are valid input range and
weight range, respectively, which are clear given the deployed
scenario. For example, ImageNet Resnet50 models have valid
input range Xvalid = [0, 1]3×224×224 since image pixel intensi-
ties are within [0, 1], and valid weight range Wvalid = [−1, 1]p

where p is the number of parameters since weights of well-
trained Resnet50 models are typically within [−1, 1]. The
invalid range In0,invalid is determined by n0’s operator type
with detailed definitions in Suppl. B. For example, for the Log
operator, the invalid range In0,invalid = (−∞, Umin) where
Umin is the smallest positive number of a tensor’s data type.

B. Approach Overview

In Figure 4, we show the overview structure of the RANUM
approach. RANUM takes a DNN architecture as the input.
Note that although RANUM is mainly designed and illustrated
for a DNN architecture, the RANUM approach can also be
directly applied to general neural network architectures since
they can also be expressed by computational graphs. First,
the DNN static analysis framework (task 1⃝ in Figure 1) in

RANUM detects all potential numerical defects in the archi-
tecture. Second, the two-step test generation component (task
2⃝ in Figure 1), including unit test generation and training

example generation, confirms the feasibility of these potential
numerical defects. Third, the abstraction optimization compo-
nent (task 3⃝ in Figure 1) takes the input/output abstractions
produced by the DNN static analysis framework along with
the user-specified fix locations, and produces preconditions to
fix the confirmed defects.

We next go through the whole process in detail taking the
DNN architecture shown in Figure 3 as a running example.

Task 1⃝: Potential-Defect Detection via Static Analysis.
The DNN static analysis framework within RANUM first com-
putes the numerical intervals of possible inputs and outputs
for all nodes within the given DNN architecture, and then
flags any nodes whose input intervals overlap with their invalid
ranges as nodes with potential numerical defects.

In Figure 3, suppose that the user-specified input
x-input (node 1) is within (elementwise, same below) range
[(−10,−10)T, (10, 10)T]; weights (node 2) are within range
[
[
−10 −10
−10 −10

]
,
[
10 10
10 10

]
]; and biases (node 4) are within range

[(−10,−10)T, (10, 10)T]. Our DNN static analysis framework
computes these interval abstractions for node inputs:

1) Node 5 (after MatMul): [(−200,−200)T, (200, 200)T];
2) Node 6 (after Add): [(−210,−210)T, (210, 210)T];
3) Node 8 (after Softmax in float32): [(0, 0)T, (1, 1)T];
4) Node 9 (after Sub of [1, 1] and node 8), 10: [(0, 0)T, (1, 1)T].

Since nodes 9 and 10 use the Log operator whose invalid
input range (−∞, Umin) overlaps with their input range
[(0, 0)T, (1, 1)T], we flag nodes 9 and 10 as potential numerical
defects.

This static analysis process follows the state-of-the-art DE-
BAR tool [62]. However, we extend DEBAR with a novel
technique named backward fine-grained node labeling. This
technique detects all nodes that require fine-grained abstrac-
tions, e.g., nodes that determine the control flow in a dynamic
graph. For these nodes, we apply interval abstractions with
the finest granularity to reduce control flow ambiguity. For
other nodes, we let some neighboring elements share the same
interval abstraction to improve efficiency while preserving
tightness. As a result, the static analysis in RANUM has high
efficiency and supports much more DNN operators including
dynamic control-flow operators like Loop than DEBAR does.

Task 2⃝: Feasibility Confirmation via Two-Step Test
Generation. Given nodes that contain potential numerical
defects (nodes 9 and 10 in our example), we generate failure-
exhibiting system tests to confirm their feasibility. A failure-
exhibiting system test is a tuple ⟨xtrain,xinfer⟩, such that after
training the architecture with the training example xtrain,5

with the trained model weights winfer, the inference input

5In particular, if our generation technique outputs xtrain, the numerical
failure can be triggered if the training dataset contains only xtrain or only
multiple copies of xtrain and the inference-time input is xinfer. Our technique
can also be applied for generating a batch of training examples by packing
the batch as a single example: xtrain = (xtrain1,xtrain2, . . . ,xtrainB).

xinfer triggers a numerical failure. The name “system test”
is inspired by traditional software testing, where we test the
method sequence (m = train(xtrain); m.infer(xinfer)). In
contrast, GRIST [55] generates model weights winfer along
with inference input xinfer that tests only the inference method
m.infer(), and the weights may be infeasible from training.
Hence, we view the GRIST-generated tuple ⟨winfer,xinfer⟩ as
a “unit test”.

We propose a two-step test generation technique to generate
failure-exhibiting system tests.

Step a: Generate failure-exhibiting unit test ⟨winfer,xinfer⟩.
The state-of-the-art GRIST tool supports this step. However,
GRIST solely relies on gradient back-propagation, which is
relatively inefficient. In RANUM, we augment GRIST by
combining its gradient back-propagation with random ini-
tialization inspired by recent research on DNN adversar-
ial attacks [8, 24]. As a result, RANUM achieves 17.32X
speedup with 100% success rate. Back to the running example
in Figure 3, RANUM can generate

[
5 −5
−5 5

]
for node 2

and (0.9,−0.9)T for node 4 as model weights winfer; and
(10,−10)T for node 1 and (1, 0)T for node 11 as the inference
input xinfer. Such winfer and xinfer induce input (0, 1)T and
(1, 0)T for nodes 9 and 10, respectively. Since both nodes 9
and 10 use the log operator and log 0 is undefined, both nodes
9 and 10 trigger numerical failures.

Step b: Generate training example xtrain that achieves
model weights winfer. To the best of our knowledge, there is
no automatic approach for this task yet. RANUM provides
support for this task based on our extension of DLG at-
tack [64]. The DLG attack is originally designed for recovering
the training data from training-phase gradient leakage. Here,
we figure out the required training gradients to trigger the
numerical failure at the inference phase and then leverage the
DLG attack to generate xtrain that leads to such training gradi-
ents. Specifically, many DNN architectures contain operators
(such as ReLU) on which DLG attack is hard to operate [36].
We combine straight-through estimator [3] to provide proxy
gradients and bypass this barrier. Back to the running example
in Figure 3, supposing that the initial weights are

[
−0.1 0.1
0.1 −0.1

]
for node 2 and (0, 0)T for node 4, RANUM can generate
training example xtrain composed of (5.635,−5.635)T for
node 1 and (1, 0)T for node 11, such that one-step training
with learning rate 1 on this example leads to winfer. Combining
xtrain from this step with xinfer from step a, we obtain a failure-
exhibiting system test that confirms the feasibility of potential
defects in nodes 9 and 10.

Task 3⃝: Fix Suggestion via Abstract Optimization. In
this task, we suggest fixes for the confirmed numerical defects.
RANUM is the first approach for this task to our knowledge.

The user may prefer different fix locations, which corre-
spond to a user-specified set of nodes Vfix ⊆ V to impose the
fix. For example, if the fix method is clipping the inference
input, Vfix are input nodes (e.g., nodes 1, 11 in Figure 3); if
the fix method is clipping the model weights during training,
Vfix are weight nodes (e.g., nodes 2, 4 in Figure 3); if the fix

method is clipping before the defective operator, Vfix are nodes
with numerical defects (e.g., nodes 9, 10 in Figure 3).

According to the empirical study of developers’ fixes in
Section I, 12 out of 13 defects are fixed by imposing in-
terval preconditions for clipping the inputs of Vfix. Hence,
we suggest interval precondition, which is interval constraint
ln ≤ f in

n (x;w) ≤ un for nodes n ∈ Vfix, as the defect fix
in this paper. A fix should satisfy that, when these constraints∧

n∈Vfix
(ln ≤ f in

n (x;w) ≤ un) are imposed, the input of any
node in the computational graph should always be valid, i.e.,
f in
n0
(x;w) /∈ In0,invalid,∀n0 ∈ V .

In RANUM, we formulate the fix suggestion task as a
constrained optimization problem, taking the endpoints of
interval abstractions for nodes in Vfix as optimizable vari-
ables. We then propose the novel technique of abstraction
optimization to solve this constrained optimization problem.
Back to the Figure 3 example, if users plan to impose a fix on
inference input, RANUM can suggest the fix −1 ≤ x-input

≤ 1; if users plan to impose a fix on nodes with numerical
defects, RANUM can suggest the fix 10−38 ≤ node 9 & node
10.input ≤ +∞.

