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Abstract—To assure high quality of mobile applications (apps
for short), automated UI testing triggers events (associated with
UI elements on app UIs) without human intervention, aiming
to maximize code coverage and find unique crashes. To achieve
high test effectiveness, automated UI testing prioritizes a UI event
based on its exploration value (e.g., the increased code coverage of
future exploration rooted from the UI event). Various strategies
have been proposed to estimate the exploration value of a UI
event without considering its exploration diversity (reflecting the
variance of covered code entities achieved by explorations rooted
from this UI event across its different triggerings), resulting in
low test effectiveness, especially on complex mobile apps. To
address the preceding problem, in this paper, we propose a new
approach named BADGE to prioritize UI events considering both
their exploration values and exploration diversity for effective
automated UI testing. In particular, we design a hierarchical
multi-armed bandit model to effectively estimate the exploration
value and exploration diversity of a UI event based on its
historical explorations along with historical explorations rooted
from UI events in the same UI group. We evaluate BADGE on 21
highly popular industrial apps widely used by previous related
work. Experimental results show that BADGE outperforms state-
of-the-art/practice tools with 18%-146% relative code coverage
improvement and finding 1.19-5.20x unique crashes, demonstrat-
ing the effectiveness of BADGE. Further experimental studies
confirm the benefits brought by BADGE’s individual algorithms.

Index Terms—GUI testing, mobile testing, mobile app, An-
droid, multi-armed bandits, reinforcement learning

I. INTRODUCTION

Mobile applications (apps in short) have been an indispens-
able part of people’s daily work and life [1]. The number
of global smartphone users is estimated at 6.6 billion [2]
in 2022 and users spend nearly 5 hours [3] on apps daily.
Consequently, ensuring good user experiences has become
unprecedentedly important for mobile app vendors. While
manual UI testing is usually conducted to test complex app
functionalities, it can be notoriously expensive and tedious to
satisfy frequent and rapid shipments of mobile apps [4].

To alleviate the cost of manual UI testing, automated UI
testing [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19] requires no human intervention
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and automatically selects UI events1 to trigger based on their
exploration values. In this paper, the exploration value of UI
event e is denoted as the increased code coverage (e.g., activity
coverage and method coverage) achieved by future exploration
rooted from e (beyond the code coverage achieved during the
exploration process before the triggering of e) in the directed
acyclic activity transition graph [20] of the AUT. As shown
in Figure 1, a click on the search tab element leads to search-
related functionalities. The exploration value of this click
event is the estimated increased code coverage from triggering
this event and its subsequent UI events. Since the goal of
automated UI testing is usually to maximize the coverage of
the App Under Test (AUT for short), it is more desirable to
trigger UI events estimated to result in more code coverage
gain in future exploration, ideally having higher priorities over
other UI events to be performed on the AUT.

To estimate exploration values of UI events, various ap-
proaches have been proposed, falling into four main categories.
Random approaches [21], [8], [9] use naı̈ve/adaptive random
heuristics to estimate the exploration values of UI events.
Systematic approaches [11], [12], [13] prioritize UI events
that target hard-to-cover code. Model-based approaches [5],
[6], [16], [10], [17] use a UI transition model to determine
the current test progress and prioritize UI events that tar-
get not-yet-explored functionalities. Machine-learning-based
approaches [22], [23], [19], [24] prioritize UI events based
on their exploration values estimated by deep learning or
reinforcement learning algorithms.

Despite various proposed strategies, estimating exploration
values of UI events in industrial apps still faces two major
challenges. First, treating the UI events in an extendable list
as equivalent UI events will incur the loss of code coverage.
As shown in Figure 1, exploring the UI events (denoted as E)
associated with the UI elements U in the extendable list can
incur different increased code coverages since U correspond to
different cards. If a tool treats the UI events in the extendable
list as equivalent UI events, the tool may click on only one
UI element in U as shown in Figure 1(a), and estimate the

1UI events are interactions associated with UI elements. Although our work
can support situations where multiple types of action can be performed on
each UI element, for simplicity of presentation, in this paper, we assume that
only one type of action can be performed on each UI element, and use the
two terms (UI events and UI elements) interchangeably.



exploration values of clicking other UI elements in U as zero
and ignore the other UI elements in U , failing to discover
possibly different UI screens (i.e., different coverages) after
clicking different UI elements in U . Second, treating the UI
events in an extendable list as nonequivalent UI events can
waste the test budget on these UI events. Suppose that a
tool finds that triggering the UI events associated with the
UI elements in the list results in different code coverages. In
that case, the tool will allocate the test budget to exhaustively
trigger all UI events in the list, resulting in low effectiveness.

The preceding challenge faced by existing strategies results
from the exploration diversity of UI event e, which indicates
the differences among the sets of covered code entities (such
as activities and methods), in short as covered entity sets,
achieved by explorations rooted from e triggered in multiple
trials, respectively. To estimate the exploration diversity of
e, we leverage the covered entity sets achieved by historical
explorations rooted from e triggered in multiple trials. For
example, assume that UI event e is triggered two times, and
the covered entity sets are X and Y , respectively. Then the
exploration diversity of UI event e can be estimated by the
Jaccard Index [25] J(X,Y ) = X∩Y

X∪Y between sets X and Y .
A lower Jaccard Index (i.e., the two sets are more different)
indicates a higher difference between the different triggerings
of UI event e.

In addition, we also define the exploration diversity of UI
events e1, ..., en associated with the UI elements in the
same UI element group (in short as UI group)2 such as
an extendable list. The exploration diversity here indicates
the differences among the covered entity sets achieved by
explorations rooted from e1, ..., en, respectively. To simplify
the presentation, we also name this exploration diversity as the
exploration diversity of this UI group. Similarly, to estimate
exploration diversity of e1, ..., en, we leverage the covered
entity sets achieved by historical explorations rooted from a
subset of e1, ..., en, and then the exploration diversity can
be estimated by the Jaccard Index [25]. Note that the second
setting is based on the hierarchical organization [26] of UI
elements: instead of being independent or unrelated to each
other, UI elements on a UI screen are organized according to
specific principles [27]. As shown in Figure 1, UI elements
are organized into UI groups based on their alignment and
proximity. The UI events associated with the elements in the
same group (e.g., the extendable list in Figure 1) are strongly
correlated to each other. Our insight is that higher exploration
diversity of already explored UI events in the same group
reflects a higher priority to explore some remaining unexplored
UI events in the same group.

While the exploration diversity of UI events can substan-
tially affect the effectiveness of automated UI testing, it is
challenging to effectively quantify and exploit the exploration
diversity of UI events for two reasons. First, the exploration
diversity of UI events is hard to estimate. Due to the ran-

2Note that for each ei of UI events e1, ..., en associated with the UI
elements in the same UI group, we also have the exploration diversity of ei
as defined earlier.

domness of UI-event prioritization strategies and the AUT’s
own non-deterministic behaviors [28], [29], the covered entity
set achieved by a future exploration rooted from a UI event
is non-deterministic. Second, it is challenging to balance
exploration diversity and exploration value when prioritizing
UI events. While exploration value indicates a possibility to
bring coverage gain to trigger an already explored UI event,
triggering an unexplored UI event can also possibly bring
coverage gain (from pure exploration value). It is not clear
which one is more beneficial for automated UI testing to select
between the two cases.

