
Transferring Code-Clone Detection and Analysis to
Practice

Yingnong Dang†, Dongmei Zhang∗, Song Ge∗, Ray Huang∗, Chengyun Chu† and Tao Xie‡
∗Microsoft Research Asia, China

Email: {dongmeiz;songge;rayhuang}@microsoft.com
†Microsoft Corporation, USA

Email: {yidang,chchu}@microsoft.com
‡University of Illinois at Urbana-Champaign, USA

Email: taoxie@illinois.edu

Abstract—During software development, code clones are com-
monly produced, in the form of a number of the same or
similar code fragments spreading within one or many large
code bases. Numerous research projects have been carried out
on empirical studies or tool support for detecting or analyzing
code clones. However, in practice, few such research projects
have resulted in substantial industry adoption. In this paper,
we report our experiences of transferring XIAO, a code-clone
detection and analysis approach and its supporting tool, to
broad industrial practices: (1) shipped in Visual Studio 2012,
a widely used industrial IDE; (2) deployed and intensively used
at the Microsoft Security Response Center. According to our
experiences, technology transfer is a rather complicated journey
that needs significant efforts from both the technical aspect and
social aspect. From the technical aspect, significant efforts are
needed to adapt a research prototype to a product-quality tool
that addresses the needs of real scenarios, to be integrated into
a mainstream product or development process. From the social
aspect, there are strong needs to interact with practitioners to
identify killer scenarios in industrial settings, figure out the
gap between a research prototype and a tool fitting the needs
of real scenarios, to understand the requirements of releasing
with a mainstream product, being integrated into a development
process, understanding their release cadence, etc.

I. INTRODUCTION

During software development, software engineers com-
monly reuse a code fragment by copying and pasting it from
another location of the same code base or even a different code
base. Such reused code fragments may or may not undergo
modifications or adaptations after it is pasted in the new
code location. These same or similar reused code fragments
are named as code clones. Detecting and analyzing code
clones in code bases have been shown to be useful towards
various software-engineering tasks such as bug detection and
refactoring. For example, code clones may be candidates for
refactoring (e.g., refactoring multiple copies of a code clone
into a single location) [1]. Inconsistencies across multiple
copies of a code clone may indicate buggy code locations to
inspect and fix [2], [3]. In addition, given a known buggy or
vulnerable code fragment, clone search can be used to detect
other clone copies as potentially buggy or vulnerable code
fragments that need to be inspected and fixed [4].

To explore research topics in the area of code clones, nu-
merous research projects [5] have been carried out, especially

on empirical studies or tool support for detecting or analyzing
code clones. However, very few of these research projects were
conducted in industrial contexts, and much fewer resulting
research tools were actually used or adopted by industrial
practitioners. The research community has already realized
gaps between academic research and industrial practices [6]–
[8], and has called for training and education of researchers
and practitioners in conducting successful technology transfer
and adoption.

In this paper, we report the successful technology-transfer
case of XIAO [9] and lessons learned from our research efforts.
In particular, XIAO has been shipped as part of a popularly
used industrial IDE Visual Studio, and it has been adopted
in the Microsoft Security Response Center. Visual Studio
is Microsoft’s flagship product for developer productivity.
Millions of developers around the world are using Visual
Studio for their development work. Therefore, as part of Visual
Studio, XIAO is benefiting a large developer community.

The Microsoft Security Response Center (MSRC) is respon-
sible for the security issues of Microsoft software products.
The engineers of MSRC conduct an investigation process
for each security vulnerability. As an important step of this
process, MSRC engineers must figure out whether there are
similar vulnerabilities in all other Microsoft software products.
Before XIAO was transferred, such needs were fulfilled by
manual email communication between MSRC and different
product teams. Such manual email communication was a
highly time-consuming process, and it was difficult to provide
high-confidence assurance that no or few similar vulnerabil-
ities were missed. In 2009, an online clone-search service
provided by XIAO was deployed and used by MSRC engineers
to help with their investigation on security vulnerabilities.
Since then, the productivity of MSRC engineers has been
significantly improved.

According to our experiences of transferring XIAO, tech-
nology transfer is a rather complicated journey that needs
significant efforts from both the technical aspect and social
aspect. From the technical aspect, significant efforts are needed
to adapt a research prototype to a product-quality tool that
addresses the needs of real scenarios, to be integrated into a
mainstream product or development process. From the social



aspect, there are strong needs to interact with practitioners to
identify killer scenarios in industrial settings, figure out the gap
between a research prototype and a tool fitting the needs of
real scenarios, to understand the requirements of releasing with
a mainstream product, being integrated into a development
process, understanding their release cadence, etc.

The rest of the paper is organized as follows. Section II
presents the target task scenarios of XIAO. Section III illus-
trates the overview of XIAO. Section IV presents the industry
impacts of XIAO. Section V discusses the lessons learned
during the technology transfer of XIAO. Section VI discusses
and compares our experiences to the related experiences
reported in the literature, and Section VII concludes the paper.

II. TARGET TASK SCENARIOS

At the very beginning of the XIAO project, we kept in mind
that we needed to generate actionable results for developers
in terms of detected clones. We started the project from
understanding the important scenarios that developers may
want to devote their time to. Based on our investigation, the
first scenario is fix bug once. The reason is that code bugs
spread via code duplication. In particular, if code bugs are
security vulnerabilities, the benefit of fixing the bugs at all
cloned copies is huge: helping secure the software products.
The second one is code refactoring. Especially in a large
enterprise, there are two big motivations that developers want
to reduce code duplication: (1) reduce the overall footprint of
the code base; such reduction is especially important for some
memory-critical components such as kernel components; (2)
prevent code bloating and reduce the maintenance cost; such
prevention/reduction is especially important for a software
project with long history, e.g., 10 years or longer, which is
typical for many enterprise software systems. The accumula-
tion of development time makes the duplication situation more
severe along the way and leads to the increase of maintenance
difficulty.

