Benchmarking Microservice Systems for Software Engineering
Research

Xiang Zhou!-?, Xin Pengl’z, Tao Xie?, Jun Sun?, Chenjie Xu!?, Chao Ji'*?, Wenyun Zhao!-?
! School of Computer Science, Fudan University, China
2 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
3 University of Illinois at Urbana-Champaign, USA
* Singapore University of Technology and Design, Singapore

ABSTRACT

Despite the prevalence and importance of microservices in industry,
there exists limited research on microservices, partly due to lacking
a benchmark system that reflects the characteristics of industrial
microservice systems. To fill this gap, we conduct a review of liter-
ature and open source systems to identify the gap between existing
benchmark systems and industrial microservice systems. Based
on the results of the gap analysis, we then develop and release a
medium-size benchmark system of microservice architecture.

CCS CONCEPTS

« Software and its engineering — Cloud computing; Soft-
ware testing and debugging;

KEYWORDS

Microservice, benchmark, tracing, visualization, debugging, failure
diagnosis

ACM Reference Format:

Xiang Zhou!2, Xin Peng!>2, Tao Xie®, Jun Sun?, Chenjie Xu'>2, Chao Jil>2,
Wenyun Zhao!2. 2018. Benchmarking Microservice Systems for Software
Engineering Research. In ICSE ’18 Companion: 40th International Conference
on Software Engineering Companion, May 27-June 3, 2018, Gothenburg, Swe-
den. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3183440.
3194991

1 INTRODUCTION

Despite the prevalence and importance of microservices in industry,
there exists limited research, with only a few papers on microser-
vices in the software engineering research community, and even
fewer in major conferences, partly due to lacking a benchmark
system that reflects the characteristics of industrial microservice
systems. Given that most microservice systems developed so far
are proprietary and not easily accessible to the research commu-
nity [2], the existing research on microservices is usually based
on small systems with a few microservices, most of which are not
publicly available. A recent study by Francesco et al. [6] examined
benchmark microservice systems used, discussed, or proposed in
the literature. They found only one such system that is open source

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5663-3/18/05.

https://doi.org/10.1145/3183440.3194991

and publicly available, and it has only 5 microservices, far fewer
than those in industrial systems.

To fill this gap, we construct a benchmark microservice system
that can facilitate research on microservice development and oper-
ation. To construct such a system, we conduct a review of literature
and open source systems to learn the gap between existing bench-
mark systems and industrial systems. Based on the survey results,
we develop a benchmark microservice system called TrainTicket [3],
which includes 24 microservices.

2 REVIEW OF LITERATURE AND OPEN
SOURCE SYSTEMS

To review the research literature related to microservices, we sys-
tematically search through four of the largest and most comprehen-
sive digital libraries and scientific databases for computer science:
the ACM Digital Library, IEEE Xplore, Web of Science, and Scopus.
We apply the search string “microservi* OR micro-servi* OR micro
servi*” in the title, abstract, and keywords of the papers. For each
paper in the search results, we manually examine the microservice
systems described in the paper and check whether they are avail-
able online. We find only five microservice systems described in
the papers available online, which are all open source systems on
GitHub as the first five rows shown in Table 1.

To review open source systems related to microservices, we
also search for candidate benchmarks on open source platforms
(including GitHub and BitBucket). We search with two keywords
“micro” and “service” and manually examine the top 100 returned
projects on each platform. For each project, we manually examine
the source code to confirm the characteristics (e.g., languages, the
number of microservices, interaction modes) of the corresponding
system. We find that many projects being claimed as microservice
projects actually employ a monolithic architecture and just use
some microservice-related techniques such as Docker-based de-
ployment. As our targets are microservice systems, we exclude
microservice infrastructure projects (e.g., development tools, op-
eration frameworks) and microservice systems with fewer than 5
microservices. Note that when counting the number of microser-
vices, we omit infrastructure microservices (e.g., service registry,
service discovery, load balancing) and consider only the microser-
vices that implement some business functionalities.

Table 1 shows the resulting microservice systems. The table
shows that all these systems are quite small, with no more than 9
microservices (the number of microservices is shown in the “4S”
column). For example, Acme Air, a widely used benchmark system,
has only 5 microservices. Each of these systems implements one or
two interaction modes (as shown in the “Interaction Mode” column),

https://doi.org/10.1145/3183440.3194991
https://doi.org/10.1145/3183440.3194991
https://doi.org/10.1145/3183440.3194991

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Benchmark Systems Available Online

Name #S | Interaction Mode
Acme Air [1] 5 | Sync

Music Store [7] 6 | Sync, Async
Spring Cloud Demo Apps [9] 6 | Sync

Bifrost Microservices Sample Application [4] | 5 | Sync, Async
Socks Shop [8] 8 | Sync, Queue
Staffjoy [10] 9 | Sync, Queue
NServiceBus [5] 8 | Queue

including synchronous invocations (Sync), asynchronous REST
invocations (Async), and message queues (Queue).

Based on the result, we identify the following gaps between the
existing benchmark systems and industrial systems.
Incomplete Interaction Modes. The existing benchmark systems
do not make good use of different interaction modes, while many
microservice problems are related to asynchronous communication
or a hybrid of synchronous and asynchronous communications.
Insufficient Scale and Complexity. The existing benchmark sys-
tems have only a small number of microservices and very short
invocation chains, while many microservice problems manifest
only through complex interactions.
Insufficient Application of Microservice Design Principles.
The existing benchmark systems do not fully follow the principles
of the microservice architecture. For example, the microservices
should be modularized and organized around business capability;
a single microservice should be small enough to be developed, de-
ployed, and operated by a single team. These principles are impor-
tant for the evolution along with runtime scaling and adaptation.
Insufficient Testing. The existing benchmark systems do not pro-
vide sufficient unit test cases or integration test cases. These test
cases are important to ensure the quality of the systems and at the
same time provide the basis of research on testing and debugging.