To improve the effectiveness of automated UI testing against
exploration diversity of UI events, in this paper, we propose
BADGE, a hierarchical multi-armed bandit [30] approach to
prioritizing UI events by jointly estimating and balancing their
exploration values and exploration diversity. Multi-Armed
Bandits (MABs) is a reinforcement learning paradigm [31]
for estimating the values of performing individual actions
and balancing between two factors (exploration values and
exploration diversity in our setting). By balancing exploration
values and exploration diversity with MAB, BADGE avoids
the two extremes of exploring an extendable list faced by
existing work [16], [17], [19]. In particular, BADGE learns the
exploration values and exploration diversity of UI events based
on the increased coverage gained from historical trials, and
exploits MAB to prioritize the UI events by jointly considering
their exploration values and exploration diversity.

To evaluate the effectiveness of BADGE, we instantiate
BADGE with a simple activity-level UI transition model and
conduct experiments on 21 highly popular industrial apps
(widely used in previous related work [32], [18], [33], [34])
compared with three state-of-the-art tools namely Stoat [16],
Ape [17], Q-testing [19], and two state-of-the-practice tools
namely Monkey [21] and Fastbot [20]. Evaluation results
demonstrate that BADGE substantially outperforms the state-
of-the-art/practice tools with 18%-146% relative method cov-
erage improvement and finding 1.19-5.20x unique crashes.
To study the impact of exploration values and exploration
diversity of UI events, we conduct experimental studies and the
results demonstrate the usefulness of jointly balancing them in
automated UI testing.

In summary, this paper makes the following main contribu-
tions:

• A novel MAB formulation of automated UI testing to
prioritize UI events based on both exploration values and
exploration diversity.

• An extensible approach named BADGE instantiated with
novel designs. The implementation is publicly available.3

• Evaluations on widely used industrial apps demonstrating
the effectiveness of BADGE with 18%-146% code cover-
age improvement and finding1.19-5.20x unique crashes.

3https://github.com/ranpku/Badge



Fig. 1. A motivating example: the search tab and search result list in the
“Quizlet” app.

II. MOTIVATING EXAMPLE

In this section, we introduce the concept of exploration val-
ues and exploration diversity of UI events with an illustrative
example.

Figure 1 presents the search tab in the “Quizlet” app,
whose main functionalities are to help users learn through
specialized assistance and flashcards. A list of search results
can be accessed from the search screen shown in the main
figure in Figure 1. The three sub-figures on the right side
are the flashcard sets after the UI elements marked with (e1),
(e2), and (e3) in the search result list are clicked, with three
pointers each pointing from an element to its corresponding
result, respectively. While the flashcard set for (e1) contains no
available flashcards, those for (e2) and (e3) contain flashcards
with different items. In this example, the exploration value
of clicking a different UI element in the search list can vary
drastically but the exploration diversity of the search list is
moderate since the covered entity sets of clicking different UI
elements can be clustered into two groups (w/wo flashcards
after clicking a UI element), and thus the UI elements can be
classified into two types accordingly.

Automated UI testing needs to allocate a proper test budget
to explore the UI elements in the search list for achieving
good test effectiveness (e.g., code coverage). Stoat [16] treats
all the UI elements in the search list equivalent, ignoring
the differences of exploration values of clicking different UI
elements and the exploration diversity of clicking UI elements
in the search list, as pointed out by the work of Ape [17].
Ape [17] and Q-testing [19] can identify the differences
between the exploration values of clicking UI elements (e1)
and (e2). However, Ape and Q-testing treat all of the UI
elements in the search list as different ones, ignoring the

exploration diversity of clicking the UI elements in the search
list and wasting the test budget. A desirable solution should
balance the exploration values and exploration diversity of UI
events to achieve good test effectiveness. In this example, a
moderate test budget is expected to be allocated to the search
list to explore the two types of UI elements and timely stop
exploring the search list after the exploration diversity of the
search list stops increasing.

On one hand, the exploration values and exploration di-
versity of UI events are learned from historical trials, and
more trials result in a more accurate estimation of exploration
values and exploration diversity. On the other hand, more trials
can lead to possible waste of test budgets. BADGE addresses
the challenge of estimating exploration values and exploration
diversity with the hierarchical MAB model [30]. In particular,
the MAB model determines the optimal trials to obtain an
accurate estimation of exploration values and exploration
diversity, and the hierarchical model simultaneously estimates
the exploration diversity of UI events and UI groups.

III. PRELIMINARY

In this section, we present basic concepts necessary for
introducing BADGE.

A. Android UI System

Activity. Activities are one of the major types of compo-
nents [35] for building Android apps. As the entry points to
app functionalities, activities present UIs that users can interact
with. Each activity internally maintains the data structures
that describe the properties and hierarchical information of
its current UI.
UI Hierarchy. Android UIs can be structurally represented by
UI hierarchies. Each UI hierarchy consists of UI properties
(e.g., location, size) for individual UI elements (e.g., buttons,
text boxes) and hierarchical relations among UI elements.
Typically, UI elements are implemented with View [36]
subclass instances, and hierarchical relations are represented
by children Views of ViewGroup [37] subclass instances.
UI event. A UI event [38] represents a user’s interaction
with a UI element. An event e can be represented as a
triple (w, a, v), where w denotes a UI element, a denotes
an associated action to perform on the UI element, and v
represents optional parameters of the action. To handle an
event, a UI element typically needs a corresponding event
listener, a callback object that responds to UI events targeted
by itself. For example, Android apps typically implement
View.OnClickListener and attach the callback objects
to Button instances to handle button clicks. For simplicity
of presentation, by following previous work [17], we assume
that each UI element can handle only one UI event, and we
use UI element and UI event interchangeably to refer to the
UI event associated with the single UI element.

B. Multi-Armed Bandit

Multi-Armed Bandit (MAB) [30] is a classic family of
reinforcement learning algorithms [31]. In a basic MAB
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Fig. 2. An illustration of Thompson sampling. Curves represent the probabil-
ity density function of the rewards of three arms. The more concentrated the
curve is, the more confident we are with the arm’s actual reward. The higher
the curve is, the higher reward that arm is estimated to have.

formulation, the MAB algorithm chooses an arm (i.e., an
action) from K possible arms and collects a reward drawn
from a distribution for the chosen arm. When selecting arms,
the MAB algorithm faces a trade-off between exploration and
exploitation. On one hand, choosing arms that are not explored
(denoted as exploration) may bring higher rewards than those
of already explored arms. On the other hand, choosing already
explored arms that are known to bring high rewards (denoted
as exploitation) can be better than risking exploring unexplored
arms.