III. THE RANUM APPROACH

In this section, we introduce the three novel techniques
in RANUM: backward fine-grained node labeling in Sec-
tion III-A; two-step test generation in Section III-B; and
abstraction optimization in Section III-C.

A. DNN Static Analysis Framework with Backward Fine-
Grained Node Labeling for Potential-Defect Detection

RANUM contains a static analysis framework to enable
potential-defect detection and support downstream tasks as
shown in Figure 4. Given a DNN architecture and valid ranges
for input and weight nodes, the static analysis framework
computes interval abstractions for possible inputs and outputs
of each node. As a result, we can check whether an overlap
exists between the interval abstraction and invalid input ranges
for all nodes in the graph to detect potential numerical defects.
Then, the defective nodes are fed into the two-step test
generation component to confirm the feasibility of potential
defects; and the differentiable abstractions are fed into the
abstract optimization component to produce fixes.

Formally, for given valid ranges of inference input and
model weights, namely X and W , for each node n ∈ V ,
our framework computes sound input interval abstraction
[ln,un] := {x : ln ≤ x ≤ un} such that [ln,un]
always captures all possible inputs of the node: [ln,un] ⊇
{f in

n (x,w) : x ∈ X ,w ∈ W}. We also compute output
interval abstractions similarly.

Compared with traditional analysis tools for numerical
software [10, 40], RANUM’s static analysis framework de-
signs abstractions for DNN primitives operating on multi-
dimensional tensors that are not supported by traditional
tools. Compared with the state-of-the-art DEBAR tool [62],
RANUM uses the same abstraction domain (interval do-
main with tensor partitioning), but incorporates a novel tech-

nique (backward fine-grained node labeling) to improve ab-
straction precision and support a wider range of DNN archi-
tectures.

Abstract Domain: Interval with Tensor Partitioning.
Following DEBAR’s design, we use the interval with tensor
partitioning [62] as the abstraction domain. This abstraction
domain partitions a tensor into multiple subblocks and shares
the interval abstractions at the block level instead of imposing
abstractions at the element level. Therefore, we can compute
the abstraction of a smaller size than the original tensor to
improve efficiency.

Our Technique: Backward Fine-Grained Node Labeling.
The interval domain with tensor partitioning provides a degree
of freedom in terms of the partition granularity, i.e., we can
choose the subblock size for each node’s abstraction. When
the finest granularity, i.e., elementwise abstraction, is chosen,
the abstraction interval is the most concrete. When the coarsest
granularity (i.e., one scalar to summarize the node tensor) is
chosen, the abstraction saves the most space and computational
cost but loses much precision.

Example. Suppose that the possible input range of a node
is ([−1, 0], [0, 1], [1, 2], [−1, 0]), where each interval [l, u]
specifies the range of corresponding elements in the four-
dimensional vector. If we choose the finest granularity, we
use [ln,un] = [(−1, 0, 1,−1), (0, 1, 2, 0)] as the input range
abstraction. If we choose the coarsest granularity, we use
[ln,un] = [−1, 2] as the abstraction where the same interval is
shared for all elements. As we can see, finer granularity pro-
vides tighter abstraction at the expense of larger computational
and space costs.

In DEBAR, the coarsest granularity is used by default
for most operators. However, we find that using the finest
instead of the coarsest granularity for some nodes is more
beneficial for overall abstraction preciseness. For example,
the control-flow operators (e.g., Loop) benefit from concrete
execution to determine the exact control flow in the dynamic
graph, and the indexing operators (e.g., Slice) and shaping
operators (e.g., Reshape) benefit from explicit indexers and
shapes to precisely infer the output range. Hence, we propose
to use the finest granularity for some nodes (namely fine-
grained requiring operators) while the coarsest granularity for
other nodes during static analysis.

To benefit from the finest granularity abstraction for required
nodes, typically, all of their preceding nodes also need the
finest granularity. Otherwise, the over-approximated intervals
from preceding nodes will be propagated to the required nodes,
making the finest abstraction for the required nodes useless.
To solve this problem, in RANUM, we back-propagate “fine-
grained” labels from these fine-grained requiring nodes to
initial nodes by topologically sorting the graph with inverted
edges, and then apply the finest granularity abstractions on all
labeled nodes. In practice, we find that this strategy eliminates
the control-flow ambiguity and indexing ambiguity with little

loss of efficiency6. As a result, RANUM supports all dynamic
graphs (which are not supported by DEBAR) that comprise
39.2% of the benchmarks proposed by Yan et al. [55].

Furthermore, when preceding nodes use finer-grain ab-
straction granularity, the subsequent nodes should preserve
such fine granularity to preserve the analysis preciseness.
Principally, the choice of abstraction granularity should satisfy
both tightness (bearing no precision loss compared to elemen-
twise interval abstraction) and minimality (using the minimum
number of partitions for high efficiency). To realize these
principles, we dynamically determine a node’s abstraction
granularity based on the granularity of preceding nodes. The
abstraction design for some operators is non-trivial. Omitted
details (formulation, illustration, and proofs) about the static
analysis framework are in Suppl. C.

In summary, the whole static analysis process consists
of three steps. (1) Determine the tensor partition granular-
ity of all initial nodes by our technique of backward fine-
grained node labeling. (2) Sort all nodes in the graph in
the topological order. (3) Apply corresponding abstraction
computation algorithms for each node based on the preceding
node’s abstractions. The key insight behind the design of our
static analysis framework is the strategic granularity selection
for tensor abstraction, maintaining both high efficiency (by
selecting the coarse granularity for data-intensive nodes) and
high precision (by selecting the fine granularity for some
critical nodes, such as nodes with control-flow, indexing, and
shaping operators).

B. Two-Step Test Generation for Feasibility Confirmation

RANUM generates failure-exhibiting system tests for the
given DNN to confirm the feasibility of potential numerical
defects. Here, we take the DNN architecture as the input. From
the static analysis framework, we obtain a list of nodes that
have potential numerical defects. For each node n0 within the
list, we apply our technique of two-step test generation to
produce a failure-exhibiting system test tsys = ⟨xtrain,xinfer⟩
as the output. According to Section II-B, the test should satisfy
that after the architecture is trained with xtrain, entering xinfer

in the inference phase results in a numerical failure.
We propose the novel technique of two-step test generation:

first, generate failure-exhibiting unit test ⟨winfer,xinfer⟩; then,
generate training example xtrain that leads model weights to
be close to winfer after training.

Step a: Unit Test Generation. As sketched in Section II-B,
we strengthen the state-of-the-art unit test generation approach,
GRIST [55], by combining it with random initialization to
complete this step. Specifically, GRIST leverages the gradients
of the defective node’s input with respect to the inference
input and weights to iteratively update the inference input
and weights to generate failure-exhibiting unit tests. However,

6Theoretically, using the finest granularity for tensor partitioning cannot
fully eliminate the ambiguity, since interval abstraction is intrinsically an over-
approximation. Nevertheless, in our evaluation (Section IV), we find that this
technique eliminates control-flow and indexing ambiguities on all 63 programs
in the benchmarks.

GRIST always conducts updates from the existing inference
input and weights, suffering from local minima problem [24].
Instead, motivated by DNN adversarial attack literature [24,
46], a sufficient number of random starts help find global min-
ima effectively. Hence, in RANUM, we first conduct uniform
sampling 100 times for both the inference input and weights
to trigger the numerical failure. If no failure is triggered, we
use the sample that induces the smallest loss as the start point
for gradient optimization. As Section IV-A shows, this strategy
substantially boosts the efficiency, achieving 17.32X speedup.

Step b: Training Example Generation. For this step,
RANUM takes the following inputs: (1) the DNN architecture,
(2) the failure-exhibiting unit test tunit = ⟨winfer,xinfer⟩,
and (3) the randomly initialized weights w0. Our goal is to
generate a legal training example xtrain, such that the model
trained with xtrain will contain weights close to winfer.

DNNs are typically trained with gradient-descent-based
algorithms such as stochastic gradient descent (SGD). In SGD,
in each step t, we sample a mini-batch of samples from the
training dataset to compute their gradients on model weights
and use these gradients to update the weights. We focus on
one-step SGD training with a single training example, since
generating a single one-step training example to exhibit a
failure is more desirable for debugging because, in one-step
training, the model weights are updated strictly following the
direction of the gradients. Therefore, developers can inspect
inappropriate weights, easily trace back to nodes with in-
appropriate gradients, and then fix these nodes. In contrast,
in multi-step training, from inappropriate weights, developers
cannot trace back to inappropriate gradients because weights
are updated iteratively and interactions between gradients and
weights are complex (even theoretically intractable [19]).

