
Automated Test Input Generation for Android:
Towards Getting There in an Industrial Case

Haibing Zheng1 Dengfeng Li2 Beihai Liang1 Xia Zeng1 Wujie Zheng1 Yuetang Deng1 Wing Lam2 Wei Yang2 Tao Xie2
1Tencent, Inc., China

2University of Illinois at Urbana-Champaign, USA
1{mattzheng,gavinliang,xiazeng,wujiezheng,yuetangdeng}@tencent.com, 2{dli46,winglam2,weiyang3,taoxie}@illinois.edu

Abstract—Monkey, a random testing tool from Google, has
been popularly used in industrial practices for automatic test
input generation for Android due to its applicability to a variety
of application settings, e.g., ease of use and compatibility with
different Android platforms. Recently, Monkey has been under
the spotlight of the research community: recent studies found
out that none of the studied tools from the academia were
actually better than Monkey when applied on a set of open
source Android apps. Our recent efforts performed the first case
study of applying Monkey on WeChat, a popular messenger
app with over 800 million monthly active users, and revealed
many limitations of Monkey along with developing our improved
approach to alleviate some of these limitations. In this paper, we
explore two optimization techniques to improve the effectiveness
and efficiency of our previous approach. We also conduct
manual categorization of not-covered activities and two automatic
coverage-analysis techniques to provide insightful information
about the not-covered code entities. Lastly, we present findings
of our empirical studies of conducting automatic random testing
on WeChat with the preceding techniques.

I. INTRODUCTION

Recently Choudhary et al. [12] asked the question “are
we there yet?” in terms of having good-enough tools to
automatically generate inputs to test Android apps. They
conducted an empirical study on publicly available tools that
can automatically generate inputs to test Android apps. These
tools included six test input generation tools [14], [9], [10],
[11], [15], [19] from the academia, in short as academic tools.
In addition to the six academic tools, the study also considered
Monkey1, an open source tool from Google. Monkey is one
of the most widely used tools of this category under industrial
settings, due to its applicability to a variety of application
settings, e.g., ease of use and compatibility with different
Android platforms. Monkey is considered to be a relatively
simplistic tool because Monkey triggers random events on ran-
dom coordinates of a screen. Although the six academic tools
use more sophisticated techniques than Monkey, Choudhary
et al. found Monkey to be the winner among the tools under
their study, since it achieves, on average, the best coverage, it
can report the largest number of failures, it is easy to use, and
it works for various platforms.

In our recent efforts [20], we extended Choudhary et al.’s
study [12] in two important ways. First, we performed the first
case study of applying Monkey on an industrial app instead of

1https://developer.android.com/studio/test/monkey.html

some relatively simplistic, open-source apps. Our case study
revealed many limitations of Monkey. Second, we developed
an improved approach that addresses major limitations of
Monkey and demonstrated how our approach accomplishes
substantial code-coverage improvements over Monkey.

In particular, our recent efforts studied the effectiveness and
limitations of Monkey when testing WeChat2, a highly popular
messenger app (especially among users of Chinese origins)
released by Tencent, Inc. WeChat is one of the most popular
messenger apps in the world with over 800 million (2016
Quarter 2) monthly active users3. In fact, WeChat has evolved
to be well beyond a messenger app: it also supports many
functionalities such as banking and shopping, and serves as a
platform for third parties to develop their own apps4.

Such recent efforts were just the beginning of the journey
started by the industry-academia partnership formed by the
authors of this paper, consisting of industrial practitioners from
Tencent, Inc. and university researchers from the University of
Illinois at Urbana-Champaign. The goal of such partnership is
to significantly improve both the state of the art and the state of
the practice in the area of automated test input generation for
Android, and produce high industrial impact beyond/besides
impacting the academic research community in this area.
Accomplishing this goal requires continuous dedicated efforts
to gain improved understanding on “what does work and
what does not work” and develop practical solutions to tackle
challenges faced when transferring and deploying tools in real
industrial practices.

In this impact-pursuit journey, we extend our recent ef-
forts [20] by exploring various optimization techniques for
random testing tools (such as Monkey and our previous
approach [20] extended from Monkey) through empirical
studies in this paper. More specifically, we optimize our pre-
vious approach by developing two techniques: the Repetition-
Avoidance technique and the Firing-Speedup technique.