3 BENCHMARK SYSTEM

To facilitate research on microservices, we develop a benchmark
system for railway ticketing called TrainTicket. A user can use
TrainTicket to inquire about the train tickets from city A to city
B on a certain day. By selecting the passenger and the class of the
seat, the user can reserve a ticket that the user needs. Once the
booking is successful, the user is required to pay as soon as possible.
After the successful payment, the user gets an email notifying that
the user has successfully reserved the ticket. The user is allowed
to change the ticket before the departure time or within a certain
time period after the train departs.

TrainTicket contains 24 microservices related to business logic
(excluding all infrastructure microservices), more than any existing
benchmark. Furthermore, many microservices in TrainTicket are
interacting with each other, resembling microservice systems in
industrial practices. According to the dependencies among microser-
vices, we divide these microservices into five layers, as shown in
Figure 1. If microservice A sends a request to microservice B, we say
that A depends on B. The bottom layer contains those microservices
that do not depend on any other microservice. The upper-layer mi-
croservices depend on the lower-layer microservices. Microservices
at the same layer may depend on each other. For simplicity, Figure 1
does not show the databases in TrainTicket.

X. Zhou et al.

(Gateway)

Service

Discovery travel
explore

Service
Registry

Load
Balance register
verify single
code sign-on,
~—/

Figure 1: The Architecture of the TrainTicket System

TrainTicket is designed using microservice design principles. For
instance, there are two sets of microservices designed for reserv-
ing/ordering/exploring high-speed trains and normal-speed trains.
The reason for the design is that we can then choose a more flexible
deployment strategy, depending on the numbers of customers for
high-speed trains and normal-speed trains, respectively. In other
words, we can deploy more Docker instances for high-speed trains
for better performance if many users are reserving high-speed trains
and few are reserving normal-speed trains. Otherwise, the users for
reserving normal-speed trains might be negatively affected. Such a
design reflects the flexibility of microservices.

TrainTicket is designed to cover many features of microservices.
For instance, as shown in Table 1, the existing benchmark systems
use only one or two interaction modes, whereas TrainTicket makes
use all of synchronous invocations, asynchronous invocations, and
message queues.

We use Spring Boot to develop TrainTicket. The system is imple-
mented in Java and Node.js, and the current implementation has
61,136 lines of code. In total, we develop 37 unit test cases and 14
integration test cases with 5,218 lines of test code, and all of them
are publicly available in our open source project’s repository [3].

ACKNOWLEDGMENTS

This work is supported by National High Technology Development
863 Program of China under Grant No. 2015AA01A203, and NSF
under grants no. CCF-1409423, CNS-1513939, CNS-1564274.

REFERENCES

[1] Acme.Com. 2015. Acme Air. (2015). Retrieved August 16, 2017 from https:
//github.com/acmeair/acmeair

[2] Carlos M. Aderaldo, Nabor C. Mendonga, Claus Pahl, and Pooyan Jamshidi.
2017. Benchmark Requirements for Microservices Architecture Research. In
ECASE@ICSE 2017. 8-13.

[3] MicroService System Benchmark. 2017. (2017). https://github.com/microcosmx/
train_ticket

[4] Bifrost.Com. 2017. bifrost. (2017). Retrieved August 16, 2017 from https:
//github.com/sealuzh/bifrost-microservices-sample-application

[5] EShopOnContainers.Com. 2017. eShopOnContainers. (2017). Retrieved August
16, 2017 from https://github.com/dotnet-architecture/eShopOnContainers

[6] P.D. Francesco, I. Malavolta, and P. Lago. 2017. Research on Architecting Mi-
croservices: Trends, Focus, and Potential for Industrial Adoption. In ICSA 2017.
21-30.

[7] MusicStore.Com. 2017. Music Store. (2017). Retrieved August 16, 2017 from
https://github.com/aspnet/MusicStore

[8] SocksShopGit.Com. 2017. Socks Shop Git. (2017). Retrieved August 16, 2017
from https://github.com/microservices-demo/microservices-demo

[9] SpringDemo.Com. 2017. Spring Cloud Demo Apps. (2017). Retrieved August 16,
2017 from https://github.com/kbastani/spring-cloud-microservice-example

[10] Staffjoy.Com. 2017. Staffjoy. (2017). Retrieved August 16, 2017 from https:

//github.com/Staffjoy/v2

https://github.com/acmeair/acmeair
https://github.com/acmeair/acmeair
https://github.com/microcosmx/train_ticket
https://github.com/microcosmx/train_ticket
https://github.com/sealuzh/bifrost-microservices-sample-application
https://github.com/sealuzh/bifrost-microservices-sample-application
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/aspnet/MusicStore
https://github.com/microservices-demo/microservices-demo
https://github.com/kbastani/spring-cloud-microservice-example
https://github.com/Staffjoy/v2
https://github.com/Staffjoy/v2

	Abstract
	1 Introduction
	2 Review of Literature and Open Source Systems
	3 Benchmark System
	References