In this one-step training case, after training, the model
weights winfer satisfy

winfer = w0 − γ∇wL(xtrain;w0), (1)
where γ ∈ R+ is a predefined learning rate, and L is the
predefined loss function in the DNN architecture. Hence, our
goal becomes finding xtrain that satisfies

∇wL(xtrain;w0) = (w0 −winfer)/γ. (2)

The DLG attack [64] is a technique for generating input data
that induce specific weight gradients. The attack is originally
designed for recovering training samples from monitored gra-
dient updates. Since the right-hand side (RHS) of Equation (2)
is known, our goal here is also to generate input example xtrain

that induces specific weight gradients. Therefore, we leverage
the DLG attack to generate training example xtrain.

Extending DLG Attack with Straight-Through Estima-
tor. Directly using DLG attack suffers from an optimization
challenge in our scenario. Specifically, in DLG attack, suppose
that the target weight gradients are ∆wtarg, we use gradient
descent over the squared error ∥∇wL(x;w0) −∆wtarg∥22 to
generate x. In this process, we need meaningful gradient
information of this squared error loss to perform the opti-
mization. However, the gradient of this loss involves second-
order derivatives of L(x;w0), which could be zero. For

example, DNNs with ReLU as activation function are piecewise
linear and have zero second-order derivatives almost every-
where [36]. This optimization challenge is partly addressed in
DLG attack by replacing ReLU with Sigmoid, but it changes
the DNN architecture (i.e., the system under test) and hence
is unsuitable.

We leverage the straight-through estimator to mitigate the
optimization challenge. Specifically, for a certain operator,
such as ReLU, we do not change its forward computation but
change its backward gradient computation to provide second-
order derivatives within the DLG attack process. For example,
for ReLU, in backward computation we use the gradient of
Softplus function, namely 1− 1

1+exp(x) , because Softplus is
an approximation of ReLU [7] with non-zero second-order
derivatives. Note that we modify the computed gradients
only within the DLG attack process. After such xtrain is
generated by the attack, we evaluate whether it triggers a
numerical failure using the original architecture and gradients
in Equation (1).

Suppl. E lists hyperparameters used by our implementation.

C. Abstraction Optimization for Fix Suggestion

In this task, we aim to generate the precondition fix given
imposing locations. The inputs are the DNN architecture, the
node n0 with numerical defects, and a node set Vfix to impose
the fix. We would like to generate interval preconditions for
Vfix node inputs so that after these preconditions are imposed,
the defect on n0 is fixed.

Formally, our task is to find ⟨ln, un⟩ for each n ∈ Vfix (ln
and un are scalars so the same interval bound applied to all
elements of n’s tensor), such that for any x,w satisfying
f in
n (x;w) ∈ [ln, un], ∀n ∈ Vfix, for the defective node n0, we

have f in
n0
(x;w) /∈ In0,invalid, where the full list of invalid input

ranges In0,invalid is in Suppl. B. There is an infinite number
of possible ⟨ln, un⟩ interval candidates since ln and un are
floating numbers. Hence, we need an effective technique to
find a valid solution from the exceedingly large search space
that incurs a relatively small model utility loss. To achieve so,
we formulate a surrogate optimization problem for this task.

maximize
ln,un:n∈Vfix

s s.t. un ≥ ln + s(uvalid
n − lvalidn),∀n ∈ Vfix, (3)

lvalidn ≤ ln ≤ un ≤ uvalid
n , ∀n ∈ Vfix, (4)

Lprecond
n0

({ln, un}n∈Vfix) < 0. (5)

Here, lvalidn and uvalid
n are the valid ranges (of the node’s input

n), which are fixed and determined by the valid ranges of input
and weights. Lprecond

n0
is the node-specific precondition gener-

ation loss that is the distance between the furthest endpoint of
defective node n0’s interval abstraction and n0’s valid input
range. Hence, when Lprecond

n0
({ln, un}n∈Vfix

) becomes negative,
the solution {ln, un}n∈Vfix

is a valid precondition. The opti-
mization variables are the precondition interval endpoints ln
and un and the objective is the relative span of these intervals.
The larger the span is, the looser the precondition constraints
are, and the less hurt they are for the model’s utility. Equa-
tion (3) enforces the interval span requirement. Equation (4)
assures that the precondition interval is in the valid range.

Algorithm 1 Abstraction Optimization (Section III-C)
Input: DNN architecture G = ⟨V, E⟩, defective node n0 ∈ V , nodes

to impose fix Vfix ⊆ V
1: s← 1, γs ← 0.9, γc ← 0.1,minstep← 0.1,maxiter← 1000
2: cn ← (lvalidn + uvalid

n)/2, ln ← lvalidn , un ← uvalid
n , ∀n ∈ Vfix

3: for i = 1 to maxiter do
4: for n ∈ Vfix do
5: loss ← Lprecond

n0
({ln′ , un′}n′∈Vfix

)
6: cn ← cn − γc max{|cn|,minstep}sgn(∇cn loss)

7: (ln, un)← (cn − s(uvalid
n −lvalidn)

2
, cn +

s(uvalid
n −lvalidn)

2
)

8: (ln, un)← (max{ln, lvalidn },min{un, u
valid
n })

9: end for
10: if Lprecond

n0
({ln, un}n∈Vfix) < 0 then

11: return {ln, un}n∈Vfix // Find precondition fix
12: end if
13: s← γs · s
14: end for
15: return “failed” // Failed to find precondition fix

Equation (5) guarantees the validity of the precondition as a
fix.

For any {ln, un}n∈Vfix
, thanks to RANUM’s static analysis

framework, we can compute induced intervals of defective
node n0, and thus compute the loss value Lprecond

n0
.

As shown in Algorithm 1, we propose the technique of
abstraction optimization to effectively and approximately
solve this optimization. Our technique works iteratively. In
the first iteration, we set span s = 1, and in the subsequent
iterations, we reduce the span s exponentially as shown in
Line 13 where hyperparameter γs = 0.9. Inside each iteration,
for each node to impose precondition n ∈ Vfix, we use the
interval center cn = (ln + un)/2 as the optimizable variable
and compute the sign of its gradient: sgn(∇cn loss). We use
this gradient sign to update each cn toward reducing the loss
value in Line 6. Then, we use cn and the span s to recover
the actual interval in Line 7 and clip ln and un by the valid
range [lvalidn , uvalid

n] in Line 8. At the end of this iteration, for
updated ln and un, we compute Lprecond

n0
({ln, un}n∈Vfix

) to
check whether the precondition is a fix. If so, we terminate;
otherwise, we proceed to the next iteration. We note that if the
algorithm finds a precondition, the precondition is guaranteed
to be a valid fix by the soundness nature of our static analysis
framework and the definition of Lprecond

n0
. When no feasible

precondition is found within maxiter = 1000 iterations, we
terminate the algorithm and report “failed to find the fix”.

Remark. The key ingredient in the technique is the gradient-
sign-based update rule (shown in Line 6), which is much more
effective than normal gradient descent for two reasons. (1) Our
update rule can get rid of gradient explosion and vanishing
problems. For early optimization iterations, the span s is large
and interval bounds are generally coarse, resulting in too
large or too small gradient magnitude. For example, the input
range for Log could be [1, 1010] where gradient can be 10−10,
resulting in almost negligible gradient updates. In contrast, our
update rule leverages the gradient sign, which always points
to the correct gradient direction. The update step size in our
rule is the maximum of current magnitude |cn| and minstep
to avoid stagnation. (2) Our update rule mitigates the gradient

magnitude discrepancy of different cn. At different locations,
the nodes in DNNs can have diverse value magnitudes that are
not aligned with their gradient magnitudes, making gradient
optimization challenging. Therefore, we use this update rule
to solve the challenge, where the update magnitude depends
on the value magnitude (|cn|) instead of gradient magnitude
(∇cn loss). We empirically compare our technique with stan-
dard gradient descent in Section IV-C.