The Repetition-Avoidance technique aims to keep track of
repeated exploration patterns that do not increase coverage and
avoid such repetition during random exploration of the event
space. Random testing tools such as our previous approach
may keep track of whether a just-fired event changes the GUI

2https://www.wechat.com
3https://www.statista.com/statistics/255778/

number-of-active-wechat-messenger-accounts/
4http://a16z.com/2015/08/06/wechat-china-mobile-first/

https://developer.android.com/studio/test/monkey.html
https://www.wechat.com
https://www.statista.com/statistics/255778/number-of-active-wechat-messenger-accounts/
https://www.statista.com/statistics/255778/number-of-active-wechat-messenger-accounts/
http://a16z.com/2015/08/06/wechat-china-mobile-first/

Fig. 1: A chatting screen where our previous approach [20]
repeatedly fires click events on different TextView widgets
without gaining coverage improvement.

elements of the screen or not. However, such mechanism is
at times ineffective at testing an app. For instance, Figure 1
presents a screenshot of WeChat under test where our previous
approach first tries to click the top “Call failed” TextField.
The screen then adds another “Call failed” TextField. By
introducing another “Call failed” TextField each time a click is
performed on these TextFields, our previous approach detects
that GUI elements have changed, and therefore it continues
exploration without the possibility of achieving new code
coverage.

The Firing-Speedup technique aims to reduce the execution
runtime for firing an event. In this way, within the same
amount of time allocated for applying random testing tools,
the tools can fire a much higher number of events compared
with not using the Firing-Speedup technique. In our empirical
observation (with more details described in later parts of
this paper), our previous approach enhanced with the Firing-
Speedup technique, namely the speed-optimized approach, can
achieve the same code coverage as our previous approach
using only 3 hours in contrast to 12 hours used by our previous
approach. Note that neither approaches have reached their
saturation point at 12 hours, and given infinite time, both
approaches would achieve the same code coverage. When
comparing our speed-optimized approach to the previous ap-
proach at 12 hours, our speed-optimized approach achieves
approximately 6% higher code coverage. In summary, we
find that our speed-optimized approach runs faster and more
effectively.

In addition to the two optimization techniques, in this paper,
we also conduct categorization of coverage results to inform
developers what most common categories of activities are
among those not-covered activities. In particular, we con-
duct a study on the not-covered activities of WeChat and
identify seven major categories of not-covered activities. The
category of Dead Activity is the most common category,
accounting for 39% of the not-covered activities. An activity

is categorized as a Dead Activity if the app usage data from
WeChat’s active users and our automatic testing tool never
cover that activity. Our manual inspection of these activities
finds that these activities often contain implementations of
an outdated feature or a feature soon to be (but not yet)
released. From this study’s findings, app developers or testers
can gain some insights about the not-covered activities such
as which activities are in the Dead Activity category so that
testing approaches can exclude them. The study results also
inform developers about how significant not-covered activities
may be. The impact of not covering activities of the Dead
Activity category may not significantly impact the confidence
that developers will have on their testing efforts. However, the
second most popular category of not-covered activities (not
covering activities whose coverage requires certain specific
account states) should further motivate developers to spend
additional resources during their testing efforts to cover such
activities.

Aside from our categorization of coverage results, we also
explore two automatic coverage-analysis techniques to pro-
duce insightful information about the not-covered activities:
substring hole analysis and activity-transition-graph (ATG)
analysis. Substring hole analysis [7], [8] automatically gener-
ates the list of keywords most frequent in the names of the not-
covered activities. In particular, substring hole analysis splits a
string into substrings based on a specified delimiter. Our use
of substring hole analysis works by splitting activity names
by capitalized characters and counting the occurrences of the
keywords. The results from our substring hole analysis on the
not-covered activities suggest that manual efforts or automated
tools should aim to generate more tests that use the WeChat
wallet to pay for things in order to maximize their chance to
increase code coverage.

The ATG analysis constructs the activity transition graph
(ATG) of the app under test to generate a list of activi-
ties that can lead to the not-covered activities. We leverage
GATOR [18], a program-analysis toolkit for Android, to
generate the ATG and investigate how the use of the generated
list can help developers cover the not-covered activities.

In summary, this paper makes the following main contribu-
tions:

• Optimization techniques to improve the effectiveness and
efficiency of automatic random testing for Android.