III. OVERVIEW OF XIAO

XIAO has four main characteristics [9]: high tunability,
scalability, compatibility, and explorability.

High tunability of XIAO is achieved with a new set of
similarity metrics in XIAO, reflecting What You Tune Is
What You Get (WYTIWYG): users can intuitively relate tool-
parameter values with the tool outputs, and easily tune tool-
parameter values to produce what the users want. For example,
the similarity-parameter value of 100% should lead to outputs
of two exactly same cloned snippets, and the 80% value should
lead to outputs of two cloned snippets with 80% similarity
judged by the users. The parameters of the proposed metrics
in XIAO enable users to effectively control the degree of
the syntactic difference between the two code snippets of a
near-miss clone pair: the degree of the statement similarity,
the percentage of inserted/deleted/modified statements in the
clone pair, the balance between the code-structure similarity,

and the quantity of disordered statements. Such high tun-
ability of XIAO is critical in applying an approach of code-
clone detection such as XIAO to a broad scope of software-
engineering tasks such as refactoring and bug detection since
these different tasks would require different levels of parameter
values. For example, when using XIAO to search code clones
for detecting similar security vulnerabilities, engineers need
high recall of the detection results to make sure that all or most
potential security vulnerabilities should be detected, while
not very high precision can be tolerated. In contrast, when
using XIAO to search code clones for identifying refactoring
candidates, engineers want to prioritize which code clones to
work on first such that their invested efforts can bring the
greatest benefit on reducing footprints via refactoring.

High scalability of XIAO in analyzing over ten million
lines of code is achieved with a well-designed scalable and
parallelizable algorithm with four steps. These four steps
include preprocessing, coarse matching, fine matching, and
pruning. Preprocessing transforms source-code information to
filter out inessential information such as code comments, and
map code entities such as keywords and identifiers to tokens.
Such information preprocessing reduces the cost of the actual
analysis. To offer high scalability, XIAO splits the main analy-
sis into two steps: coarse matching and fine matching. Coarse
matching is less costly but less accurate than fine matching.
The scope narrowed down by coarse matching is fed to fine
matching, achieving a good balance on analysis scalability and
accuracy. The step of pruning further improves the analysis
accuracy. In addition, the clone-detection algorithm of XIAO
can be easily parallelized. XIAO partitions the code base and
executes multiple instances of clone detectors simultaneously.
Each instance detects clones on a number of pairs. The results
of all the instances are then merged.

High compatibility of XIAO in analyzing code in different
development environments (such as different build systems)
is achieved with its compiler-independent, lightweight, and
pluggable parsers. XIAO has built-in parsers for the C/C++ and
C# languages. We define an open Application Programming
Interface that allows the easy plug-in of parsers to support
various programming languages. Note that the parsing task
is much lighter than the comprehensive functionalities offered
by compilers. Compared to the approaches of parse-tree-based
clone detection such as DECKARD [10], our approach has
the advantage of compiler independence; it can be easily
applied to accommodating different language variants and
build environments, which typically exist in real settings of
software development, especially for C/C++ [11].

High explorability of XIAO allows users to easily explore
and manipulate the detected code clones. Such high explorabil-
ity is achieved with its carefully-designed user interfaces
including visualization support. We design a simple heuristic
to define the level of difference between cloned snippets. We
also use the metric to rank clones to prioritize the review of
clones to identify bugs. XIAO includes clone visualization to
clearly show the matching blocks and the block types of a
clone pair. In this way, users can quickly capture whether there



1 2 3 4 5 6

7

1. Clone navigation based on source tree hierarchy

2. Pivoting of folder level statistics

3. Folder level statistics

4. Clone function list in selected folder

5. Clone function filters

6. Sorting by bug or refactoring likelihood

7. Tagging

Bug

Immune

Refact

Refact

Fig. 1. User interface of XIAO’s Clone Explorer

is any difference between the two cloned snippets, what kind
of difference it is, and how much difference there is. XIAO
also includes a tagging mechanism to help coordinate joint
efforts of reviewing code clones from multiple engineers.

Figure 1 shows the user interface of XIAO’s Clone Explorer.
It organizes clone statistics based on the directory hierarchy
of source files in order to enable quick and easy review
at different source levels (Figure 1-(1)). A drop-down list
(Figure 1-(2)) is provided to allow pivoting the clone-analysis
results around the bug likelihood (Figure 1-(3)), refactoring
likelihood, and clone scope. Clone scope indicates whether
cloned snippets are detected inside a file, cross-file, or cross-
folder. For a selected folder in the left pane, the right pane
(Figure 1-(4)) displays the list of clone functions (those
functions including cloned snippets), which could be sorted
based on bug likelihood or refactoring likelihood (Figure 1-
(6)). Filters (Figure 1-(5)) on the clone scope, bug likelihood,
or refactoring likelihood are provided to enable easy selection
of clones of interest.

IV. INDUSTRY IMPACTS

The industry impacts produced by the XIAO project are
three-fold [9]: Microsoft product development, Visual Studio
shipping, and vulnerability investigation at the Microsoft Se-
curity Response Center.

Being adopted for Microsoft product development. Dur-
ing the initial phases of the project, we released XIAO inside
Microsoft for different development teams to use (with the
first version released in April 2009). There were more than
750 downloads of the tool as of the end of year 2010. The

sizes of code bases that XIAO is used to detect code clones
vary from several thousand lines to over 50 million. Engineers
from different teams in Microsoft have used XIAO in their
development process. For example, one developer from an
application software development team used XIAO to identify
potential bugs caused by inconsistent code clones and to find
refactoring candidates. He reviewed 69 clone groups with
180 cloned snippets in total and found that about 10% have
potential code bugs caused by inconsistent code clones, and
33% of them could be refactored. Another developer used
XIAO to reduce the footprint of a component with more than
200K LOC. As a result, the percentage of cloned LOC was
reduced from 30% to 25%. A testing team developed a plug-
in parser to parse the language used in their product and used
the tool to find duplicated test code and then refactor it.