IV. EXPERIMENTAL EVALUATION

We conduct a systematic experimental evaluation to answer
the following research questions.
RQ1 For tasks already supported by existing state-of-the-

art (SOTA) tools (tasks 1⃝ and 2⃝a), how much more
effective and efficient is RANUM compared to these
SOTA tools?

RQ2 For feasibility confirmation via generating failure-
exhibiting system tests (task 2⃝), how much more ef-
fectively and efficiently can RANUM confirm potential
numerical defects compared to baseline approaches?

RQ3 For suggesting fixes (task 3⃝), how much more efficient
and effective is RANUM in terms of guarding against
numerical failures compared to baseline approaches and
developers’ fixes, respectively?

For RQ1, we compare RANUM with all SOTA tools. For
RQ2 and RQ3, RANUM is the first approach to the best of our
knowledge, so we compare RANUM with baseline approaches
(constructed by leaving our novel techniques out of RANUM)
and developers’ fixes. We conduct the evaluation on the GRIST
benchmarks [55], being the largest dataset of real-world DNN
numerical defects to our knowledge. The benchmarks contain
63 real-world DL programs with numerical defects collected
from previous studies and GitHub. Each program contains
a DNN architecture, and each architecture has one or more
numerical defects. There are 79 real numerical defects in total.

We perform our evaluation on a Linux workstation with a
24-core Xeon E5-2650 CPU running at 2.20 GHz. Throughout
the evaluation, we stop the execution after reaching 30min
limit by following the evaluation setup by the most recent
related work [55].

A. RQ1: Comparison with SOTA Tools

For two tasks, existing tools can provide automatic support:
potential-defect detection (task 1⃝) where the SOTA tool is
DEBAR [62], and failure-exhibiting unit test generation (task
2⃝a) where the SOTA tool is GRIST [55]. We compare

RANUM with these tools on their supported tasks, respec-
tively.

Comparison with DEBAR. RANUM successfully detects
all 79 true defects and DEBAR detects only 48 true defects
according to both our evaluation and the literature [55]. Hence,
RANUM detects 64.58% more true defects than DEBAR.
In terms of efficiency, DEBAR and RANUM have similar
running time, and both finish in 3 s per case.

We manually inspect the cases where DEBAR fails but
RANUM succeeds. They correspond to DL programs written

with the PyTorch library, which generates dynamic com-
putational graphs that DEBAR cannot handle. In contrast,
RANUM provides effective static analysis support for dynamic
computational graphs thanks to our backward fine-grained
node labeling technique (Section III-A) that is capable of
disambiguating the control flow within dynamic graphs.

Comparison with GRIST. Results are shown in Table I.
Since both RANUM and GRIST have a randomness compo-
nent where RANUM uses random initialization and GRIST
relies on DNN’s randomly initialized weights, we repeat both
approaches for 10 runs, record the total number of times where
a failure-exhibiting unit test is generated, and the average
execution time per run. RANUM succeeds in all cases and
all repeated runs, and GRIST fails to generate such unit test
in 24 out of 790 runs (i.e., 96.96% success rate). RANUM has
6.66 s average execution time and is 17.32X faster than GRIST.

The superior effectiveness and efficiency of RANUM are
largely due to the existence of random initialization as intro-
duced in Section III-B. We observe that since GRIST always
takes initial model weights and inference input as the starting
point to update from, the generated unit test is just slightly
changed from initial weights and input, being hard to expose
the target numerical defect. In contrast, RANUM uses random
initialization to explore a much larger space and combines
gradient-based optimization to locate the failure-exhibiting
instances from the large space. We also evaluate the pure
random strategy that uses only random initialization without
gradient-based optimization, and such strategy fails in 30 runs,
being inferior to both RANUM and GRIST, implying that
both random initialization and gradient-based optimization are
important. Among all the 79 cases, RANUM is slower than
GRIST on only one case (28a). For this case, we find the
default inference input loaded by the DNN program (used by
GRIST) is not far from a failure-exhibiting one, but a randomly
sampled inference input (used by RANUM) is usually far
from that. Hence, RANUM takes more iterations to find a
failure-exhibiting inference input by the nature of gradient-
based optimization.

B. RQ2: Feasibility Confirmation via System Test Generation

In task 2⃝, RANUM confirms the feasibility of potential nu-
merical defects by generating failure-exhibiting system tests.

Baseline. Since RANUM is the first approach for this task,
we do not compare with existing literature and propose one
random-based approach (named “Random” hereinafter) as the
baseline. In “Random”, we first generate a failure-exhibiting
unit test with random sampling. If there is any sample that
triggers a failure, we stop and keep the inference example part
as the desired xinfer. Then, we generate xtrain again by random
sampling. If any sample, when used for training, could induce
model weights w that cause a numerical failure when using
xinfer as the inference input, we keep that sample as xtrain and
terminate. If and only if both xinfer and xtrain are found, we
count this run as a “success” one for “Random”.

TABLE I
(RQ1) RESULTS OF TASK 2⃝A (FAILURE-EXHIBITING UNIT TEST GENERATION) WITH RANUM AND GRIST [55]. C IS THE NUMBER OF RUNS WHERE

NUMERICAL FAILURES ARE TRIGGERED IN 10 REPEATED RUNS, T IS THE AVERAGE EXECUTION TIME PER RUN, AND ⇑T IS THE AVERAGE TIME
IMPROVEMENT ACHIEVED BY RANUM COMPARED TO GRIST.

Case RANUM GRIST Case RANUM GRIST Case RANUM GRIST Case RANUM GRIST
ID C T ⇑T C T ID C T ⇑T C T ID C T ⇑T C T ID C T ⇑T C T

1 10 9.01 1.20 X 10 10.77 16b 10 0.21 20.85 X 10 4.42 32 10 0.06 27.93 X 10 1.77 47 10 0.06 32.51 X 10 1.87
2a 10 0.02 9.75 X 10 0.24 16c 10 0.25 17.54 X 10 4.43 33 10 0.06 33.63 X 10 1.91 48a 10 0.38 3.06 X 10 1.17
2b 10 0.03 614.68 X 10 16.54 17 10 439.19 +∞ 0 - 34 10 0.06 33.95 X 10 1.90 48b 10 0.15 7.12 X 10 1.10
3 10 0.02 432.11 X 10 8.67 18 10 0.02 1040.46 X 10 22.17 35a 10 0.44 61.76 X 10 27.33 49a 10 0.49 41.09 X 10 20.07
4 10 0.01 1.00 X 10 0.01 19 10 0.16 689.66 X 10 107.78 35b 10 0.45 819.02 X 10 364.86 49b 10 0.50 612.22 X 10 307.24
5 10 0.05 6.48 X 10 0.34 20 10 0.16 3237.27 X 10 511.06 36a 10 0.44 41.80 X 10 18.58 50 10 0.16 781.02 X 10 126.80
6 10 0.84 5.20 X 10 4.38 21 10 0.16 259.73 X 10 42.09 36b 10 0.46 783.16 X 10 362.41 51 10 1.88 671.55 X 3 1263.04
7 10 0.87 4.54 X 10 3.96 22 10 0.94 1518.43 X 10 1433.12 37 10 0.06 38.34 X 10 2.39 52 10 0.15 336.37 X 10 50.59
8 10 0.86 4.63 X 10 3.99 23 10 0.01 157.72 X 10 1.88 38 10 0.06 34.50 X 10 1.94 53 10 0.05 36.64 X 10 1.92

9a 10 0.20 11.03 X 10 2.22 24 10 0.81 40.72 X 10 33.05 39a 10 0.43 42.79 X 10 18.30 54 10 0.05 36.76 X 10 1.83
9b 10 0.14 14.46 X 10 2.09 25 10 0.04 1271.88 X 10 44.70 39b 10 0.43 843.66 X 10 362.22 55 10 0.82 44.63 X 10 36.63
10 10 0.17 228.42 X 10 39.64 26 10 0.05 37.96 X 10 2.00 40 10 0.04 1995.27 X 10 85.97 56 10 0.06 35.04 X 10 1.93