• Manual categorization of not-covered activities and cov-
erage analysis (substring hole analysis and ATG analysis)
to provide insightful information about not-covered activ-
ities.

• Empirical studies of conducting automatic random testing
on WeChat with the preceding techniques.

In the rest of this paper, we present background information
in Section II. We illustrate the testing methodology used for
our study in Section III. We present our two optimization
techniques in Section IV. We illustrate our categorization of
not-covered activities and our coverage analysis in Sections V
and VI, respectively. We discuss related work in Section VII
and conclude in Section VIII.

TABLE I: WeChat codebase statistics.

of executable Java code lines: 610,629
of Java classes: 8,425
of Android activities: 607
of C or C++ code lines: ∼40,000

II. BACKGROUND

A. WeChat

WeChat was first released in 2011 by Tencent, Inc. Since
then WeChat has grown to be not only a messenger app
and social network, but also a multi-function app containing
many of the functionalities found in popular apps such as
PayPal, Yelp, Facebook, Uber, and Amazon. WeChat has even
gradually evolved to be a platform for third parties to develop
their official accounts, i.e., light-weight apps, running inside
WeChat. One example of WeChat’s functionalities that may
not be obvious is when eating out with a group of friends,
one can use WeChat to split the check by sending a QR code
out to everyone, each of whom can then automatically pay for
their portion of the bill with the tap of a button inside WeChat.
Other use cases of WeChat include but are not limited to
buying movie tickets, calling a cab, online shopping, counting
the number of footsteps taken, uploading and sharing photos,
ordering delivery, reading news, and numerous other use cases.

Since WeChat contains many complicated features, it in-
evitably has a large code base as shown in Table I based on
WeChat version 6.3.15.

B. Automatic Test Input Generation for WeChat

Our previous study [20] shows that Monkey, an Android
random testing tool from Google, achieves surprisingly low
line or activity coverage for testing industrial apps such as
WeChat. The main reasons are two-fold: (1) widget oblivi-
ousness: Monkey is oblivious to the locations of widgets on a
screen; and (2) state obliviousness: Monkey is oblivious to the
GUI states before or after an event, and thus cannot distinguish
a state-changing event from a state-preserving event.

We developed our previous approach such that it inherits the
high applicability of Monkey while addressing its empirically-
observed limitations. In particular, our previous approach
incorporates two main strategies: widget awareness and state
awareness with guided exploration.

Widget awareness. To alleviate Monkey’s limitation of
widget obliviousness, we leverage the UI Automator5 APIs
of Android to obtain all the events (e.g., short or long clicks)
supported by each widget and perform only those events on
the widgets. The UI Automator APIs enable us to look up a UI
component by using the displayed text or content description.
Our previous approach also allows users to specify a weight
for each event type on each widget type. This mechanism
allows our previous approach to use such predefined weights to
perform weighted random selection to reduce many redundant
events.

5https://google.github.io/android-testing-support-library/docs/uiautomator/

State awareness with guided exploration. To avoid re-
peatedly performing events without contributing to new line
coverage, our previous approach focuses on generating events
that may change the state. Our previous approach considers
two states to be equivalent if the two states represent the
same activity with the same number and type of widgets (the
attribute values of the widgets can be different, e.g., the text
in a TextView can be different). In particular, our previous
approach represents a state as the mapping of an activity to
the number and type of widgets that belong to this activity.
Furthermore, our previous approach guides the exploration by
selecting widgets with a higher likelihood to change the state.

III. TESTING METHODOLOGY

A. Coverage measurement

When testing the WeChat Android app, we focus on Java
code coverage, because the majority of the app’s logic is
implemented in Java, and its Java code is frequently changed
between different versions of WeChat. We use a tool developed
in our previous work [20] for measuring code coverage for
Java. Using our own coverage measurement tool offers us
two major advantages. First, it allows us to customize the
tool for various advanced testing features, such as measuring
and comparing coverage information on only changed portions
of the code between revisions. Second, existing coverage
measurement tools such as Emma [2] are not able to handle
large code bases such as WeChat’s. In particular, the instru-
mentation performed by Emma (adding two methods into each
class of the app under measurement) causes industrial-strength
apps such as WeChat to reach the 64K-method limit after
instrumentation.