In automated UI testing, the arms are UI events or UI
groups (choosing an arm of UI group indicates choosing UI
events within the UI group, and triggering a UI group indicates
triggering an event within the UI group). The reward of a UI
event/UI group is the exploration values of the UI event/UI
group. Given the existence of exploration diversity of the UI
event/UI group, the reward is a stochastic distribution. For a
UI event/UI group that has been explored more times, we are
more confident with its exploration value and its exploration
diversity observed from historical trials.

It is proved that the random exploration and exploration-first
strategies in MAB yield sub-optimal cumulative rewards [39].
Consequently, MAB algorithms strive to learn which arms are
the best (approximately), while not spending too much time
exploring.
Thompson Sampling [40] is an effective heuristic for tack-
ling MAB problems. Given the average reward αi and the
exploration count βi of the arm i (i.e., the number of times of
choosing the arm), Thompson sampling estimates the actual
reward θ of choosing the arm i as θi ∼ Beta(αi, βi), where
Beta(α, β) is the Beta distribution [41]. A larger α indicates a
higher reward based on the estimation from previous observa-
tions, and the larger β (i.e., higher exploration count) indicates
a more confident estimation of the current reward.

Figure 2 presents an illustrative example of how Thompson
sampling balances exploration and exploitation. For arms with
higher exploration counts, we are more confident with their
rewards based on historical observations and select arms based
on their rewards. For example, we prefer Arm 2 (with a higher
reward) than Arm 1. For arms with lower exploration counts,
we are less confident with the current estimation of their
rewards and their actual rewards can be higher than those

Algorithm 1 Main Algorithm of BADGE.
Require: T, rThresh

1: function Badge
2: regret← 0
3: groups, arms← mabConstruction()
4: for t ∈ {1, 2 . . . T} do
5: /*Generate score for each arm*/
6: arms← MCTSTAR(groups, arms)

7: /*Sample event e with relative probability Score(e)*/
8: bestEvent← sampleFrom(arms, key = score)
9: rsimulated ← bestEvent.score

10: UIAutomator.act(bestEvent)
11: groups, arms← mabConstruction()

12: /*Restart if cumulative regret exceeds threshold*/
13: ractual ← getActualReward(arms)
14: regret← regret+ max(rsimulated − ractual, 0)
15: if regret ≥ rThresh then
16: UIAutomator.restartApp()
17: regret← 0

estimated based on historical observations. Consequently, we
would still select Arm 3 instead of Arm 2 with some proba-
bility although the current reward of Arm 3 is lower than that
of Arm 2.

IV. APPROACH

In this section, we first present the BADGE approach with
MAB-based formulation of automated UI testing. Then we
introduce the design and techniques to instantiate BADGE into
a practical automated UI testing tool.

Algorithm 1 presents the main algorithm of BADGE. BADGE
iteratively interacts with the App Under Test (AUT) until the
test budget runs out. In each iteration, BADGE first acquires the
interactable UI events on the screen from the MAB model and
constructs a hierarchical MAB model of UI events (detailed
in Section IV-A). Then BADGE uses the MCTSTAR algorithm
(detailed in Section IV-B) to estimate rewards (i.e., exploration
values and exploration diversity) for UI events and UI groups.
Finally, BADGE prioritizes UI events based on their rewards
and selects a UI event to trigger on the AUT based on their
prioritization. Since the rewards are estimated and sometimes
do not conform with the actual cases, BADGE monitors the
testing progress and restarts the AUT when the actual rewards
are less than the estimated rewards (denoted as regrets) for a
given threshold (Lines 12-17) to avoid being stuck or trapped
in exploration tarpits [34].

A. Hierarchical MAB Construction

Algorithm 2 presents the algorithms of parsing a UI hierar-
chy into the hierarchical MAB model. The UI elements on the
screen of mobile apps are organized in a tree structure called
UI hierarchy (detailed in Section III) that can be obtained
with UIAutomator [42] for Android. Each UI element in
the UI hierarchy can be uniquely identified by its element
identifier (i.e., attribute path defined in previous work [17]).
Each UI element possesses attributes indicating its type and



Algorithm 2 MAB construction
1: /*Trim non-interactive elements*/
2: function dfsTrimHierarchy(node)
3: for childNode ∈ node.childs do
4: dfsTrimHierarchy(childNode)

5: if !isInteractable(node) then
6: node.removeSelf()

7: /*Compress non-interactive chains*/
8: function compressPath(uiHierarchy)
9: for node ∈ uiHierarchy do

10: if isInteractable(node) then
11: continue
12: else if node.childs.size ≤ 1 then
13: uiHierarchy.remove(node)

14: function getLocalID(node)
15: return node.class+ node.resource id

16: function uiHierarchyModeler(uiHierarchy)
17: dfsTrimHierarchy(uiHierarchy.root)
18: compressPath(uiHierarchy)
19: elements← ∅
20: for node ∈ uiHierarchy do
21: if isInteractable(node) then
22: node.localID← getLocalID(node)

23: /*Join the IDs of ancestors to obtain group ID*/
24: pathToFather← uiHierarchy.path(node.father)
25: ancestorIDs← pathToNode.map(getLocalID)
26: node.groupID← join(ancestorIDs)
27: elements.add(node)

28: return elements

29: function mabConstruction( )
30: S← UIAutomator.dump
31: elements← UI_Hierarchy_Modeler(S)

32: /*Put arms with the same IDs in the same group*/
33: arms← elements.groupby(key = ‘localID′)
34: groups← elements.groupby(key = ‘groupID′)
35: rewards← MCTSTAR(groups, arms)
36: return rewards, arms

content such as class, resource-id, index, text,
content-description, and position. We use class
and resource-id of a UI element as its local identifier
since the two attributes of a UI element do not change during
testing.

We denote the concatenation of the local identifiers of all
the ancestor UI elements (in the depth-first traversal of the UI
hierarchy tree) of a UI element as its group identifier. Then the
element identifier of a UI element is the concatenation of its
group identifier and its own local identifier. For a UI element
supporting multiple interactions, we concatenate each inter-
action (indicated by the clickable, long-clickable,
scrollable attributes of the UI element) to its element
identifier to distinguish between the different types of interac-
tions with the UI element. There can be some discrepancies
between UI groups from the users’ perspective and the groups
according to elements’ group identifiers due to some invisible

layout UI elements. Thus, we trim the original UI hierarchy
dumped from UIAutomator by removing all UI elements that
contain only one interactable element and are invisible/non-
interactable. When a UI element and its children elements are
both interactable, we retain only its children elements in the
trimmed UI hierarchy. The group identifiers of interactable
elements are calculated in the trimmed UI hierarchy.