Being shipped with Visual Studio. Later XIAO was further
transferred as the feature of code clone analysis shipped in
Visual Studio. Initially, XIAO was developed and released only
as a plug-in of Visual Studio (not being part of a Visual Studio
release) so that Visual Studio users could easily download
and install XIAO, and use it with Visual Studio in their
daily work. However, much higher industry impact could be
achieved when XIAO was shipped with Visual Studio (i.e.,
as an inherent part of Visual Studio releases) for two main
reasons. First, the process for delivering XIAO to Visual Studio
users is expedited. After being shipped with Visual Studio,
the XIAO feature is readily available once a Visual Studio
user has the Visual Studio package installed. There is no time
delay from the time when the new Visual Studio package is
installed to the time when the Visual Studio plug-in (specially
developed for this new Visual Studio package) is downloaded
and installed. Second, the readiness and convenience to Visual



Fig. 2. User interface of clone analysis (based on XIAO) in Visual Studio

Studio users are naturally provided. After XIAO has been
shipped with Visual Studio, there is no need for the Visual
Studio users to download a XIAO plug-in, and install it. More
importantly, the XIAO feature shipped with Visual Studio just
works: the Visual Studio users do not need to worry about the
compatibility issue of the XIAO plug-in with the new Visual
Studio package or other Visual Studio plug-ins.

Figure 2 shows the user interface of clone analysis (based
on XIAO) in Visual Studio. The feature of code clone analysis
in Visual Studio can help developers efficiently identify code-
refactoring opportunities and quickly find bugs in duplicated
code. During the release of a new version of Visual Studio,
highlights on the feature of code clone analysis presented by
high-profile Microsoft managers indirectly reflected the impor-
tance of the XIAO feature in the release. For example, before
the release, in the TechEd North America 2011, Cameron
Skinner, General Manager of Visual Studio Ultimate at Mi-
crosoft, gave a talk on “the Future of Microsoft Visual Studio
Application Lifecycle Management”, highlighting the feature
of code clone analysis (at the 26’-29’ time of http://channel9.
msdn.com/Events/TechEd/NorthAmerica/2011/FDN03). After
the release, at BUILD conference 2011, Jason Zander, a
Corporate Vice President of Visual Studio demonstrated the
feature of code clone analysis in his keynote talk (at 12’30”
time of http://channel9.msdn.com/events/BUILD/BUILD2011/
KEY-0002).

A broad scope of Visual Studio users have found the feature
of code clone analysis useful. Via the Visual Studio UserVoice
site (a website for gathering what Visual Studio users would

like to see in future versions of Visual Studio), some users
suggested Microsoft to “allow code clone detection to be run
from command line and/or MSBuild”, gathering 139 support
votes. The reason is that the clone analysis feature in the
Visual Studio release limits the scope of clone detection to
be the currently opened solution (i.e., a container for projects
to track dependencies among projects) in Visual Studio. Such
limit cannot enable many users to run code-clone detection
against large code bases that have a large number of solutions.

The following are examples of user comments gathered
from broad Visual Studio users (outside of Microsoft) in online
discussion.

• “Code clone is very interesting feature for a code review.
It would be extremely useful if we can export analysis
results in human readable format. Our outsources usually
have no ultimate version of visual studio and its hard for
them to fix all issues of code cloning.”

• “In order to make a code coverage analysis, for our
projects, it’s also required to make a code clone analysis.
I know that it’s possible on Visual Studio IDE, but for
Agile projects, it’s more powerful by command line.”

Note that currently Visual Studio does not ship a command-
line version to external users. But the internal tool has a
command-line version, being used by many internal users.

Being adopted at the Microsoft Security Response
Center (MSRC). Since May 2009, an online clone-search
service provided by XIAO has already been integrated into
the engineering process of MSRC, as a step of identifying
similar vulnerabilities across Microsoft products. Specifically,



the code snippet of an identified vulnerability is automatically
sent to the online clone-search service, and the returned code
snippets are sent to MSRC engineers for them to verify
whether there is real security vulnerability. In the Microsoft
Security and Defense blog, MSRC publicly acknowledged the
usage and benefit of using XIAO. In a blog entry1 posted in
May 2012, an MSRC engineer states: “we wanted to be sure
to address the vulnerable code wherever it appeared across
the Microsoft code base. To that end, we have been working
with Microsoft Research to develop a ‘Cloned Code Detection’
system that we can run for every MSRC case to find any
instance of the vulnerable code in any shipping product. This
system is the one that found several of the copies of CVE-
2011-3402 that we are now addressing with MS12-034.”

During the initial period of using XIAO at MSRC, there
were more than 590 million lines of code being indexed.
During the second half of year 2010, there were a number of
vulnerable code snippets searched against the XIAO service.
Among these search cases, 18.3% cases of them found good
hits, i.e., for these cases, the security-engineering team needs
to do further investigation to confirm whether there are du-
plicated vulnerabilities. Given high severity of security bugs,
18.3% good-hit cases are very good results.

As an example, in one of the MSRC cases, a reported
security vulnerability could cause potential heap corruption
and lead to remote code execution. After investigation, the
vulnerable code snippet was found in code base A: a buffer-
overflow check was missing. Using XIAO’s clone-search ser-
vice, one security engineer on the security-engineering team
found three clones of the vulnerable code snippet - one is also
in code base A and the other two belong to code base B. This
security engineer contacted the code owners of these three
cloned snippets and confirmed that one snippet in code base
B was indeed vulnerable. After the contact, the development
team owning the vulnerable cloned snippet in code base B
had confirmed to fix this security bug while the security bug
in code base A was fixed.