Our coverage measurement tool collects (1) line coverage:
the number of executed Java lines over the total number of
executable Java lines; (2) activity coverage: the number of
Android activities visited over the total number of Android
activities.

B. Testing setup

We conduct our testing experiments with WeChat version
6.3.15 on an OPPO R9 device running Android OS version
5.1.1. We run our previous approach and our new optimized
approach for 12 hours, separately, with newly registered
accounts on live servers (i.e., the ones used by the broad
user base). Note that there are thousands of micro-services
running on tens of thousands of backend servers across a
few data centers. Since our approaches run on live servers,
there is a chance that our approaches could have added nearby
people as friends and potentially sent money to nearby people
during testing. Therefore, for the 12 hours that we run our
approaches, we purposefully do not test any financial-related
features of WeChat (e.g., not manually bundling a bank card
with a test account). Later in Section VI-A, we describe our
lesson learned on the need of testing financial-related features
to cover many not-covered activities. In order to test such
features, we create a mock server, which contains only testing

https://google.github.io/android-testing-support-library/docs/uiautomator/

accounts. We then run our new optimized approach on the
mock server, and measure the coverage improvement.

IV. OPTIMIZATION TECHNIQUES

In this section, we first present the limitations of our
previous approach and then two new optimization techniques
that we develop to improve our previous approach. Lastly, we
empirically evaluate the previous and optimized approaches by
measuring the code coverage achieved by the two approaches.

A. Repetition-Avoidance Technique

During exploration, we repeatedly observe that our previous
approach explores newly generated states for a long time.
However, these newly generated states do not significantly
increase the line or activity coverage, since these states lead to
many redundant exploration actions. Figure 1 shows an exam-
ple of these redundant exploration actions. In the example, our
approach first tries to click the top “Call failed” TextField. The
app then adds another “Call failed” TextField. Since the GUI
elements on the screen are changed, our previous approach
considers that such change leads to a new state even when
such new state leads to redundant explorations that do not
achieve any additional coverage.

To avoid redundant explorations, our repetition-avoidance
technique allows developers to specify what buttons should not
be clicked. In particular, when our technique generates events
for an activity, our technique checks to see whether a generated
event is one on a button specified by the developers. If so, then
the event is discarded and another event will be generated;
otherwise, the event is triggered. In the example shown in
Figure 1, a developer can specify that a “Call failed” TextField
should not be clicked on. When our technique generates events
for this example, our technique checks each generated event
to see whether it is on a “Call failed” TextField and if so, the
event is discarded and another event will be generated.

B. Firing-Speedup Technique

Our firing-speedup technique reduces the runtime cost of
our previous approach by being faster at picking GUI widgets
and firing events on them. This improvement enables our
approach to achieve coverage increments faster. Our previous
approach performs the following steps to pick a GUI widget
and fire an event on the widget: (1) get the GUI hierarchy
tree from the UI Automator and traverse the GUI hierarchy
tree to get all of the widget objects, which contain widget-
attribute information such as coordinates, text, and supported
event types (e.g., short and long clicks); (2) pick one widget
from the GUI hierarchy tree and a supported event type, and
pass them to the UI Automator. The UI Automator also needs
to traverse the GUI hierarchy tree to verify that the input
GUI widget and event are valid before it can fire the event.
Therefore, our previous approach needs to traverse the GUI
hierarchy tree twice. To eliminate the need for the second
GUI hierarchy traversal by the UI Automator, we fire the
event on the widget through the Android Debug Bridge (ADB)
(instead of the UI Automator) immediately after the first GUI

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11 12

C
o
ve
ra
ge
	P
er
ce
n
ta
ge
	(%

)

original	tool:	activity	coverage

original	tool:	line	coverage

optimized	tool:	activity	coverage

optimized	tool:	line	coverage

Fig. 2: Comparison of the line/activity coverage achieved
by our optimized and previous approaches.

TABLE II: Comparison of the numbers of events generated
by our optimized and previous approaches.

Time (minutes) Number of events fired
Optimized approach Previous approach

30 1050 509
60 1935 1023
90 2822 1517

120 3706 1988
150 4685 2459
180 5772 2957
210 6754 3428
240 7585 3868

hierarchy traversal. For event types such as a long click, which
cannot be fired by ADB, we continue to leverage the UI
Automator to fire these events. Our firing-speedup technique
brings significant reduction of exploration time compared to
our previous approach.