After obtaining a list of UI element identifiers and group
identifiers, for each activity, BADGE builds the hierarchical
MAB model whose arms represent UI groups and UI elements
in the activity. For each arm, the MAB model records the count
that the arm has been chosen so far, and the reward of selecting
this arm. For an arm representing a UI group, its exploration
count is the sum of the exploration counts of the UI elements
in the UI group.

B. Monte Carlo Tree Search for Reward Generation

In order to estimate the exploration values and exploration
diversity of UI elements/groups, we design an algorithm
of Monte Carlo Tree Search (MCTS) [43], [44] based Test
rewArd geneRation (MCTSTAR for short), being a type of
reinforcement learning (RL) algorithm [31]), to estimate the
code coverage achieved by future exploration rooted from a
UI event. Our algorithm plans over the exploration history and
estimates the exploration values and exploration diversity of
UI elements/groups based on the coverages already achieved
during the testing process.

For our approach, we design an MCTS algorithm instead of
the standard Q-learning algorithm (a type of RL algorithm that
has been popularly adopted in automated UI testing [22], [19],
[24]) due to its undesirable design. In the standard Q-learning
algorithm, the Q values eventually converge to a fixed value
and Q-learning will greedily select the action that maximizes
this fixed value of the current state (i.e., eventually learns a
deterministic optimal policy)4. This design in the standard
Q-learning algorithm is undesirable for automated UI testing
since the exploration values and exploration diversity of UI
elements/groups change during the testing process with the
AUT’s unexplored parts changing during the testing process.

Algorithm 3 presents the workflow of generating rewards
for arms in the MAB model and prioritizing UI elements with
MCTSTAR, consisting of three components: (1) exploration
diversity estimation, (2) exploration value estimation, and (3)
Thompson sampling.

Exploration diversity estimation. MCTSTAR estimates
the exploration diversity of a UI group by measuring the
differences among the covered entity sets achieved by ex-
plorations rooted from the explored UI elements in the UI
group. Let us denote Se as the set of UI elements encountered5

4We talk about only Q-learning algorithms under the Markov Decision
Process (MDP) formulation used by existing automated UI testing tools,
and do not discuss recent advances of memory-based Q-learning under Non-
Markovian Decision Process formulations.

5We denote that UI element ex is encountered after e is triggered if ex is
contained by a UI hierarchy explored by historical explorations rooted from
e.



Algorithm 3 MCTS-based Test Reward Generation
Require: uiTransitions, η

1: function getDiversityScore(group)
2: clusterNum← cluster(group,
3: key = mutualInformation).size
4: return clusterNum

group.size

5: function getArmScore(root)
6: score← 0
7: for element ∈ uiTransitions do
8: if uiTransitions.connected(root, element) then
9: dist← uitransitions.dist(root, element)

10: score← score+ element.score · 2−dist

11: return score

12: function getActualReward(arms)
13: reward← 0
14: for arm ∈ arms do
15: reward← reward+ getArmScore(arm)

16: return reward

17: function MCTSTAR(groups, arms)
18: for group ∈ groups do
19: group.score← getDiversityScore(group)

20: for arm ∈ arms do
21: r = getArmScore(arm) · (1+ arm.group.score)
22: α← r · arm.explorationCount
23: β ← arm.explorationCount− α
24: arm.score← thompsonSampling(α, β)

25: return arms.score

after triggering UI element e in the directed acyclic activity
transition graph [20]. For any two UI elements e1 and e2 in
the UI group, we calculate a weighted Jaccard index (WJ for
short) [25] between Se1 and Se2 :

WJ(Se1 , Se2) =

∑
ex∈Se1

∩Se2
max{w(e1, ex), w(e2, ex)}∑

ex∈Se1∪Se2
max{w(e1, ex), w(e2, ex)}

(1)
where weight w(ei, ex) = 21−dist(ei,ex) (for each encountered
UI element ex) is determined by the distance dist(ei, ex)
between UI elements ei and ex, i.e., the minimum number of
events needed to reach ex by starting with ei. When ex /∈ Sei ,
w(ei, ex) = 0.

Assume that UI group g contains n UI elements (e1, ...,
en). MCTSTAR treats any two UI elements ei, ej ∈ g to be
in different clusters if the weighted Jaccard Index of Sei and
Sej exceeds a threshold T . Then MCTSTAR uses the number
of different clusters in g to estimate the exploration diversity
of g with the following equation:

GroupDiv(g) =

∑n
i=1

∑n
j=i+1 I(WJ(Sei , Sej ) ≥ T )

n ∗ (n− 1)/2
(2)

where I(x) is an indicator function (I(x) = 1 if x is true;
otherwise, I(x) = 0), and T is a parameter controlling
the threshold of distinguishing two sets of UI elements as
different. For a UI group that has not been explored, we set
its exploration diversity to be a high value vinit (e.g., 10) to
encourage exploring the UI group.

MCTSTAR estimates the exploration diversity of a UI
element based on whether it has been explored or not. For
a UI element that has not been explored, MCTSTAR takes
the exploration diversity of its belonging UI group as its
exploration diversity. For a UI element that has been explored,
MCTSTAR estimates its exploration diversity by calculating
the weighted Jaccard Index of the sets of entities that it covers
in different historical explorations (the calculation equation
can be easily derived by extending Equation 1).

Exploration value estimation. MCTSTAR estimates the
exploration value of a UI element based on whether it has
been explored or not. For a UI element that has not been
explored, MCTSTAR uses the average exploration values of
the explored UI elements in its belonging UI group as its
exploration value. For a UI element that has been explored,
MCTSTAR estimates its exploration value from its historical
explorations by the following equation:
ExploreV alue(e) =

∑
ex∈S′

e

w(ex, e)·ExploreV alue(ex) (3)

where S
′

e is the set of UI elements that (1) are encountered by
historical explorations rooted from e and (2) are not explored
by the historical explorations.

Thompson sampling. MCTSTAR employs Thompson sam-
pling [40] to balance exploration values and exploration diver-
sity of UI elements. In particular, we give higher priority to UI
elements with higher rewards for reflecting higher exploration
values and/or higher exploration diversity. To capture the pre-
ceding intuition, Thompson sampling balances the exploration
values and exploration diversity of UI elements by sampling
Score(e), which represents the score of UI element e from a
Beta distribution [41]. Specifically, for each UI element e,

Score(e) ∼ Beta(α, β)
α = ExploreV alue(e) · (1 +DivV alue(e))) · Cnt(e)

β = Cnt(e)− α
(4)

where ExploreV alue(e) and DivV alue(e) are the explo-
ration value and exploration diversity of e, respectively, and
Cnt(e) is the exploration count of e. Recall that Cnt(e) is
used to indicate the confidence level for estimating the current
reward (see Section III for details).

BADGE prioritize UI elements according to the sampled
score Score(e) and selects the UI element with the highest
score to trigger on the AUT.

V. EVALUATION

To evaluate the effectiveness of BADGE, we conduct an eval-
uation to investigate the following three research questions:

• RQ1: How effective is BADGE compared with state-of-
the-art/practice tools in terms of code coverage?