XIAO’s clone-search service has greatly improved the pro-
ductivity of the security engineers and it enhanced the re-
liability of the bug-investigation process as well. Based on
the clone-search results, security engineers are able to obtain
a better understanding of the potential impact of security
vulnerabilities, as well as communicating more effectively
with development teams on vulnerability investigation and
fixing.

V. LESSONS LEARNED

In this section, we next share some of our experiences and
the lessons learned during the process of transferring XIAO to
broad industrial practices: being shipped as part of Microsoft
Visual Studio and being deployed and intensively used in daily
work at the Microsoft Security Response Center.

1http://blogs.technet.com/b/srd/archive/2012/05/08/
ms12-034-duqu-ten-cve-s-and-removing-keyboard-layout-file-attack-surface.
aspx

To facilitate the discussion of the experiences and lessons in
this section, we present four stages of transferring a tool such
as XIAO from the technical and social aspects in Table I.
We classify the first seven lessons learned into these two
aspects: the technical aspect (the first three from Sections V-A
to V-C) and the social aspect (the next four from Sections V-D
to V-G). The lessons learned from the technical aspect are
especially important in Stage 2 (from research prototype to
early industrial adoption), to make the technology mature
enough for integration into a main stream product or key
engineering process, and convince the key decision maker
to kick off the productization. The lessons learned from the
social aspect are important for both Stages 2-3, because in both
stages we need comprehensive collaboration and engagement
with product teams and early users. Finally, through the whole
transfer process, we keep in mind to identify more scenarios
that the same technology can be applied to, as illustrated in
the last lesson learned (Section V-H).

A. Focusing on Problems Well Recognized in Practice

There are two models (or their mixture) of initiating a
research project in the context of technology transfer, as
reported in the literature [12]: the pull model and push model.
For example, initiating the StackMine project [13] primarily
followed the pull model. Before the StackMine project was
started, during one of the meetings with a research team,
a member from a product team talked about their state of
practice in inspecting a single stream of call-stack traces for
performance analysis, as well as the challenges that they were
facing on inspecting a large number of trace streams. Then
the research team started the StackMine project to address the
(most urgent) need of the target customers. Typically, projects
of this pull model may more easily fit in the workflow of the
target product team, facilitating the integration of the resulting
tools in the product team’s activities.

In contrast, initiating the XIAO project primarily followed
the push model. Based on the research literature and initial
investigations of some Microsoft code bases, our research
group gained insights and realized the existence of bugs
related to code clones especially near-miss clones, but did
not know their extent. Then our research group developed
the XIAO prototype and demonstrated the prototype to var-
ious Microsoft product teams to “sell” the solution to them.
Through iterations of interactions with product teams, our
research group concretized the details of the target tasks of
refactoring and bug detection. Furthermore, through iterations,
the group also understood that potential customers may be
more willing to carry out refactoring during early stages
of the customers’ software development project because in
later stages, the customers may be more willing to fix bugs
rather than refactoring. Such understanding helps successfully
acquire customers by selling different tasks depending on the
potential customers’ stages.

Different product teams (not necessarily all or most product
teams) in Microsoft may have their own respective incentives
for adopting and benefiting from XIAO. It was important for



TABLE I
STAGES OF TRANSFERRING A TOOL FROM THE TECHNICAL AND SOCIAL ASPECTS.

Stage Technical Aspect Social Aspect

1. From research
idea to research
prototype

• Sound algorithms and research contributions are validated in
lab settings.
• Scalability, reliability, compatibility, usability issues may be

only partially addressed.
• The prototype can well demonstrate its unique value in

specific settings, but may not well address real-scenario re-
quirements.

• Researchers are the main driver, with fair or good visibility
in academia (e.g., via academic publications) but may have
little visibility in industry to attract industrial interest.

2. From research
prototype to
early industrial
adoption

• Killer scenarios in practice are identified and well recognized.
• Additional research on algorithm improvement is conducted

to fit the needs in the killer scenarios.
• The prototype is adapted/packaged to be a tool that fits the

needs of killer scenarios in industrial settings.
• Most scalability, reliability, and compatibility issues are well

addressed.
• Gaps and fixing strategies on integration with a mainstream

product and key engineering process are identified.

• Researchers and practitioners reach mutual agreement and
co-drive the process.
• Valuable feedback is obtained from practitioners on key

scenarios and requirements on scalability, reliability, compat-
ibility, and usability.
• A sufficient number of early adopters are attracted in industry.
• Key decision makers in industry decide to integrate the tool

into a mainstream product or key engineering process.

3. From early
industrial
adoption to
broad industrial
impact

• Technical issues (e.g., performance, interface, compatibility)
and process issues (e.g., workflow, UI) are fully addressed.

• Practitioners drive the process, while researchers play a
supporting role.
• The tool is released as part of the mainstream product, or

integrated into the key engineering process.

4. Post-transfer
• Additional scenarios in real industrial settings that the key

technology can help may be identified, and new transfer
opportunities are identified.

• Post-release feedback and further feature requirements are
attained from a broad user base, and a future release plan is
made as needed.

us to identify such product teams and their incentives early on
and take efforts to convert them to be pilot users (i.e., early
adopters) of XIAO. Below we list those major product teams
in Microsoft that had strong incentives to adopt XIAO.

OS. While interacting with product teams working on OS,
our research group found that the product teams typically
wanted to reduce the whole footprint of the core of OS. Then
refactoring code clones could be highly beneficial there.