C. Results

Table II lists the numbers of events that are generated by
our optimized and previous approaches. As shown in Table II,
our optimized approach generates twice as many events as
our previous approach within the same time period. Figure 2
presents the coverage result achieved by our optimized and
previous approaches. The x-axis shows the number of hours
spent on exploration and the y-axis shows the coverage per-
centage. As shown in Figure 2, our optimized approach (the
upper two lines) outperforms our previous approach (the lower
two lines) in both line and activity coverage. Specifically, our
optimized approach covers an additional 6.0% more lines and
6.0% more activities than our previous approach. Also, our
optimized approach has faster coverage increments than our
previous approach. The two black, horizontal lines in Figure 2
indicate that our optimized approach needs only 2 hours to
achieve the coverage achieved in 12 hours by our previous
approach.

Fig. 3: Classification of not-covered activities.

V. CATEGORIZATION OF NOT-COVERED ACTIVITIES

In this section, we present the categorization of WeChat’s
activities that have not been covered by our optimized ap-
proach, and we further describe their root causes and impli-
cations, as shown in Table III.

We manually investigate the source code of those not-
covered activities and categorize them into 7 major categories
and 12 minor categories based on the conditions needed to
trigger these activities. The results are shown in Figure 3.

A. Dead Activity

We categorize an activity as a Dead Activity if it has never
been covered by an active user of WeChat or by our optimized
approach. We collect app usage data for one day from 200+
million users of the same WeChat version. Such app usage data
contains all activities visited by users on that particular day.
In other words, we aggregate all visited activities across 200+
million users of the same WeChat version and obtain a list
of activities that have been covered by the active users. If an
activity in WeChat is not covered by an active user and is also
not covered by our optimized approach, then we categorize it
as a Dead Activity.

Surprisingly, we find that 39.4% (173 out of 439) of the
not-covered activities are in the category of Dead Activity.
After examining the source code of those activities, we find
two major reasons for dead activities in WeChat as below.
Old implementations. An activity may become out-dated if a
new implementation of the same feature has been deployed.
For example, older versions of WeChat use the native Web-
View in Android to implement their web features. However,
developers have already replaced such implementation with
a newer version using HTML5 while the old implementation
continues to reside in WeChat. Our optimized approach and ac-
tive users can no longer visit the old implementation anymore.
On the other hand, it is risky for developers to refactor the
code base and remove those old implementations for two main
reasons. First, code refactoring may cause device-compatibility
issues since it is challenging to test all kinds of devices and
confirm that removing old implementations will not negatively

affect some devices. Second, developers may still use those old
implementations for future feature development.
Unreleased and hard-to-cover features. We find that certain
features in WeChat are not yet released to the public and by
default are disabled because the backend server is not available
yet to support such features. Such cases cause some activities
to be invisible (i.e., infeasible to cover) to active users and our
optimized approach.
Implication. It is important for developers to know the list
of dead activities in advance so that they can remove such
activities from the not-covered activity list when evaluating
the effectiveness of their testing approaches.

B. Insufficient Account States

If the condition to reach a particular activity cannot be
satisfied by directly providing an initial account state for
a testing account, then we categorize this activity into the
category of insufficient account states. For example, to test the
email activity in WeChat, developers are required to provide
an account that has the email feature enabled. We find that
27.8% (122 out of 439) of the not-covered activities need
proper account configurations so that testing approaches such
as our optimized approach can cover those activities. There
are four primary settings for account states as below.
Requiring financial information. We find that 9.6% (42 out of
439) of the not-covered activities are related to the financial
features of WeChat (i.e., using WeChat’s wallet or bank pay-
ment). To cover those activities, our optimized approach would
need an account that has the proper financial information
(e.g., a testing account with at least one bank card with
non-zero balance). Setting up our optimized approach to test
those activities is challenging because those activities need to
perform transactions between different testing accounts (e.g.,
sending money to people from one’s friend list). Moreover,
some activities depend on the results of transactions (e.g., a
transaction is rejected by a bank). Thus, it is challenging to
generate proper testing accounts. In addition, if generated tests
are executed against a testing account on a live server, the
testing account may potentially send money to another non-
testing account (i.e., an active user).
Implication. In practice, to test financial features, developers
need to (1) preset financial information (e.g., bank card), and
(2) combine manual testing and automated testing using an
offline or mock server to test those activities.
Requiring account-history content. We find that 7.5% (33 out
of 439) of the not-covered activities need a testing account
with some history content for our optimized approach to effec-
tively explore these activities. For example, Figure 4 presents
an activity for searching a user’s saved favorite content. If
the account does not save a favorite content from before, the
subsequent activity for showing the detailed content cannot be
visited.
Implication. Developers should add initial seed data to testing
accounts or reuse some of their previous testing accounts that
contain some app usage history.