• RQ2: How effective is BADGE compared with state-of-
the-art/practice tools in terms of crash revelation?

• RQ3: How much does BADGE benefit from its individual
algorithms?

To answer RQ1, we analyze the traces and code coverage
information collected from test runs of BADGE and state-of-
the-art/practice automated UI testing tools. To answer RQ2, we



TABLE I
OVERVIEW OF INDUSTRIAL APPS USED FOR EVALUATION

ID App Name Version Category #Inst
A1 Abs 4.2.0 Health & Fitness 10m+
A2 AccuWeather 7.4.1-5 Weather 100m+
A3 AutoScout24 9.8.6 Auto & Vehicles 10m+
A4 Duolingo 3.75.1 Education 100m+
A5 Evernote∗ 7.12 Productivity 100m+
A6 Filters For Selfie 1.0.0 Beauty 10m+
A7 GoodRx 5.3.6 Medical 10m+
A8 Google Chrome 65.0.3325 Communication 10b+
A9 Google Translate 6.5.0 Books & Reference 1b+
A10 Marvel Comics 3.10.3 Comics 10m+
A11 Merriam-Webster 4.1.2 Books & Reference 10m+
A12 My Baby Piano 2.22.2614 Parenting 5m+
A13 Quizlet∗ 6.6.2 Education 10m+
A14 Sketch 8.0.A.0.2 Art & Design 50m+
A15 Spotify∗ 8.4.48.497 Music & Audio 1b+
A16 TripAdvisor∗ 25.6.1 Food & Drink 100m+
A17 Trivago 4.9.4 Travel & Local 50m+
A18 WEBTOON∗ 2.4.3 Comics 100m+
A19 Yelp∗ 9.33.0 Food & Drink 50m+
A20 Youtube 15.35.42 Video Player & Editor 10b+
A21 Zedge 7.34.4 Personalization 100m+

Notes: ‘#Inst’ denotes the approximate number of downloads. Apps
with asterisks (∗) after their names are the ones that require logging
in to access most features.

analyze the crash reports collected from test runs of BADGE
and state-of-the-art/practice automated UI testing tools. To
answer RQ3, we investigate how much BADGE benefits from
Thompson Sampling, the MCTSTAR algorithm, and the hi-
erarchical MAB, with experimental studies to quantify our
findings.

A. Evaluation Setup

App selection. To evaluate the effectiveness of BADGE, we use
21 popular industrial apps from a widely used industrial app
benchmark collected by previous work [32], as shown in Ta-
ble I. We ask the authors of the previous work [32] to provide
the latest versions of app packages that are still compatible
with the official Android x64 emulator [33]. We obtain 23 app
packages, from which we remove two apps, Mirrorzoomexpo-
sure and Flipboard. Specifically, Mirrorzoomexposure crashes
immediately after starting on the emulator, and we were unable
to log in to Flipboard on the emulator. As shown in Table I,
most apps have more than 100 million installations, indicating
their high popularity. In addition, the apps fall into 17 diverse
categories, suggesting the representativeness of these apps
when being used to evaluate the effectiveness of automated
UI testing approaches.
Baseline selection. To evaluate BADGE, we select four state-
of-the-art automated UI testing tools and two state-of-the-
practice tool to compare with.

For state-of-the-art tools, we select Stoat [16] and its
enhancement by Toller [33] (denoted as Stoatx), Ape [17],
and Q-testing [19]. Stoat and Ape are two model-based UI
testing tools. Specifically, Stoat builds a stochastic model of
the AUT with fixed UI abstraction rules and leverages Gibbs
sampling to mutate the origin model. Ape, on the other hand,
adjusts its UI abstraction granularity during testing based on

dynamic analysis. Q-testing leverages curiosity-driven rein-
forcement learning to estimate the exploration values of UI
events and guides the test generation toward under-explored
functionalities.

In addition to state-of-the-art tools, we also include two
state-of-the-practice tools, Monkey [21] and Fastbot [45].
Monkey [21] is a purely randomized tool for Android test
input generation (from Google) that generates pseudo-random
streams of UI events to the AUT, without considering the
AUT’s UI status. Due to its simplicity and effectiveness,
Monkey is one of the most widely used tools in industrial
settings, and it serves as the default baseline for evaluating
automated UI testing [46], [16], [32], [17], [19], [24]. Fast-
bot [45], developed by ByteDance Inc., improves Ape with
an exploration strategy based on reinforcement learning and
crash-oriented fuzzing strategies [47].

Test platform. We conduct all experiments on the official
Android x64 emulator running Android 6.0 on a server with
four AMD EPYC 7H12 CPUs. Each emulator is allocated
with 4 dedicated CPU cores, 2 GB RAM, and 2 GB internal
storage. Hardware graphics acceleration is also enabled using
two Nvidia GeForce RTX 3090 graphics cards to ensure the
responsiveness of the emulator. We manually write auto-login
scripts for apps marked with * in Table I. Each of these scripts
is executed only once before the corresponding app starts to be
tested in each test run. To alleviate the flakiness of these auto-
login scripts, we manually check the collected traces afterward
and rerun the experiments with failed login attempts.

Coverage and crash collection. We collect the activity
and Java method coverage as code coverage achieved by
each test run. To collect activity coverage, we use Android
Dumpsys [48]. To collect Java method coverage, we use the
MiniTrace [49] tool from Ape. By modifying DalvikVM/ART,
our experiments do not require app instrumentation, avoiding
unexpected issues from modifying industrial apps. Note that
we exclude methods that are already covered after setting
up the test environment before the test generation tool under
consideration starts to work in each test run for a fair compar-
ison. Following previous work [33], [17], we run each tool on
each app three times, with each run lasting for one hour. We
calculate the average code coverage achieved across the three
runs. As for crashes, we consider only those originating from
the AUT’s bytecode. We use code locations in stack traces to
identify unique crashes, and ignore slight differences using the
approach of fuzzy stack hashing [50]. We obtain stack traces
by monitoring Android Logcat [51] messages.

B. RQ1. Effectiveness of Code Coverage

Code coverage is one of the most widely used metrics to
assess the effectiveness of automated UI testing tools. Given
the same resources, higher code coverage indicates better
effectiveness of automated UI testing tools.