Office. The Office division has multiple teams with a
rich set of shared functionalities. In addition to a set of
shared libraries that are being used across teams, there is a
fair number of functionalities that have multiple copies with
variance being used across the teams, due to the higher cost
of abstraction, e.g., dependencies across the teams, rather than
duplication. It is important to provide better management of
such cloned copies, especially ensuring that bugs found in a
copy of such code is fixed in all cloned copies. An engineer
from Office product teams actively outreached to our research
group for dogfood (i.e., internal trial out) right after he saw
the demo of XIAO.

Dynamics (a Customer Relationship Management prod-
uct). A non-object-oriented scripting language for software
development is widely used across the Dynamics teams. The
scripts in this language are difficult to be abstracted as modules
and therefore cloned copies are spreading across multiple
similar versions of a Dynamics product for many customers
in different vertical domains. Making common changes across
these different vertical domains is time consuming and error
prone. Providing a parser interface to these product teams
could enable XIAO to be able to detect clones in their code

written in the scripting language, and thus the product teams
can easily figure out all clone copies across vertical domains
that need to undergo a specific change. Based on the parser
interface provided by our research group, the Dynamics teams
developed their own parser to parse the scripts.

Microsoft Security Response Center (MSRC). The
MSRC team is responsible of addressing security issues across
Microsoft. A big challenge of the team is to quickly identify
all cloned copies of a piece of vulnerable code found in one
product, across all code bases of important Microsoft products.
The reason is that in many cases a library/package is copied
across multiple products.

B. Supporting Human Interactions with Tool Configurations
and Results

As discussed earlier, high tunability of XIAO is critical to
allow XIAO to be applied in a variety of application scenarios.
Users need to intuitively relate tool-parameter values with the
tool outputs, and easily tune tool-parameter values to produce
what the users want. For example, in the application scenario
of investigating security vulnerabilities, security engineers
would like to have high recall of clone detection (i.e., little
chance of missing clone copies). Therefore, XIAO has its
default similarity threshold value of 0.6, a relatively small
value. The value is tunable by security engineers to achieve
even higher recall.

Supporting human interactions with the tool results (e.g., de-
tected clone copies) is also very important. We received a lot of
feedback on the usability of XIAO, and in particular the XIAO
GUI for code-clone exploration and visualization. We released



several versions of the tool, mainly focusing on improving the
usability based on the user feedback. First, the XIAO GUI
needs to provide efficient exploration. There can be a great
number of clones found in large-scale code bases. Therefore, it
is important to enable engineers to explore the detected clones
easily and efficiently. According to our discussion with and
observation of engineers, the engineers have a need to sort
and filter clones based on different metrics, e.g., source tree
structure, size of cloned snippets, size of a clone group, size
of difference between different copies, etc. Second, the XIAO
GUI needs to provide intuitive visualization of differences
across clone copies. The types of differences between clone
copies can be diverse; engineers want to identify the most
important differences first. Doing so can help the engineers
quickly find out whether there are any potential bugs in the
cloned code or whether the cloned code needs to be refactored.
XIAO classifies the clone differences into four categories and
uses visualization techniques to enable users to view the near-
miss code clones intuitively. Third, the XIAO GUI needs to
provide a tagging mechanism to allow users to keep track of
their inspection results across versions of their code (instead
of re-inspecting the same subset of clone detection results
across the versions). Not all detected clones are of interest
to the engineers. For example, some clones are by-design and
they should not be refactored. It is difficult to automatically
filter out the by-design clones because deep domain knowledge
may be required. XIAO provides a tagging functionality for
engineers to tag code clones in three categories: immune
(uninteresting), problematic inconsistencies, and refactoring
opportunities.

C. Addressing Tool Efficiency and Robustness

We took significant efforts to make XIAO efficient to run.
Based on direct interactions with internal XIAO users at
Microsoft, these users put such tool efficiency as their high-
priority requirement. Insufficient tool efficiency was also a
blocking factor for Visual Studio integration. According to
our discussion with engineers, typical expectations were that
detecting clones from 1 million lines of code should be within
5 minutes in a common commodity PC. Clone detection
should be still efficient when there exist extreme cases such
as a function with 10K+ lines of code. In some production
code bases, there are extremely long functions for hosting a
language model. These functions are machine-generated code.
However, XIAO might not have such knowledge to exclude
such functions.

Having good scalability is critical in application scenarios
of XIAO. First, when investigating security vulnerabilities, a
vulnerable code segment needs to be used as query to search
through hundreds of millions lines of code from multiple code
bases. Second, an individual production code base can easily
reach tens of millions lines of code. The development teams of
a software product often have the need to get an overall picture
of cloning situation of their product code base to assess the
code refactoring efforts.

High tool efficiency and robustness are especially impor-
tant for integration and shipping with Visual Studio. There
were one researcher and one developer (from our research
group) working together on the original research-prototype
development and internal tool release at Microsoft. There were
two dedicated developers from the tech-transfer engineering
team of our research lab for working closely with us on con-
solidating our research-prototype-quality code to production
code, refactoring the structure to fit the needs of integration
into Visual Studio user experience. These two developers
identified a number of corner cases that our original algorithm
did not handle well or did not perform well. One example
is that our original algorithm did not perform well when
detecting clones inside one function. Another example is that
we were in need of an elegant way to handle short functions.
Our original algorithm just used a simple threshold on the
minimum number of lines of code to exclude short functions.
But in a clone-search scenario of Visual Studio integration,
testers from the Visual Studio team found that it was important
that our tool needed to return clone results within even very
short functions (e.g., with only 3 to 5 lines) when users search
these functions. The reason is that even when a function is very
short, it is possibly cloned and with code bugs spreading in
multiple places. To make algorithm improvement, these two
developers from the tech-transfer engineering team needed to
get very familiar with many details of our original algorithm.