11a 10 0.15 27.58 X 10 4.26 27 10 0.01 185.61 X 10 1.91 41 10 0.04 1967.23 X 10 86.36 57 10 0.01 177.45 X 10 1.88
11b 10 0.13 34.75 X 10 4.38 28a 10 24.37 -13.30 X 10 1.83 42 10 0.05 1934.84 X 10 87.89 58 10 0.83 12.01 X 10 9.95
11c 10 0.11 4499.86 X 10 516.13 28b 10 24.17 7.28 X 10 176.02 43a 10 0.48 35.63 X 10 16.96 59 10 0.02 105.40 X 10 1.94
12 10 0.26 135.94 X 10 34.69 28c 10 0.12 8.69 X 10 1.02 43b 10 0.45 4008.93 X 10 1800.00 60 10 0.15 221.97 X 10 34.19
13 10 0.01 1.10 X 10 0.01 28d 10 0.12 1518.28 X 10 176.02 44 10 0.27 579.29 X 10 155.38 61 10 0.35 53.29 X 10 18.78
14 10 0.80 107.96 X 10 86.23 29 10 0.89 16.83 X 10 14.98 45a 10 0.16 417.25 X 10 68.08 62 10 1.85 72.19 X 10 133.62
15 10 1.71 5.95 X 10 10.18 30 10 0.16 222.12 X 10 35.61 45b 10 0.88 14.69 X 10 12.98 63 10 2.06 117.12 X 10 240.68

16a 10 0.12 34.24 X 10 4.02 31 10 3.13 2.41 X 3 7.54 46 10 0.01 168.39 X 10 1.88 Tot: 79 790 6.66 17.32 X 766 115.30

TABLE II
(RQ2) RESULTS OF TASK 2⃝ (FAILURE-EXHIBITING SYSTEM TEST GENERATION) WITH RANUM AND RANDOM (BASELINE). C IS THE TOTAL NUMBER

OF RUNS WHERE NUMERICAL FAILURES ARE TRIGGERED IN 10 REPEATED RUNS. T IS THE AVERAGE EXECUTION TIME PER RUN.
Case RANUM Random Case RANUM Random Case RANUM Random Case RANUM Random Case RANUM Random

ID C T C T ID C T C T ID C T C T ID C T C T ID C T C T
1 0 9.01 0 1806.13 13 10 0.01 10 0.01 27 10 0.01 10 0.01 38 1 0.13 0 1800.65 49b 10 0.50 8 364.09

2a 10 0.03 10 0.06 14 10 12.60 10 0.50 28a 0 24.37 0 1920.29 39a 10 0.43 1 1623.72 50 10 4.89 10 0.16
2b 10 0.03 10 0.06 15 0 1.71 0 2107.24 28b 0 24.17 0 1911.26 39b 10 0.43 8 364.10 51 10 49.12 10 2.10
3 10 0.02 10 0.05 16a 10 0.12 10 0.75 28c 10 0.12 10 0.53 40 10 0.06 10 0.02 52 10 4.87 10 0.15
4 10 0.01 10 0.01 16b 10 0.21 0 1834.44 28d 10 0.12 10 0.48 41 10 0.06 10 0.02 53 10 0.07 10 0.03
5 10 0.05 10 0.06 16c 10 0.25 0 1831.67 29 10 0.89 10 11.96 42 10 0.06 10 0.02 54 10 0.07 10 0.02
6 10 0.84 10 12.42 17 10 549.98 10 235.11 30 10 4.88 10 0.14 43a 10 0.48 1 1623.71 55 10 0.82 10 12.79
7 10 0.87 10 12.51 18 10 0.02 10 0.05 31 10 14.62 10 9.31 43b 10 0.45 9 184.14 56 10 0.07 10 0.03
8 10 0.86 10 12.37 19 10 4.88 10 0.16 32 10 0.08 10 0.03 44 10 0.27 10 1.36 57 10 0.01 8 360.01

9a 10 0.20 7 541.25 20 10 4.88 10 0.14 33 10 0.07 10 0.02 45a 10 4.89 10 0.15 58 10 0.83 10 12.28
9b 10 0.14 10 1.39 21 10 4.89 10 0.14 34 10 0.42 10 0.20 45b 10 0.88 10 12.27 59 10 0.02 10 0.05
10 10 4.90 10 0.16 22 10 500.10 0 1801.60 35a 10 0.44 10 4.01 46 10 0.01 10 0.01 60 10 4.88 10 0.16

11a 10 0.15 10 0.72 23 10 0.01 10 0.01 35b 10 0.45 10 4.22 47 10 0.08 10 0.03 61 10 9.84 10 0.93
11b 10 0.13 10 0.76 24 10 0.81 10 12.52 36a 10 0.44 1 1623.76 48a 10 9.89 10 0.90 62 10 48.86 10 2.73
11c 10 0.11 10 0.74 25 10 0.04 10 0.15 36b 10 0.46 3 1263.79 48b 10 4.88 10 0.15 63 10 49.06 10 2.15
12 10 0.26 10 0.72 26 10 0.07 10 0.03 37 2 0.07 2 1440.50 49a 10 0.49 1 1623.88 Tot: 79 733 17.31 (19.30X) 649 334.14

For each defect, due to the randomness of the model’s initial
weights, we repeat both RANUM and “Random” for 10 runs.
Both approaches use the same set of random seeds.

Evaluation Result. Results are in Table II. We observe that
RANUM succeeds in 733/(79 × 10) = 92.78% runs and the
baseline “Random” succeeds in 649/(79×10) = 82.15% runs.
Moreover, RANUM spends only 17.31 s time on average per
run, which is a 19.30X speedup compared to “Random”. We
also observe that RANUM is more reliable across repeated
runs. There are only 6 cases with unsuccessful repeated runs
in RANUM, but there are 19 such cases in “Random”. Hence,
RANUM is substantially more effective, efficient, and reliable
for generating system tests than the baseline.

Discussion. The high effectiveness of RANUM mainly
comes from the advantage of gradient-guided search compared
with random search. As described in Section III-B, RANUM
leverages both first-order gradients (in step a) and second-
order derivatives (in step b) to guide the search of system
tests. In contrast, “Random” uses random sampling hoping that
failure-exhibiting training examples can emerge after sufficient
sampling. Hence, when such training examples are relatively
rare in the whole valid input space, “Random” is less effective.
We conduct an ablation study (in Suppl. F) for showing
that RANUM improves over “Random” in both steps inside
RANUM.

Failing-Case Analysis. We study all six defects where
RANUM may fail and have the following findings. (1) For
four defects (Case IDs 1, 15, 37, and 38), the architecture is

TABLE III
(RQ3) RESULTS OF TASK 3⃝ (FIX SUGGESTION) UNDER THREE IMPOSING

LOCATION SPECIFICATIONS WITH RANUM AND TWO
BASELINES (RANUM-E AND GD). # IS THE NUMBER OF FIXES FOUND.

“TIME (S)” IS THE TOTAL RUNNING TIME FOR ALL 79 CASES.

Imposing RANUM RANUM-E GD
Locations # Time (s) # Time (s) # Time (s)

Weight + Input 79 54.23 78 540.13 57 188.63
Weight 72 58.47 71 581.86 43 219.28
Input 37 924.74 37 3977.30 29 952.19

challenging for gradient-based optimization, e.g., due to the
Min/Max/Softmax operators that provide little or no gradient
information. We leave it as future work to solve these cases,
likely in need of dynamically detecting operators with van-
ishing gradients and reconstructing the gradient flow. (2) Two
defects (Case IDs 28a and 28b) correspond to those caused by
Div operators where only a close-to-zero divisor can trigger
a numerical failure. Hence, for operators with narrow invalid
ranges, RANUM may fail to generate failure-exhibiting system
tests.

C. RQ3: Fix Suggestion

In task 3⃝, RANUM suggests fixes for numerical defects.
We compare RANUM with fixes generated by baseline ap-
proaches and developers’ fixes.

1) Comparison between RANUM and Baselines:
RANUM is the first approach for this task, and we propose
two baseline approaches to compare with. (1) RANUM-E:
this approach changes the abstraction domain of RANUM
from interval with tensor partitioning to standard interval.

To some degree, RANUM-E represents the methodology of
conventional static analysis tools that use standard interval
domain for abstraction and search of effective fixes. (2) GD:
this approach uses standard gradient descent for optimization
instead of the abstraction optimization technique in RANUM.