Table II presents the code coverage effectiveness of auto-
mated testing tools. As shown in the table, BADGE achieves
the highest activity coverage among all tools except for Stoat.
It should be noted that Stoat can reach higher activity coverage



TABLE II
OVERVIEW OF TOOL RESULTS

ID BADGE Monkey Stoat Stoatx Q-testing FastBot Ape
#Met. #Act. #C #Met. #Act. #C #Met. #Act. #C #Met. #Act. #C #Met. #Act. #C #Met. #Act. #C #Met. #Act. #C

A1 8884 8.0 2 5719 5.7 0 3650 12.7 1 5288 8.3 1 5901 7.0 0 7438 6.7 2 7109 6.7 2
A2 21561 5.7 3 17592 3.7 0 12275 8.3 1 18542 10.3 2 14641 4.0 0 14682 4.0 2 19466 5.0 2
A3 40176 6.3 0 26493 4.3 0 10904 15.3 1 21602 6.0 2 33891 4.7 0 35200 6.7 1 34075 6.0 0
A4 15529 12.3 1 12654 10.3 1 5728 17.7 0 13503 16.3 0 - - - 14239 12.7 0 14199 12.7 0
A5 19512 29.3 1 11319 19.0 1 7971 19.3 1 13873 34.7 2 12369 20.7 0 17720 26.3 0 17892 28.7 2
A6 4751 4.0 0 3401 3.0 1 1986 4.7 0 2505 3.3 0 2272 1.0 0 4486 3.7 0 3257 1.7 0
A7 15563 25.7 3 14376 19.7 1 10012 22.7 0 14282 20.3 1 13813 21.3 0 15717 18.3 0 16115 25.3 0
A8 11138 9.3 0 10385 9.7 0 7046 10.3 1 10162 9.7 0 - - - 9162 7.7 0 9252 6.7 0
A9 10726 15.0 6 7387 14.7 0 3693 12.7 1 8077 15.0 1 4333 10.7 1 7863 11.7 2 10235 17.0 1
A10 7113 22.7 0 6222 15.7 2 4220 22.7 1 5427 17.7 1 5336 22.3 0 5742 16.7 1 6686 22.7 1
A11 10125 3.0 0 6309 2.0 1 6184 10.0 1 9082 6.3 1 7911 2.7 0 8625 3.0 1 8459 3.0 0
A12 2023 1.0 0 230 1.0 0 328 1.3 0 258 1.3 0 1136 1.0 0 1752 1.0 0 699 1.0 0
A13 41677 42.3 2 32382 24.3 4 14360 22.7 1 21106 16.3 0 34202 33.0 1 36538 33.7 5 36666 33.0 2
A14 8881 15.3 1 5684 8.0 1 4351 10.3 0 8280 14.3 2 7356 12.7 0 8618 13.3 1 9039 13.3 0
A15 20432 15.3 2 11720 6.7 0 8622 14.7 0 17112 15.0 0 12920 8.7 0 16072 12.3 1 16524 13.3 0
A16 26901 54.3 5 17414 32.7 1 10052 17.7 1 22023 48.3 2 22792 56.7 1 22053 50.0 2 25304 58.0 1
A17 19751 13.3 0 18912 11.3 0 5218 16.3 0 19803 19.3 2 18095 11.0 0 15441 9.7 0 19447 11.7 0
A18 25647 36.0 0 11053 13.3 0 8669 23.7 2 20686 32.7 2 21403 26.0 0 21950 28.0 0 24141 38.0 0
A19 29722 68.3 3 24527 51.0 6 10218 5.7 0 24559 50.3 1 23699 49.3 3 27754 58.7 7 20722 38.7 3
A20 31200 8.3 1 19406 5.3 0 11112 14.7 0 20018 11.0 0 - - - 25350 5.0 0 25865 8.0 0
A21 54975 7.7 1 32952 5.0 1 26541 9.0 1 26959 11.3 1 32346 3.3 0 36157 5.7 1 36384 5.7 0
Tot. 20299 19.2 31 14102 12.7 20 8245 13.9 13 14435 17.5 21 15245 16.5 6 16789 15.9 26 17216 17.0 14

Notes: Best tool for each app is colored yellow in every row. The row with Tot. in the first column is the average of each tool’s coverage
and the count sum of the crashes triggered on every app. Hyphens (-) denote apps that trigger tool defects and are removed from average
calculation. The removal of these apps does not weaken the related tool since its coverage on the removed apps is lower than its average
coverage on the other apps.

likely due to using an internal null-intent fuzzer that directly
starts activities using empty intents.

In addition, the number of activities covered by all tools
is relatively low, caused by two main factors. First, many
activities are deprecated during the app evolution. This finding
has been raised by the authors of WCTester [15], who have
studied the activity coverage achieved by their automated UI
testing tool and have found that around 40% not-covered
activities simply cannot be accessed by users interacting with
AUT UIs. Second, accessing some activities requires a specific
type of user account, e.g., an administrator account (which
is impractical to acquire) is needed to access management
features.

In terms of method coverage, BADGE substantially outper-
forms all the other tools with 18%-146% relative improvement.
In particular, BADGE improves the method coverage on almost
all apps over the other tools. To examine the significance of the
improvement on method coverage, we apply Tukey’s tests [52]
on the coverage for every tool on each app. We find that out of
the 18 apps that BADGE performs the best, BADGE is the only
tool in the best group in 12 of the 18 apps. Additionally, for
the 3 apps that BADGE is not the best, BADGE is still among
the top group on 2 of the 3 apps, demonstrating the significant
improvement achieved by BADGE on almost all of the apps.

Note that most tools achieve similar activity coverage, while
the method coverage achieved by different tools varies sub-
stantially. This result confirms our insight that the enormous
UI elements in mobile apps raise challenges for automated
UI testing to handle. Ape achieves the second highest method
coverage, standing out from the baselines. While Toller [33]
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Fig. 3. Progressive code coverage of different tools.

points out that Ape benefits from the efficiency of UI hierarchy
capturing by exploiting private Android accessibility APIs,
compared with Stoatx, the state abstraction refinement strategy
in Ape can still help alleviate the complexity of industrial apps.

BADGE uses UIAutomator to dump UI hierarchies and
execute UI events instead of using private accessibility APIs,
consistent with other state-of-the-art tools except for Ape.
Even with a bit lower infrastructure efficiency, BADGE still
substantially outperforms Ape with 18% method coverage
improvement. Compared with tools with similar infrastructure
efficiency, BADGE achieves >20% relative method coverage
improvement, with the greatest being 146%.

Figure 3 presents the progressive code coverage achieved



TABLE III
CRASH CATEGORIZATION OF DIFFERENT TOOLS

Exception Type Ba. Ape Fa. Mo. St. Stx. Qt.
NullPointer 7 5 10 8 4 8 4
Runtime 5 3 3 7 11 10 1
IllegalState 6 2 3 2 0 3 0
IllegalArgument 1 2 3 1 0 1 0
IndexOutOfBounds 8 1 4 0 0 0 0
ArrayIOOB 1 0 1 0 0 0 0
Assertion 1 0 0 0 0 0 0
ClassCast 1 1 0 1 0 0 0
NumberFormat 1 0 0 0 0 1 0
Others 0 0 2 1 0 0 1
Sum 31 14 26 20 15 22 6

Note:Due to space limit, in the first column of the table, we
remove ‘Exception’ from the end of each exception type and
shorten ‘ArrayIndexOutOfBounds’ to ‘ArrayIOOB’.

by different tools. We find that at the beginning, BADGE starts
with a lower method coverage since it has no knowledge of the
AUT. However, with the test time advancing, BADGE quickly
gains knowledge of the AUT from trials and surpasses all
the other tools. In addition, the method coverage achieved by
BADGE does not converge within one hour and grows steadily,
showing its promising potential and effectiveness. From the
experimental results, we conclude that BADGE substantially
outperforms existing state-of-the-art/practice tools, with the
potential to be further improved given better infrastructure
support.
A1: BADGE substantially outperforms state-of-the-art/practice
tools in terms of code coverage.