During the process of transferring XIAO to the Visual
Studio team, one special challenge that we faced was the
loading performance. At the beginning, we hooked up our
parser and indexing component when Visual Studio loaded
a new solution to memory. However, our component led to
a longer solution-loading time, which is not acceptable from
the overall Visual Studio experience: very simple operations
on triggering detection and simple exploration UI to consume
results. One special case considered by us was that there is
often machine-generated code (UI solution) in a project, users
typically do not care clone results on such machine-generated
code since such results are not actionable. We needed to
automatically filter out such source files. We needed to balance
on UI simplicity and flexibility on excluding some source
files from detection. Our final solution was to use an XML
configuration file to allow users to filter out source files.
Such functionality is just for advanced users so that it does
not appear in the UI layer. However, if users add an XML
configuration, our tool can recognize it. We had to change it
to a later stage when users click the “clone detection” button to
start parsing and indexing. Another case was that during Visual
Studio integration, we needed to switch from our own parser to
the Visual Studio language parser. However, we encountered
a memory-leak bug when using the Visual Studio language
parser. The collaborating product team did not own the parser.
Addressing such issue requires cross-team coordination.

D. Having “Insider” Champion

To transfer XIAO to the Microsoft Security Response Center
(MSRC) or Visual Studio, having an “insider” champion (as a



true believer of the technology or tool being transferred) in the
partnering product team is an important success factor. In the
case of transferring XIAO to MSRC, the fifth author of this
paper, being the sponsor from MSRC, played an important role
in this transfer in three main aspects. First, the MSRC sponsor
convinced his management to support his collaboration with
our research group; in many cases, a product team often
does not fully trust the quality of a tool prototype developed
by a research team. Second, the MSRC sponsor conducted
necessary integration work for making the clone search as
part of the investigation process for security vulnerabilities,
i.e., for each incoming case of security vulnerability, an
automatic query against the clone-search service is triggered,
and then the returned clone-search results are organized in
their format, and embedded in the overall organization of
the documentation archive for the security-case investigation.
Third, the MSRC sponsor also needed to operate/maintain the
clone-search service that we deployed for them. The MSRC
sponsor needed to collect all code bases to be indexed, find
machines to host the service, install the service, etc. Fourth, the
MSRC sponsor tested the service for their MSRC scenarios.
Fifth, the MSRC sponsor educated the MSRC teammates to
use the service, remind/push security analysts to review the
returned result from clone search at the beginning. Note that
after the team had a couple of successful use cases (i.e., clone
search helped them identify cloned vulnerabilities), the MSRC
sponsor did not need to remind his MSRC teammates again.

Similarly, in the case of transferring XIAO to be shipped
with Visual Studio, a manager from the Visual Studio team
served as such role of “insider champion”. This manager
played three major roles. First, the manager raised the aware-
ness (to the Visual Studio team) of the quality of XIAO, from
various levels of managers to individual developers. Second,
the manager raised the awareness (to our research group)
of the product-development timing, e.g., when the team’s
product-planning stage starts, what product-plan requirements
are. Third, the manager connected our research group with
corresponding feature teams to solve integration issues, such
as hook-up points in Visual Studio UI, how to develop Visual
Studio plug-in packages.

E. Engaging with Partnering Product Team Veridically

Deep engagement and well alignment with the Visual Studio
team is critical for transferring XIAO to be shipped with
Visual Studio. Our research group took significant efforts
communicating with relevant people at different levels and
different disciplines in the Visual Studio team. For exam-
ple, our research group communicated with the Director of
Program Managers to understand the overall release schedule
of Visual Studio and how the feature of code clone analysis
can fit in, and asked for the director’s guidance on how to
efficiently work with the program managers to ensure the
alignment between our research group and the Visual Studio
product team. Our research group also communicated with a
Principal Development Manager on the detailed Visual Studio
development schedule and how the two collaborating parties

can work together on the transfer of XIAO. In addition to
reaching out to the middle and high level managers, our
research group also closely engaged with individual developers
and testers from the Visual Studio team to make sure that
they understood what should be done for this transfer and
the technical details that they should pay attention to in the
integration. Our research group also paid attention to get
support from the executive of the product team to ensure
smooth technology transfer. For example, our research-group
manager communicated with the general manager a couple of
times to understand the overall context of Visual Studio ship
wheel (i.e., the cadence of a product’s shipment) and ensure
that there were no potential issues for this technology transfer.

F. Building Iterative Feedback Loop with Partnering Product
Team

Proactively seeking quick feedback from the partnering
product team helped our research group better identify real
problems and correctly formulate problems, raise the group’s
confidence on the usefulness of the technology to be trans-
ferred, and enable the group to build a tool with wide coverage
of various important application scenarios.

In particular, our research group proactively sought feed-
back for ensuring technology readiness and User Interface
(UX) understanding before the transfer. At the very early stage,
our research group had actively sought feedback on the re-
search prototype of code-clone analysis from multiple product
teams, including Visual Studio. This step greatly helped the
group to better understand user scenarios, user experiences,
and ensure technology readiness. For example, our research
group asked a member from a specific product team to help
review results of clone detection for their code base. This
step helped the group get first-hand knowledge about how
useful the technology could be to developers. This product
team member also gave our research group a lot of comments
on the UX feature requirements. Our research group also
contacted a Distinguished Engineer of a product team to use
code-clone detection to refactor their code. The Distinguished
Engineer also gave the group very insightful comments. The
early engagement with an Visual Studio program manager
(later becoming the “insider” champion as mentioned in the
preceding section) was also an important step toward the
actual technology transfer. Our research group worked with
the program manager for about six months to drill down to the
details about the UX of code-clone detection for Visual Studio
users, to build a Visual Studio Add-in to explore the end-user
experience and technology feasibility. With this collaborative
effort, the program manager was convinced on the potential
value of the technology to Visual Studio users. Consequently,
the program manager helped the group conduct a successful
General Manager review at the Visual Studio planning time
frame, leading to the official kick-off of the technology transfer
on code-clone detection.