Evaluation Protocol. We evaluate whether each approach
can generate fixes that eliminate all numerical defects for the
DNN architecture under analysis given imposing locations. We
consider three types of locations: on both weight and input
nodes, on only weight nodes, and on only input nodes. In
practice, model providers can impose fixes on weight nodes by
clipping weights after a model is trained; and users can impose
fixes on input nodes by clipping their inputs before loading
them into the model. Since all approaches are deterministic,
for each case we run only once. We say that the fix eliminates
all numerical defects if and only if (1) the RANUM static
analysis framework cannot detect any defects from the fixed
architecture; and (2) 1,000 random samples cannot trigger any
numerical failures after imposing the fix.

Evaluation Result. We report the statistics, including the
number of successful cases among all the 79 cases and the
total running time, in Table III. From the table, we observe
that on all the three imposing location settings, RANUM
always succeeds in most cases and spends much less time. For
example, when fixes can be imposed on both weights and input
nodes, RANUM succeeds on all cases with a total running
time 54.23 s. In contrast, RANUM-E requires > 10× time,
and GD succeeds in only 72.15% cases. Hence, RANUM is
substantially more effective and efficient for suggesting fixes
compared to baseline approaches.

Since RANUM is based on iterative refinement (see Al-
gorithm 1), we study the number of iterations needed for
finding the fix. When fixes can be imposed on both weight and
input nodes, where RANUM succeeds on all the 79 cases, the
average number of iterations is 29.80, the standard deviation
is 14.33, the maximum is 53, and the minimum is 2. Hence,
when RANUM can find the fix, the number of iterations is
small, coinciding with the small total running time 54.23 s.

Discussion. The two baseline approaches can be viewed as
ablated versions of RANUM. Comparing RANUM and GD,
we conclude that the technique of abstraction optimization
substantially improves the effectiveness and also improves the
efficiency. Comparing RANUM and RANUM-E, we conclude
that the interval abstraction with tensor partitioning as the
abstraction domain substantially improves the efficiency and
also improves the effectiveness.

From Table III, it is much easier to find the fix when
imposing locations are weight nodes compared to input nodes.
Since model providers can impose fixes on weights and users
impose on inputs, this finding implies that fixing numerical
defects on the providers’ side may be more effective than on
the users’ side.

2) Comparison between RANUM and Developers’ Fixes:
We conduct an empirical study to compare the fixes generated
by RANUM and by the developers.

Evaluation Protocol. We manually locate GitHub repos-
itories from which the GRIST benchmarks are constructed.
Among the 79 cases, we find the repositories for 53 cases on
GitHub and we study these cases. We locate the developers’
fixes of the numerical defects by looking at issues and follow-
up pull requests. Since RANUM suggests different fixes for
different imposing locations, for each case we first determine
the imposing locations from the developer’s fix, and then
compare with RANUM’s fix for these locations.

RANUM fixes are on the computational graph and devel-
opers’ fixes are in the source code, so we determine to con-
duct code-centered comparison: RANUM fixes are considered
feasible only when the fixes can be easily implemented by
code (within 10 lines of code) given that developers’ fixes
are typically small, usually in 3-5 lines of code. In particular,
our comparison is based on two criteria: (1) which fix is
sound on any valid input; (2) if both are sound, which fix
hurts less to model performance and utility (based on the span
of imposed precondition, the larger span the less hurt). Two
authors independently classify the comparison results for each
case and discuss the results to reach a consensus.

Results. We categorize the comparison results as below.
A (30 cases) Better than developers’ fixes or no available

developer’s fix. Developers either propose no fixes or use
heuristic fixes, such as reducing the learning rate or using
the mean value to reduce the variance. These fixes may
work in practice but are unsound, i.e., cannot rigorously
guarantee the elimination of the numerical defect for any
training or inference data. In contrast, RANUM generates
better fixes since these fixes rigorously eliminate the defect.

B (7 cases) Equivalent to developers’ fixes. Developers and
RANUM suggest equivalent or highly similar fixes.

C (13 cases) No need to fix. For these cases, there is no
need to fix the numerical defect in the given architecture.
There are mainly three reasons. (1) The DNN is used in
the whole project with fixed weights or test inputs. As a
result, although the architecture contains defects, no system
failure can be caused. (2) The architecture is injected a
defect as a test case for automatic tools, such as a test
architecture in the TensorFuzz [28] repository. (3) The
defect can be hardly exposed in practice. For example, the
defect is in a Div operator where the divisor needs to be
very close to zero to trigger a divide-by-zero failure, but
such situation hardly happens in practice since the divisor
is randomly initialized.

D (3 cases) Inferior than developers’ fixes or RANUM-
generated fixes are impractical. In two cases, RANUM-
generated fixes are inferior to developers’ fixes. Human
developers observe that the defective operator is Log, and
its input is non-negative. So they propose to add 10−6

to the input of Log as the fix. In contrast, RANUM can
generate only a clipping-based fix, e.g., clipping the input
if it is less than 10−6. When the input is small, RANUM’s
fix interrupts the gradient flow from output to input while
the human’s fix maintains it. As a result, the human’s fix
does less hurt to the model’s trainability and is better than

RANUM’s fix. In another case, the RANUM-generated fix
imposes a small span for some model weights (less than
0.1 for each component of that weight node). Such a small
weight span strongly limits the model’s expressiveness
and utility. We leave it as the future work to solve these
limitations.

From the comparison results, we can conclude that for
the 40 cases where numerical defects are needed to be
fixed (excluding case C), RANUM suggests equivalent or
better fixes than human developers in 37 cases. Therefore,
RANUM is comparably effective as human developers in
terms of suggesting numerical-defect fixes, and is much more
efficient since RANUM is an automatic approach.

Guidelines for Users. We discuss two practical questions
for RANUM users. (1) Does RANUM hurt model utility, e.g.,
inference accuracy? If no training or test data ever exposes
a numerical defect, RANUM does not confirm a defect and
hence no fix is generated and there is no hurt to the utility. If
RANUM confirms numerical defects, whether the fix affects
the utility depends on the precondition-imposing locations. If
imposing locations can be freely selected, RANUM tends to
impose the fix right before the vulnerable operator, and hence
the fix does not reduce inference performance. The reason is
that the fix changes (by clipping) the input only when the input
falls in the invalid range of the vulnerable operator. In practice,
if the imposing locations cannot be freely selected and need
to follow developers’ requirements, our preceding empirical
study shows that, in only 3 out of 40 cases, compared with
developers’ fixes, our fixes incur larger hurt to the inference
or training performance of the architecture. (2) Should we
always apply RANUM to fix any architecture? We can always
apply RANUM to fix any architecture since RANUM fixes
do not visibly alter the utility in most cases. Nonetheless, in
deployment, we recommend first using RANUM to confirm
defect feasibility. If there is no such failure-exhibiting system
test, we may not need to fix the architecture; otherwise, we
use RANUM to generate fixes.

V. RELATED WORK

Understanding and Detecting Defects in DNNs. Dis-
covering and mitigating defects and failures in DNN based
systems is an important research topic [61, 33, 14]. Following
the taxonomy in previous work [12], DNN defects are at
four levels from bottom to top. (1) Platform-level defects.
Defects can exist in real-world DL compilers and libraries.
Approaches exist for understanding, detecting, and testing
against these defects [50, 38, 43, 53]. (2) Architecture-level
defects. Our work focuses on numerical defects, being one
type of architecture-level defects. Automatic detection and
localization approaches [51, 20] exist for other architecture-
level defects such as suboptimal structure, activation function,
and initialization and shape mismatch [11]. (3) Model-level
defects. Once a model is trained, its defects can be viewed
as violations of desired properties as discussed by Zhang
et al. [56]. Some example defects are correctness [45, 9],
robustness [49], and fairness [58] defects. (4) Interface-level

defects. DNN-based systems, when deployed as services, ex-
pose interaction interfaces to users where defects may exist, as
shown by empirical studies on real-world systems [12, 47, 48].

Testing and Debugging for DNNs. A rich body of work
exists for testing and debugging DNN defects [56]. Some
representatives are DeepXplore [32] and DeepGauge [23].
Recent work enables automatic model debugging and repair
via consistency checking [52], log checking [60], spectrum
analysis [35], or analyzer-guided synthesis [42].

DNN Static Analysis. Another solution for eliminating
DNN defects is conducting static analysis to rigorously guar-
antee the non-existence of defects [17, 2]. Although DNNs
essentially conduct numerical computations, traditional tools
of numerical analysis [10, 40] are inefficient for DNN analysis
due to lack of support for multi-dimensional tensor compu-
tations. Recently, static analysis tools customized for DNNs
are emerging, mainly focusing on proposing tighter abstrac-
tions [6, 27, 30] or incorporating abstractions into training
to improve robustness [16, 26, 63]. Besides robustness, static
analysis has also been applied to rigorously bound model
difference [31]. Our approach includes a static analysis frame-
work customized for numerical-defect detection and fixing.