(a) Activity for searching saved
favorite history

(b) Activity for showing details
of searching result

Fig. 4: An example where testing accounts with saved
favorites are needed in order to visit the searching result
activity.

Requiring different account types. We find that 7.3% (32 out
of 439) of the not-covered activities are not covered because
our optimized approach supports only one way of login: login
with a WeChat account. Besides supporting WeChat accounts,
WeChat also supports sign-up and login to various third-
party accounts, such as Facebook and Tencent QQ accounts.
The support for multiple account types leads to different
activities for sign-up and login features. Also, an account
registered within China has different features or uses different
implementations (i.e., different activities) compared to an
account registered outside of China. However, we evaluate our
optimized approach using only a WeChat account registered
within China.
Implication. Testing approaches should support using differ-
ent account types to log in instead of using only one account
type.
Requiring enabled feature. We find that 3.4% (15 out of 439)
of the not-covered activities are not covered because features
related to those activities are not enabled. Figure 5 presents
an example list of features that are not enabled by default. To
cover the activities in this category, developers would need to
either (1) manually enable those features for a testing account
on their backend server or (2) guide testing tools to visit
WeChat’s setting activity and click the enable button for each
feature, as shown in Figure 5.
Implication. Developers need to create a group of testing
accounts such that each testing account has a different initial
setting (i.e., accounts with different enabled features).

C. Requiring long and unique event sequence or valid text
input

We categorize a not-covered activity to this category if
reaching the activity requires following a unique path of

Fig. 5: Example of features in WeChat that are disabled
by default.

activity transitions and such path consists of more than five
activity transitions from the root activity (i.e., the Launcher
activity) to the target activity or requires filling in correct text
inputs. This category includes 17.8% (78 out of 439) of the
not-covered activities, including two sub-categories as below.
Requiring long and unique event sequence. 16.4% (72 out of
439) of the not-covered activities requires one unique path
from the root activity (i.e., the Launcher activity) to the target
activity, and such unique path is generally a long sequence,
i.e., requiring at least five activity transitions. It is difficult
for a random testing approach to cover those activities. For
example, to send a broadcast message to many friends at
once, a testing approach needs to go through the following
path of activity transitions: LauncherUI− > Setting− >
General− > FeatureSettings− > GroupMessaging− >
BroadcastsMessages.
Implication. It is suggested that testing approaches support
developer-specified rules so that these approaches can utilize
such rules to more easily navigate to not-covered activities in
this category.
Requiring valid text input. We find that 1.4% (6 out of 439)
of the not-covered activities are not covered because they
require the optimized approach to provide correct text input.
For example, to explicitly mention a group member in a group
chatting room, the user is required to type in the character
“@”, and then a window will pop up to allow the user to
select the group members.
Implication. It is suggested that testing approaches support
taking advantage of predefined text inputs (e.g., the “@”
character) for activities in this category.

D. Requiring collaboration with another device

We find that 6.2% (27 out of 439) of the not-covered activi-
ties are not covered because they require our testing approach
to provide collaboration between WeChat and another device.
For example, WeChat allows users to migrate or backup their
chatting history to another device, as shown in Figure 6. To
test data migration to another phone requires the other phone

(a) Migrate or backup data to
another device

(b) Scan QR code to migrate
data to another phone

Fig. 6: Data migration and backup in WeChat require
collaboration between different devices.

to scan the QR code as shown in Figure 6b. To test data backup
to a desktop requires the desktop-version application and the
phone to be connected to the same Wi-Fi network.
Implication. Support is suggested for allowing testing tools
on different devices or platforms to be able to communicate
with each other and work cooperatively for covering these
activities.