G. Conducting Efficient Joint-Development Process

The members of the joint-development team include people
from the tech-transfer engineering team in our research lab
and our research group. These members closely collaborated
with the Visual Studio team, and actively sought feedback
from engineers in multiple product teams. Efficient joint-
development process was important to ensure successful exe-
cution of the XIAO transfer. Our research group came up with
an efficient mechanism to work with the Visual Studio team
led by a development manager and program manager. The two
collaborating parties had a weekly sync-up meeting to define
backlogs, triage bugs, and discuss technical issues. For urgent
and important issues, relevant team members gave heads-up to
the development manager and program manager so that they
could investigate these issues before the sync-up meeting, to
better help the two collaborating parties to solve the issues
in the meeting. Our research group also closely collaborated
with the product team on solving difficult technical issues. For
example, the feature of code-clone analysis needs to consume
some CPU time at Visual Studio’s initialization stage, which
increased the overall launch time of Visual Studio. Two team
members gave a number of suggestions to mitigate this issue.
These suggestions helped the product team construct the final
solution on solving the issue. Another example is a memory-
leak issue found in a native library. At the beginning, the
memory leak occurred only when the feature of code-clone
analysis was enabled. Therefore, two team members took a
lot of efforts to debug the issue and finally identified the root
cause. By communicating the result with the product team,
our research group finally got support from the library owner
and resolved the issue.

H. Proactively Expanding Applicable Scope

To identify new transfer opportunities for the XIAO project,
in later phases of the project, we expanded the applicable scope
of the XIAO algorithm to conduct research on boosting pro-
ductivity of software development specifically from a change-
centric perspective. The reason is that change is a very basic
concept and artifact during the entire software development
process. A significant part of software development efforts
can be viewed as change oriented: from change requirement to
making changes, from reviewing changes to testing changes.

In particular, we expanded the applicable scope of the
XIAO algorithm from clone detection or searching to change
understanding, with focus on (1) change visualization for code
review, debugging, branch merging, and (2) test selection at
the function-level granularity. Understanding code changes
underpins many important developer scenarios, e.g., debug-
ging, version management. Code duplication amplifies the
difficulties of change understanding and strengthens the needs
of understanding the clone-evolution situation across changes
(by detecting code clones across a previous version and the
current version of the code base). Here are two example
scenarios of understanding code changes in the context of code
clone/duplication. First, a piece of code is duplicated/copied to
another place in a change; in addition to knowing that there are

added/modified lines of code in a source file, it is important
to know that it is a duplication from another file/function.
Second, a piece of code is changed for bug fixing where there
are multiple variances in the code base; in addition to knowing
that there is a change, it is important to know whether all
copies of the same piece of code are changed, to prevent
incomplete bug fixing.

In change understanding, we tackled a problem of efficiently
and intuitively visualizing the code changes after the analysis
result becomes available. We designed a tool to show the code
changes and their characterization, in a classic tree-list view.
The left pane shows the overall change information and the
right pane is a side-by-side view. In the left pane, the code
changes are organized by logical hierarchy (namespace/class/-
function) in function granularity. The change type and the
significance are labeled and highlighted so that the change
reviewers could get a quick preview and summary before
rushing into the code details.

The code difference in the evolution of a function may be of
the most interest to developers. To help reviewers catch the key
point of the change, we designed a token-based, side-by-side
view to intuitively highlight the code changes between two
versions of the function. This side-by-side mode is sometimes
more efficient and clearer than the traditional inline mode es-
pecially when the differences are out of alignment in file-level
comparison and the change is quite mixed and complicated.

In general, two clone functions in the same version of source
files are duplication whereas a clone between two versions of
source files could have resulted from a change on the same
function across the two versions. Based on this insight, we
could distinguish code duplication from code-version changes.
our change-analysis engine (based on XIAO) goes through
three steps. First, our engine indexes the code changes with a
lightweight parser (which can analyze partial code). Second,
our engine tries to match the indexed functions based on the
function signatures and clone-detection result to get a mapping
between the previous and current versions. Since we can get
the similarity metric for a function’s two versions, we could
know whether the function has been changed and how much
it is changed and further more, whether it is moved. Third,
based on the mapping from the previous step, our engine
categorizes the functions by a decision tree into NOT change,
edited, deleted, new, moved, duplicated or renamed.

VI. RELATED WORK

There are various experiences reported on successful tech-
nology transfer of software-engineering tools [4], [11], [14]–
[20]. In this section, we discuss those previously reported
experiences most related to our experiences reported in this
paper.

Some of our XIAO experiences overlap with the expe-
riences on technology transfer of Pex [19], an automated
test-generation tool based on dynamic symbolic execution,
in that both the XIAO project and the Pex project were
conducted in a research division of a company, and both
projects transferred a research tool to be shipped as part of



an industrial IDE (Pex was released as the IntelliTest feature
of Visual Studio 2015). However, besides being shipped with
Visual Studio, XIAO was also adopted in daily work of the
Microsoft Security Response Center. Their Pex experiences
include dealing with the “Chicken and Egg” problem (finding
early tool adopters inside the company), corresponding to our
experiences on interacting with product teams. Their Pex ex-
periences include considering human factors, corresponding to
our lesson learned on supporting human interactions with tool
configurations and results described in Section V-B. Their Pex
experiences include listening to practitioners, corresponding to
our lesson learned on focusing on problems well recognized
in practice described in Section V-A. Their Pex experiences
additionally include other specific lessons learned such as
evolving “dreams” (their target tools), performing well on
best-case scenarios while averagely on worst-case scenarios
(for the path-exploration heuristics in the Pex tool), dealing
with tool users’ stereotypical mindset or habits (in terms of
user expectations on what the tool can do for the users), and
collaboration with academia.