Detecting and Exposing Numerical Defects in DNNs.
Despite the widespread existence of numerical defects in real-
world DNN-based systems [61, 12, 14], only a few automatic
approaches exist for detecting and exposing these defects. To
the best of our knowledge, DEBAR [62] and GRIST [55] are
the only two approaches. We discuss and compare RANUM
with both approaches extensively in Sections III and IV.

VI. CONCLUSION

In this paper, we have presented a novel automatic approach
named RANUM for reliability assurance of DNNs against
numerical defects. RANUM supports detection of potential
numerical defects, confirmation of potential-defect feasibility,
and suggestion of defect fixes. RANUM includes multiple
novel extensions and optimizations upon existing tools, and
includes three novel techniques. Our extensive evaluation on
real-world DNN architectures has demonstrated high effective-
ness and efficiency of RANUM compared to both the state-
of-the-art approaches and developers’ fixes.

Data Availability. All artifacts including the tool source
code and experiment logs are available and actively main-
tained at https://github.com/llylly/RANUM. The sup-
plemental materials containing proofs, hyperparameters, and
experiments are available in the arXiv version [18].

ACKNOWLEDGEMENTS

This work is sponsored by the National Natural Science
Foundation of China under Grant No. 62161146003, the Na-
tional Key Research and Development Program of China under
Grant No. 2019YFE0198100, the Innovation and Technology
Commission of HKSAR under Grant No. MHP/055/19, and
the Tencent Foundation/XPLORER PRIZE.

https://github.com/llylly/RANUM

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J.
Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke,
V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden, M. Watten-
berg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous distributed systems,” CoRR,
vol. abs/1603.04467, 2016.

[2] A. Albarghouthi, “Introduction to neural network verification,”
Foundations and Trends in Programming Languages, vol. 7, no.
1-2, pp. 1–157, 2021.

[3] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or
propagating gradients through stochastic neurons for conditional
computation,” CoRR, vol. abs/1308.3432, 2013.

[4] N. D. Q. Bui, Y. Yu, and L. Jiang, “InferCode: Self-supervised
learning of code representations by predicting subtrees,” in 43rd
IEEE/ACM International Conference on Software Engineering,
ICSE. IEEE, 2021, pp. 1186–1197.

[5] P. Cousot and R. Cousot, “Static determination of dynamic
properties of generalized type unions,” in ACM Conference on
Language Design for Reliable Software, LDRS. ACM, 1977,
pp. 77–94.

[6] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaud-
huri, and M. Vechev, “AI2: safety and robustness certification
of neural networks with abstract interpretation,” in 39th IEEE
Symposium on Security and Privacy, SP. IEEE, 2018, pp. 3–18.

[7] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
neural networks,” in 14th International Conference on Artificial
Intelligence and Statistics, AISTATS. JMLR.org, 2011, pp. 315–
323.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in 3rd International Confer-
ence on Learning Representations, ICLR. OpenReview.net,
2015.

[9] A. Guerriero, R. Pietrantuono, and S. Russo, “Operation is
the hardest teacher: estimating DNN accuracy looking for
mispredictions,” in 43rd IEEE/ACM International Conference
on Software Engineering, ICSE. IEEE, 2021, pp. 348–358.

[10] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas,
“The SeaHorn verification framework,” in 27th International
Conference on Computer Aided Verification, CAV. Springer,
2015, pp. 343–361.

[11] M. Hattori, S. Sawada, S. Hamaji, M. Sakai, and S. Shimizu,
“Semi-static type, shape, and symbolic shape inference for dy-
namic computation graphs,” in 4th ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages,
2020, pp. 11–19.

[12] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning
systems,” in 42nd ACM/IEEE International Conference on
Software Engineering, ICSE. IEEE, 2020, pp. 1110–1121.

[13] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A
deep reinforcement learning perspective on Internet congestion
control,” in 36th International Conference on Machine Learn-
ing, ICML. PMLR, 2019, pp. 3050–3059.

[14] E. Kloberdanz, K. G. Kloberdanz, and W. Le, “DeepStability:
A study of unstable numerical methods and their solutions in
deep learning,” in 44th International Conference on Software
Engineering, ICSE. ACM, 2022, pp. 586–597.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classi-
fication with deep convolutional neural networks,” in Advances
in Neural Information Processing Systems 25, NIPS, 2012, pp.
1106–1114.

[16] L. Li, Z. Zhong, B. Li, and T. Xie, “Robustra: Training provable
robust neural networks over reference adversarial space,” in 28th
International Joint Conference on Artificial Intelligence, IJCAI.
ijcai.org, 2019, pp. 4711–4717.

[17] L. Li, T. Xie, and B. Li, “SoK: Certified robustness for deep
neural networks,” in 44th IEEE Symposium on Security and
Privacy, SP. IEEE, 2023, pp. 94–115.

[18] L. Li, Y. Zhang, L. Ren, Y. Xiong, and T. Xie, “Reliability
assurance for deep neural network architectures against
numerical defects,” CoRR, vol. abs/2302.06086, 2023. [Online].
Available: https://arxiv.org/pdf/2302.06086.pdf

[19] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural
networks with ReLU activation,” in Advances in Neural Infor-
mation Processing Systems 30, NIPS, 2017, pp. 597–607.

[20] C. Liu, J. Lu, G. Li, T. Yuan, L. Li, F. Tan, J. Yang, L. You,
and J. Xue, “Detecting TensorFlow program bugs in real-
world industrial environment,” in 36th IEEE/ACM International
Conference on Automated Software Engineering, ASE. IEEE,
2021, pp. 55–66.

[21] F. Liu, G. Li, B. Wei, X. Xia, Z. Fu, and Z. Jin, “A unified
multi-task learning model for AST-level and token-level code
completion,” Empirical Software Engineering, vol. 27, no. 4:91,
2022.

[22] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face
attributes in the wild,” in 2015 IEEE International Conference
on Computer Vision, ICCV. IEEE, 2015, pp. 3730–3738.

[23] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu, J. Zhao, and Y. Wang, “DeepGauge: Multi-
granularity testing criteria for deep learning systems,” in 33rd
ACM/IEEE International Conference on Automated Software
Engineering, ASE. ACM, 2018, pp. 120–131.

[24] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
in 6th International Conference on Learning Representations,
ICLR. OpenReview.net, 2018.

[25] P. McCausland, “Self-driving uber car that hit and killed woman
did not recognize that pedestrians jaywalk,” 2022. [Online].
Available: https://www.nbcnews.com/tech-news/n1079281

[26] M. Mirman, T. Gehr, and M. T. Vechev, “Differentiable abstract
interpretation for provably robust neural networks,” in 35th
International Conference on Machine Learning, ICML. PMLR,
2018, pp. 3575–3583.

[27] M. N. Müller, G. Makarchuk, G. Singh, M. Püschel, and
M. Vechev, “PRIMA: general and precise neural network certi-
fication via scalable convex hull approximations,” the ACM on
Programming Languages, vol. 6, no. POPL, pp. 1–33, 2022.

[28] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “Ten-
sorFuzz: Debugging neural networks with coverage-guided
fuzzing,” in 36th International Conference on Machine Learn-
ing, ICML. PMLR, 2019, pp. 4901–4911.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch:
An imperative style, high-performance deep learning library,”
in Advances in Neural Information Processing Systems 32,
NeurIPS, 2019, pp. 8024–8035.

[30] B. Paulsen and C. Wang, “LinSyn: Synthesizing tight linear
bounds for arbitrary neural network activation functions,” in
28th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS. Springer, 2022,
pp. 357–376.

[31] B. Paulsen, J. Wang, J. Wang, and C. Wang, “NeuroDiff:
scalable differential verification of neural networks using fine-
grained approximation,” in 35th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE. IEEE, 2020,
pp. 784–796.

https://arxiv.org/pdf/2302.06086.pdf
https://www.nbcnews.com/tech-news/n1079281

[32] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: automated
whitebox testing of deep learning systems,” Communications of
the ACM, vol. 62, no. 11, pp. 137–145, 2019.