C. RQ2. Effectiveness of Crash Revelation

In addition to code coverage, the crash-revealing capability
is another widely used metric for assessing the effectiveness of
automated UI testing. We specifically care about the number of
unique crashes that a tool can trigger through UI interactions.
A notable case to consider is Stoat, which has an internal
null-intent fuzzer that can trigger trivial crashes [17]. These
crashes are reproducible only on emulators and will not be
exposed to users. To exclude these trivial crashes caused by
non-UI testing, following the practice of Ape [17], we run a
null-intent fuzzer for one hour for each app and filter out the
crashes triggered by the fuzzer.

We categorize the stack traces of the collected crashes
by the exception types. Table III presents the number of
unique crashes triggered by each tool. As shown by the
table, BADGE detects the highest number of unique crashes
by pure UI testing. Fastbot finds the second highest number
of unique crashes, achieved through integrating the technique
of crash-oriented fuzzing proposed by previous work [47]
and the technique of system-event fuzzing such as screen
rotation and changing network conditions. Note that Stoat
also benefits from the technique of system-event fuzzing. In
addition, we find that the technique of generating proper text
inputs helps trigger certain crashes. For example, Ape triggers
an IllegalArgumentException on the AccuWeather app with a
string containing ‘%’. The finding is consistent with previous
work [14], [47].

Our evaluation focuses on characterizing the benefits solely

TABLE IV
COVERAGE RESULTS OF INDIVIDUAL ALGORITHMS

ID T1 T2 T3 T4 T5 T6 BADGE
A1 7963 7295 7890 7160 7542 3068 8884
A2 15993 18540 19833 16264 18936 1732 21561
A3 34865 28168 30810 33083 28113 31959 40176
A4 13444 14783 14540 13240 14150 2238 15529
A5 14981 16833 18330 16349 17518 7767 19512
A6 2786 4254 4309 2543 4516 3251 4751
A7 13713 14650 15323 15008 15318 6699 15563
A8 8066 10458 10806 6981 10621 6516 11138
A9 5345 9880 9010 9594 9553 2005 10726
A10 4866 5469 5452 6179 5466 5908 7113
A11 5409 9332 8612 9843 9065 8612 10125
A12 1884 1694 1671 524 1669 1992 2023
A13 38243 37420 38294 42496 39476 22305 41677
A14 8427 8263 8308 8708 8612 4641 8881
A15 16742 14482 17075 19558 12513 4803 20432
A16 5291 24970 22600 22700 24400 16285 26901
A17 16370 19328 19587 18418 19602 3690 19751
A18 8155 22092 21980 26867 20436 4724 25647
A19 25480 24496 27049 28254 25450 17815 29722
A20 4766 16978 21081 19575 18571 10520 31200
A21 36438 33984 27896 37259 42295 23823 54975
Avg. 13773 16351 16688 17172 16849 9064 20299

Note: In the table header, EXPLORE, GREEDY, MCRW, MYOPIA,
NMAB, and GROUP are denoted by T1 to T6, respectively. The
technique achieving the best result for each app is colored yellow
in every row. Avg. is the average method coverage on all apps.

from the exploration-effectiveness improvement by BADGE. In
addition, the preceding techniques complement the design of
BADGE. Consequently, BADGE can further improve the crash-
revealing capability by integrating these techniques, which can
be our future work.
A2: BADGE achieves state-of-the-art crash-revealing capabil-
ity compared with state-of-the-art/practice tools and benefits
from its superior code-coverage capability. Its crash-revealing
capability can be further enhanced with proper text inputs and
system events along with finer state abstraction.

D. RQ3. Benefits Brought by BADGE’s Individual Algorithms

To evaluate the benefits brought by individual algorithms
that instantiate BADGE, we conduct experimental studies by
instantiating BADGE with different baseline algorithms for
prioritizing UI events, estimating exploration values of UI
events, and formulating the MAB (i.e., whether to exploit the
exploration diversity of UI groups).

For UI-event prioritization, we use two popular prioriti-
zation algorithms as baselines, namely EXPLORE [39] and
GREEDY [31]. EXPLORE always prioritizes unexplored UI
events if there exist unexplored ones; otherwise, EXPLORE
behaves the same as BADGE. GREEDY adopts an ϵ−greedy
prioritization algorithm [31]. With probability ϵ, GREEDY pri-
oritizes unexplored UI events to interact with. With probability
1 − ϵ, GREEDY behaves the same as BADGE. For GREEDY,
we set ϵ = 1 at the beginning and slowly decay it to ϵ = 0.5
by the end of testing.

For exploration value estimation, we use two algorithms as
baselines, namely MYOPIA and MCRW. MYOPIA determines
the exploration values of UI events based on changes in
the UI screens after triggering the UI events (similar reward
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based on their group IDs. The Y-axis is on a logarithmic scale.

generation mechanisms are used by previous work [53], [22]).
In particular, MYOPIA considers one-step exploration rooted
from a UI event. MCRW replaces the MCTSTAR algorithm
with standard Q-learning [31] and updates Q values (i.e., the
exploration values for UI events) with Bellman Equation [31].

For MAB formulation, we use two algorithms as baselines,
namely NMAB and GROUP. NMAB does not estimate the
exploration diversity of UI groups and instead estimates the
exploration values and exploration diversity of UI events,
ignoring the hierarchical relationships of UI elements/events.
GROUP estimates and exploits exploration values and explo-
ration diversity of UI groups instead of individual UI events.
When selecting UI events, GROUP randomly selects a UI event
from the UI group with the highest priority. GROUP can be
seen as BADGE instantiated with an algorithm of coarse UI-
event abstraction that treats UI events with the same group
identifier as equivalent ones.

Table IV shows the results of code coverage. Impact
of using different prioritization algorithms. EXPLORE is
substantially worse than BADGE since EXPLORE considers
only the exploration values of UI elements when there exist
unexplored UI events. As shown in Figure 4, about 10,000
unique UI elements (belonging to 300 UI groups on average)
on average are encountered during testing. Without consider-
ing the exploration diversity of UI events, EXPLORE fails to
prioritize UI events to achieve good code coverage. GREEDY
outperforms EXPLORE by considering both exploration diver-
sity and exploration values of UI events in 1−ϵ time of testing,
but the algorithm’s coverage is still worse than BADGE,
which balances exploration diversity and exploration values
of UI events. The comparison among EXPLORE, GREEDY,
and BADGE demonstrates the benefits of prioritizing UI events
by jointly considering their exploration values and exploration
diversity.