Main members of the Automating Test Automation (ATA)
project [21] at IBM Research India shared five lessons learned
in their technology transfer of their web-application testing
tool: (1) relevance (corresponding to our focusing on problems
well recognized in practice described in Section V-A), (2) cost-
benefit trade-offs, (3) supporting early users (related to our
experiences on interacting with product teams), (4) organiza-
tional dynamics (corresponding to our multiple lessons learned
on interactions with product teams), (5) “Last mile” (related
to our experiences on engineering efforts to make the tool
efficient, robust, etc.).

VII. CONCLUSION

In this paper, we have reported the target task scenarios,
tool overview, industry impacts, and lessons learned from
Microsoft Research’s XIAO project. XIAO has been shipped
as part of Microsoft Visual Studio and has been deployed
and intensively used in daily work at the Microsoft Security
Response Center. According to our experiences, technology
transfer is a rather complicated journey that needs significant
efforts from both the technical aspect and social aspect. We
hope that our reported experiences can inspire more high-
impact technology-transfer research from our research com-
munity.

ACKNOWLEDGMENT

We thank our colleagues at Microsoft for their feedback
and discussion on the XIAO project, especially Jonus Blunck,
Andrew Fomichev, Shi Han, Xiaohui Hou, Peter Nobel, Landy
Wang, Jinsong Yu, and Qi Zhang. We thank our (former)
colleagues and interns for their contribution on the implemen-
tation of XIAO: Sanhong Chen, Yan Duan, Tiantian Guo, Shi
Han, Ray Huang, Qi Jiang, Feng Li, Xiujun Li, Jianli Lin,
Huiye Sun, Jinbiao Xu, Jiacheng Yao, and Chiqing Zhang. We
also thank Yingjun Qiu for his contributions in conducting the
XIAO project and Simone Livieri for his help on evaluations

of XIAO. We thank Gong Cheng, Weipeng Liu, Gang Chen,
Sadi Khan, Ian Bavey, Peter Provost, Vu Tran, Cameron
Skinner, and many other engineers at Microsoft for helping
the integration of the code-clone feature into Visual Studio.
We thank Xu Guo, Xianjun Huang, and Andrew Bragdon for
helping the post-release efforts on more transfer opportunities.

REFERENCES

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, Jul. 2002.

[2] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-paste
and related bugs in large-scale software code,” IEEE Trans. Software
Eng., vol. 32, no. 3, pp. 176–192, 2006.

[3] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su, “Scalable and
systematic detection of buggy inconsistencies in source code,” in Proc.
OOPSLA, 2010, pp. 175–190.

[4] Y. Zhou, “Connecting technology with real-world problems - from copy-
paste detection to detecting known bugs (keynote abstract),” in Proc.
MSR, 2011, pp. 2–2.

[5] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009.

[6] L. J. Osterweil, C. Ghezzi, J. Kramer, and A. L. Wolf, “Determining the
impact of software engineering research on practice,” IEEE Computer,
vol. 41, no. 3, pp. 39–49, 2008.

[7] L. C. Briand, “Embracing the engineering side of software engineering,”
IEEE Software, vol. 29, no. 4, p. 96, 2012.

[8] D. Zhang and T. Xie, “Pathways to technology transfer and adoption:
Achievements and challenges (mini-tutorial),” in Proc. ICSE, SEIP,
Mini-Tutorial, 2013, pp. 951–952.

[9] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie, “XIAO: Tuning
code clones at hands of engineers in practice,” in Proc. ACSAC, 2012,
pp. 369–378.

[10] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: scalable
and accurate tree-based detection of code clones,” in Proc. ICSE, 2007,
pp. 96–105.

[11] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. R. Engler, “A few billion lines of
code later: using static analysis to find bugs in the real world,” Commun.
ACM, vol. 53, no. 2, pp. 66–75, 2010.

[12] D. Zhang, Y. Dang, J.-G. Lou, S. Han, H. Zhang, and T. Xie, “Software
analytics as a learning case in practice: Approaches and experiences,”
in Proc. MALETS, 2011, pp. 55–58.

[13] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance debugging
in the large via mining millions of stack traces,” in Proc. ICSE, 2012,
pp. 145–155.

[14] T. Ball, V. Levin, and S. K. Rajamani, “A decade of software model
checking with SLAM,” Commun. ACM, vol. 54, no. 7, pp. 68–76, Jul.
2011.

[15] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and A. Teterev, “CRANE:
Failure prediction, change analysis and test prioritization in practice -
experiences from Windows,” in Proc. ICST, 2011, pp. 357–366.

[16] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of
constraints: Whitebox fuzz testing in production,” in Proc. ICSE, 2013,
pp. 122–131.

[17] D. Zhang, S. Han, Y. Dang, J. Lou, H. Zhang, and T. Xie, “Software
analytics in practice,” IEEE Software, vol. 30, no. 5, pp. 30–37, 2013.

[18] J. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and T. Xie, “Software analytics
for incident management of online services: An experience report,” in
Proc. ASE, 2013, pp. 475–485.

[19] N. Tillmann, J. de Halleux, and T. Xie, “Transferring an automated test
generation tool to practice: from Pex to Fakes and Code Digger,” in
Proc. ASE, 2014, pp. 385–396.

[20] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proc. ICSE,
2015, pp. 598–608.

[21] S. Chandra, S. Thummalapenta, and S. Sinha, “Lessons from the tech
transfer trenches,” Commun. ACM, vol. 59, no. 2, pp. 37–39, Jan. 2016.