[33] H. V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan,
Y. Yu, and N. Nagappan, “Problems and opportunities in train-
ing deep learning software systems: An analysis of variance,”
in 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE. IEEE, 2020, pp. 771–783.

[34] L. Powell, “The problem with artifi-
cial intelligence in security,” 2022. [On-
line]. Available: https://darkreading.com/threat-intelligence/
the-problem-with-artificial-intelligence-in-security

[35] H. Qi, Z. Wang, Q. Guo, J. Chen, F. Juefei-Xu, L. Ma, and
J. Zhao, “ArchRepair: Block-level architecture-oriented repair-
ing for deep neural networks,” CoRR, vol. abs/2111.13330,
2021.

[36] T. Serra, C. Tjandraatmadja, and S. Ramalingam, “Bounding
and counting linear regions of deep neural networks,” in 35th
International Conference on Machine Learning, ICML. PMLR,
2018, pp. 4565–4573.

[37] D. K. Sharma, S. K. Dhurandher, I. Woungang, R. K. Srivastava,
A. Mohananey, and J. J. Rodrigues, “A machine learning-based
protocol for efficient routing in opportunistic networks,” IEEE
Systems Journal, vol. 12, no. 3, pp. 2207–2213, 2016.

[38] Q. Shen, H. Ma, J. Chen, Y. Tian, S. Cheung, and X. Chen,
“A comprehensive study of deep learning compiler bugs,” in
29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ESEC/FSE. ACM, 2021, pp. 968–980.

[39] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,
Y. Chen, T. P. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,
T. Graepel, and D. Hassabis, “Mastering the game of Go without
human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359,
2017.

[40] G. Singh, M. Püschel, and M. T. Vechev, “Fast polyhedra
abstract domain,” in 44th ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages, POPL. ACM, 2017, pp.
46–59.

[41] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract
domain for certifying neural networks,” The ACM on Program-
ming Languages, vol. 3, no. POPL, pp. 1–30, 2019.

[42] M. Sotoudeh and A. V. Thakur, “Provable repair of deep neural
networks,” in 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI.
ACM, 2021, pp. 588–603.

[43] F. Tambon, A. Nikanjam, L. An, F. Khomh, and G. Antoniol,
“Silent bugs in deep learning frameworks: An empirical study
of Keras and TensorFlow,” CoRR, vol. abs/2112.13314, 2021.

[44] The Linux Foundation, “ONNX home,” https://onnx.ai/, 2022,
accessed: 2023-02-01.

[45] S. Tizpaz-Niari, P. Cerný, and A. Trivedi, “Detecting and
understanding real-world differential performance bugs in ma-
chine learning libraries,” in 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA. ACM,
2020, pp. 189–199.

[46] F. Tramèr, N. Carlini, W. Brendel, and A. Madry, “On adaptive
attacks to adversarial example defenses,” in Advances in Neural
Information Processing Systems 33, NeurIPS, 2020, pp. 1633–
1645.

[47] C. Wan, S. Liu, H. Hoffmann, M. Maire, and S. Lu,
“Are machine learning cloud APIs used correctly?” in 43rd
IEEE/ACM International Conference on Software Engineering,
ICSE. IEEE, 2021, pp. 125–137.

[48] C. Wan, S. Liu, S. Xie, Y. Liu, H. Hoffmann, M. Maire,
and S. Lu, “Automated testing of software that uses machine

learning APIs,” in 44th IEEE/ACM International Conference on
Software Engineering, ICSE. ACM, 2022, pp. 212–224.

[49] J. Wang, J. Chen, Y. Sun, X. Ma, D. Wang, J. Sun, and P. Cheng,
“RobOT: Robustness-oriented testing for deep learning sys-
tems,” in 43rd IEEE/ACM International Conference on Software
Engineering, ICSE. IEEE, 2021, pp. 300–311.

[50] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep
learning library testing via effective model generation,” in
28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ESEC/FSE. ACM, 2020, pp. 788–799.

[51] M. Wardat, W. Le, and H. Rajan, “DeepLocalize: Fault localiza-
tion for deep neural networks,” in 43rd IEEE/ACM International
Conference on Software Engineering, ICSE. IEEE, 2021, pp.
251–262.

[52] Y. Xiao, I. Beschastnikh, D. S. Rosenblum, C. Sun, S. Elbaum,
Y. Lin, and J. S. Dong, “Self-checking deep neural networks in
deployment,” in 43rd IEEE/ACM International Conference on
Software Engineering, ICSE. IEEE, 2021, pp. 372–384.

[53] D. Xie, Y. Li, M. Kim, H. V. Pham, L. Tan, X. Zhang,
and M. W. Godfrey, “Leveraging documentation to test deep
learning library functions,” CoRR, vol. abs/2109.01002, 2021.

[54] Y. Xiong, Y. Tian, Y. Liu, and S. Cheung, “Toward actionable
testing of deep learning models,” Science China, Information
Sciences, 2022, online first: 2022-09-26.

[55] M. Yan, J. Chen, X. Zhang, L. Tan, G. Wang, and Z. Wang,
“Exposing numerical bugs in deep learning via gradient back-
propagation,” in 29th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE. ACM, 2021, pp. 627–638.

[56] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning
testing: Survey, landscapes and horizons,” IEEE Transactions on
Software Engineering, vol. 48, no. 2, pp. 1–36, 2022.

[57] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face de-
tection and alignment using multitask cascaded convolutional
networks,” IEEE Signal Processing Letters, vol. 23, no. 10, pp.
1499–1503, 2016.

[58] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S.
Dong, and T. Dai, “White-box fairness testing through adver-
sarial sampling,” in 42nd ACM/IEEE International Conference
on Software Engineering, ICSE. ACM, 2020, pp. 949–960.

[59] T. Zhang, C. Gao, L. Ma, M. R. Lyu, and M. Kim, “An
empirical study of common challenges in developing deep
learning applications,” in 30th IEEE International Symposium
on Software Reliability Engineering, ISSRE. IEEE, 2019, pp.
104–115.

[60] X. Zhang, J. Zhai, S. Ma, and C. Shen, “AutoTrainer: An
automatic DNN training problem detection and repair system,”
in 43rd IEEE/ACM International Conference on Software En-
gineering, ICSE. IEEE, 2021, pp. 359–371.

[61] Y. Zhang, Y. Chen, S. Cheung, Y. Xiong, and L. Zhang, “An
empirical study on TensorFlow program bugs,” in 27th ACM
SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA. ACM, 2018, pp. 129–140.

[62] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, and T. Xie,
“Detecting numerical bugs in neural network architectures,” in
28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ESEC/FSE. ACM, 2020, pp. 826–837.

[63] Y. Zhang, A. Albarghouthi, and L. D’Antoni, “Certified robust-
ness to programmable transformations in LSTMs,” in 2021 Con-
ference on Empirical Methods in Natural Language Processing,
EMNLP. Association for Computational Linguistics, 2021, pp.
1068–1083.

[64] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,”
in Advances in Neural Information Processing Systems 32,
NeurIPS, 2019, pp. 14 747–14 756.

https://darkreading.com/threat-intelligence/the-problem-with-artificial-intelligence-in-security
https://darkreading.com/threat-intelligence/the-problem-with-artificial-intelligence-in-security
https://onnx.ai/

	Introduction
	Background and Approach Overview
	Background
	Approach Overview

	The RANUM Approach
	DNN Static Analysis Framework with Backward Fine-Grained Node Labeling for Potential-Defect Detection
	Two-Step Test Generation for Feasibility Confirmation
	Abstraction Optimization for Fix Suggestion

	Experimental Evaluation
	RQ1: Comparison with SOTA Tools
	RQ2: Feasibility Confirmation via System Test Generation
	RQ3: Fix Suggestion
	Comparison between RANUM and Baselines
	Comparison between RANUM and Developers' Fixes

	Related Work
	Conclusion
	Supplementary Material
	List of Supported Operators
	List of Operators with Potential Numerical Defects
	Detail Description of RANUM Static Analysis Framework
	Abstraction Domain and Characteristics
	Initial Abstraction Construction with Backward Fine-Grained Node Labeling
	Internal Abstraction with Dynamic Partitioning
	List of Fine-Grained Requiring and Stopping Operators
	Proofs

	Implementation
	Hyperparameters
	Ablation Study of System Test Generation
	Threats to Validity