Impact of using different algorithms for exploration
value estimation. From Table IV, MCRW is worse than
MYOPIA in terms of code coverage. Since the exploration
values of UI events evolve during testing, standard Q-learning
cannot quickly adapt to the changes and fails to achieve
satisfactory effectiveness. MYOPIA is comparative to BADGE

on some of the apps but worse on the others. On complex
industrial apps, differences between Se1 and Se2 for two
events e1 and e2 may not be revealed until several steps
later, and these differences cannot be recognized by MYOPIA
since it considers only one-step exploration rooted from a
UI event. The MCTSTAR algorithm considers the changes
of exploration values during testing and a longer horizon
of future exploration rooted from a UI event, outperforming
the two baseline algorithms. The comparison among MCRW,
MYOPIA, and BADGE demonstrates the benefits of estimating
exploration values of UI events by considering a longer
horizon of future exploration and the changes of exploration
values during the testing.

Impact of using different algorithms for MAB formula-
tion. As shown in Table IV, GROUP achieves the worst method
coverage. As shown in Figure 4, the number of UI groups
is less than 10% of the total number of unique elements. UI
elements/events in the same UI group can trigger very different
behaviors. GROUP treats different UI events in the same group
as being equivalent, losing great opportunities to reveal new
code coverage. NMAB does not estimate the exploration
diversity of UI groups and achieves a worse estimation of
exploration values and exploration diversity compared with
BADGE. Consequently, NMAB can spend more time on UI
events with low exploration diversity or exploration values.
BADGE estimates the exploration diversity of UI groups with
the hierarchical MAB model, achieving higher code coverage
than the baseline algorithms.

A3: The Thomspon-sampling-based algorithm for UI-event
prioritization, MCTSAR-based algorithm for exploration value
estimation, and the hierarchical MAB construction algorithm
all bring high benefits to BADGE in terms of achieving code-
coverage effectiveness.

VI. THREATS TO VALIDITY

The main external threats to the validity include the extent to
which the subject apps and tools selected for our evaluation are
representative of real-world practice. To mitigate the impact of
the bias introduced by app selection, we use highly popular
industrial apps widely used by related work. To mitigate the
impact of the bias introduced by tool selection, we choose the
latest and widely used state-of-the-art/practice automated UI
testing tools for comparison.

The threats to internal validity are instrumentation effects
that can bias our results, including faults in our implementation
of BADGE and randomness. Faults in the BADGE imple-
mentation may affect the effectiveness of BADGE. To reduce
these threats, all the authors carefully test and validate the
BADGE implementation on the Autoscout24 app to assure the
normal behavior of the BADGE implementation. To reduce
the randomness of experiments, we run all the tools under
comparison on each app three times following previous work
to mitigate the issue.



VII. RELATED WORK

Automated mobile UI testing has been a hot research
topic [21], [14], [16], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [17], [18], [19], [24] as well as a popular industry
practice [14], [15], [54]. Existing tools fall into four main
categories. (1) Some tools [21], [14], [8], [9], [18] generate
test inputs randomly and/or applying evolutionary algorithms
upon these test inputs. For example, Monkey [21] generates
pseudo-random inputs such as clicks and drags to stress the
AUT. VTest [54] generates random inputs based on only app
screenshots to facilitate cross-platform UI testing. (2) Some
other tools [11], [12], [13] conduct systematic exploration.
A3E [11] systematically explores the AUT with a depth-first
search, and EvoDroid [12] uses evolutionary algorithms to
perform a step-wise search for test inputs to reach deep into the
code under test. (3) Model-based tools and their variants [5],
[6], [16], [10], [17] use a UI transition model to determine
the current test progress and target those not-yet-explored
functionalities. Stoat [16] first constructs a UI transition model
of the AUT and uses Gibbs sampling [55] to generate test
inputs toward unexplored parts of the model. (4) Machine-
learning-based tools [22], [23], [19], [24] adopt deep learning
or reinforcement learning techniques to guide the exploration
of the AUT. Q-testing [19] adopts curiosity-driven reinforce-
ment learning toward less frequently explored UI screens, and
ARES [24] adopts deep reinforcement learning to effectively
generate long event sequences. BADGE is closely related to
model-based or reinforcement-learning-based approaches.

Model-based approaches [5], [6], [16], [10], [17] build
models with dynamic or static strategies to describe the AUT’s
behaviors and then derive test cases from the models. Model-
based UI testing approaches usually adopt UI event abstraction
techniques [16], [17] to alleviate the explosion of the large
space of UI events as well as state space. To some extent,
the current implementation of BADGE builds a UI model at
the activity level. However, BADGE focuses on a problem
(characterizing the exploration diversity of UI events) different
from typical model-based approaches, and we believe that
BADGE can be combined with a finer model of the AUT to
further improve the test effectiveness.

Reinforcement-learning-based approaches [22], [19], [24]
adopt reinforcement learning (RL) algorithms to guide test
generation. BADGE benefits from RL algorithms to estimate
the exploration values of UI events. Existing RL-based ap-
proaches focus on exploration values with novel RL al-
gorithms. Q-testing [19] uses curiosity-driven reward and
ARES [24] uses deep learning to improve the generalizability
of automated UI testing. On one hand, BADGE may also
benefit from similar designs. On the other hand, BADGE
characterizes the exploration diversity of UI events, which can
help improve existing RL-based approaches.
MABs and their applications. In recent years, MAB algo-
rithms have attracted a lot of attention in various applica-
tions [56], [56], [57], [58], [59] due to their stellar perfor-
mance with relatively limited feedback to learn a good policy.

In particular, MAB has been used for software engineering
tasks including test case prioritization [45], coverage-guided
fuzzing [60], and UI testing [53]. In the task of UI testing,
Degott et al. [53] leverage an MAB algorithm to infer valid
event types for UI elements with UI change feedback. Differ-
ent from their work, BADGE learns the exploration diversity
and exploration values of UI events, and derives event types
for UI elements directly from the Android system by using
UIAutomator.

VIII. CONCLUSION

In this paper, we have pinpointed and formulated UI ele-
ments’ exploration diversity, which substantially affects test
effectiveness of automated UI testing. We have proposed the
BADGE approach to prioritize UI events taking into con-
sideration their exploration values and exploration diversity.
We have designed a novel hierarchical multi-armed bandit
model that jointly characterizes the exploration values and
exploration diversity to maximize the achieved code coverage.
Our extensive evaluation on 21 widely used industrial apps
demonstrates that BADGE substantially outperforms state-of-
the-art/practice automated UI testing tools with 18%-146%
relative method coverage improvement and finding 1.19-5.20x
unique crashes. Our evaluation also pinpoints the potential of
improving automated UI testing effectiveness with techniques
of finer UI abstraction, system event fuzzing, and proper text
inputs. We plan to design and integrate these techniques in
BADGE as future work.
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