E. Requiring human-generated event

Except for those not-covered activities categorized into
the preceding categories, if covering a not-covered activity
requires events that cannot be generated by our optimized
approach, we categorize such activities into this category. This
category includes 5.7% (25 out of 439) of the not-covered
activities, including two sub-categories as below.
Requiring biometric information. We find that 3.4% (15 out
of 439) of the not-covered activities are not covered because
they require correct events for biometric information, such as
using the voice message or fingerprint features in WeChat.
Implication. It is suggested that testing approaches should be
able to recognize activities requiring biometric information,
and cooperate with developers to provide or mock such
biometric information during testing.
Requiring system event. We find that 2.3% (10 out of 439)
of the not-covered activities are not covered because they
require a particular system event, such as connecting to Wi-
Fi. Our optimized approach does not support directly sending
commands to the Android system to generate system events.
Implication. There is a need for testing approaches to provide
support to generate system events. One possible solution is
to instrument an Android system such that it allows testing
approaches to generate system events related to the app under
test [14].

Fig. 7: Another app sends inter-component communication
to WeChat for login authorization.

F. Requiring collaboration with another app

We find that 1.6% (7 out of 439) of the not-covered
activities are not covered because they require inter-component
communication (ICC) between WeChat and another app. For
example, Figure 7 presents the activity where another app
tries to get the user’s WeChat account information as login
authorization.
Implication. An instrumented Android system is suggested to
be used for testing. By checking WeChat’s broadcast receivers,
an instrumented Android system can extract what ICC mes-
sage WeChat is listening to, and allow testing approaches such
as our optimized approach to automatically generate such ICC
messages [14].

G. Other

The remaining 1.6% (7 out of 439) of our activities are
classified in this category. The patterns of these not-covered
activities are not representative and do not occur frequently.
For example, one activity categorized to this category is
an activity to support the walkie-talkie feature of WeChat
specifically for the current version to talk to an older version
of WeChat.
Implication. It is suggested that testing approaches support
developer-specified rules so that these approaches can utilize
such rules to more easily navigate to the not-covered activities
in this category.

VI. COVERAGE ANALYSIS

This section presents our two coverage-analysis techniques
for helping developers more easily identify the steps needed
to explore not-covered activities.

A. Substring Hole Analysis

In order to provide developers additional insights on what
activities are not covered, we develop a tool for substring
hole analysis [7], [8] to analyze the names of such activities.
A substring hole is a set of activity names that have a
common substring, and at least one activity from this set
is a not-covered activity. The common substring is used as

TABLE III: Categorization of not-covered activities and their implications.

Category Subcategory Percentage Description Implication

Dead activity Dead activity 39.4%

No testing approach can cover these activities
because (1) activities of a feature become out-
dated if a new implementation of the same
feature has been deployed; or (2) activities are
related to some features not yet open to the
public and thus disabled.

Developers shall know about these dead ac-
tivities in order to remove them from the not-
covered activities when assessing the effec-
tiveness of their testing approaches.

Insufficient
account state

Requiring
financial

information
9.6%

Testing accounts by default are not bundled with
a bank card, and thus cannot be used to cover
these activities related to financial transactions
(e.g., WeChat wallet and bank payment). And
conducting automated testing of wallet/payment
features on a deployed server can incur finan-
cial transactions with other non-testing accounts
(i.e., active users).

Developers shall (1) preset financial informa-
tion (e.g., bank card), and (2) use an offline
or mock server to test these activities.

Requiring
account-history

content
7.5%

Testing accounts by default do not have history
content (e.g., saved favorite messages), and thus
cannot be used to cover these activities.

Developers shall add initial seed data to test-
ing accounts or reuse some of the previous
testing accounts that contain history content.

Requiring
different account

types
7.3%

Testing approaches support login of only one
account type, and thus cannot cover these activ-
ities related to login features of other different
account types.

Testing approaches shall support using differ-
ent account types to log in instead of using
only one account type.

Requiring
enabled feature 3.4%

Testing accounts by default have the same initial
configurations where certain features are dis-
abled; thus, activities related to these features
cannot be covered.

Developers shall create a group of testing
accounts, each of which shall have a different
initial configuration for enabling a different
feature.

Requiring long
and unique event

sequence or
valid text input

Requiring long
and unique event

sequence
16.4%

Testing approaches cannot effectively generate
a specific path (with >=5 activity transitions)
from the root activity to the target activity, and
thus cannot cover the target activity.

Testing approaches shall support developer-
specified rules to guide them to more easily
navigate to these not-covered activities.

Requiring valid
text input 1.4%

Testing approaches do not provide direct support
to generate valid text inputs, and thus cannot
cover these activities.

Testing approaches shall be provided with a
set of predefined text inputs for these activi-
ties.

Requiring
collaboration
with another

device

Requiring
collaboration
with another

device

6.2%
Testing approaches do not allow the device used
for testing to interact with another device, and
thus cannot cover these activities.

Testing tools on different devices or platforms
shall be able to communicate with each other
and work cooperatively to cover these activi-
ties.

Requiring
human-generated

event

Requiring
biometric

information
3.4%

Testing approaches do not provide biometric
information, such as voice message and finger-
print, to cover these activities.

Testing approaches should be able to recog-
nize activities that require biometric informa-
tion and cooperate with developers to attain
such biometric information.

Requiring system
event 2.3%

Testing approaches do not generate system
events such as connecting to and disconnecting
from Wi-Fi, and thus cannot cover these activi-
ties.

There is a need for testing approaches to pro-
vide support to generate system events [14].

Requiring
collaboration

with another app

Requiring
collaboration

with another app
1.6%

Testing approaches do not cause proper inter-
component communication (ICC) messages to
be sent from another app, and thus do not cover
these activities

An instrumented Android system can be used
for allowing to extract what ICC messages
WeChat is listening to by checking WeChat’s
broadcast receivers, and thus enabling testing
approaches to generate such ICC messages to
cover these activities [14].

Other Other 1.6% The patterns of these not-covered activities are
not representative and do not occur frequently.

Testing approaches shall support developer-
specified rules to guide them to more easily
navigate to these not-covered activities.

the identifier for the substring hole. To detect substring holes,
our tool splits activity names (by capitalized characters) into
keywords and then counts the occurrences of the keywords.
For example, for an activity named FindCreditCardUI, our tool
identifies four keywords: find, credit, card, and ui.

For our study, we first apply our tool on the name set
of covered activities and not-covered activities. We generate
this set by applying our optimized approach on WeChat for
12 hours. As shown in Table IV for top identified substring

holes, the most frequent keyword (i.e., common substring)
in the names of the not-covered activities is “ui”, with 398
occurrences among the not-covered-activity names and in total
574 occurrences among all activity names (i.e., being present
in the names of about 95% activities). The second most
frequent keyword in the names of the not-covered activities is
“wallet”, with 61 occurrences among the not-covered-activity
names and in total 71 occurrences among all activity names.
This finding indicates that both a high percentage (85.9%)

TABLE IV: Substring holes after applying our approach
for 12 hours.

Substring Uncovered / Total
ui 398 / 574 (69.3%)
wallet 61 / 71 (85.9%)
detail 27 / 37 (73.0%)
pay 26 / 27 (96.3%)
card 22 / 24 (91.7%)

and a high number (61) of wallet-related activities are not
covered. Since a high number of wallet-related activities are
not covered and one of WeChat’s main functionalities of wallet
is to allow users to pay for goods or services with a bank card,
it comes as no surprise that the fourth and fifth most frequent
keywords in the names of the not-covered activities are “pay”
and “card”, respectively. The reason for the high number of
not-covered pay/card-related activities is that our optimized
approach is applied on live servers and we purposefully do
not test any financial-related features of WeChat (e.g., paying
someone with a bank card) because there is a chance that our
approach could send money to nearby people during testing.

To further attempt to cover more wallet-related not-covered
activities, we derive 1766 wallet/payment-related test cases
from documented app logic to manually test not-covered
activities. It takes one developer 48 hours to perform the 1766
test cases. By performing the 1766 test cases, we reduce the
substring hole of “wallet” to be about 22.5% (16 / 71) from
85.9% (61 / 71). Our results show that by manually testing
wallet-related activities as suggested by our substring hole
analysis, we can significantly cover more activities that are
not covered by our optimized approach.

B. Critical-Activity Analysis

We also investigate the pattern of not-covered activities
using an activity transition graph (ATG) with the coverage
information. ATG is a directed graph in which each node
denotes an Android activity, and each edge denotes an opera-
tion of changing the currently-visible window from the source
activity to the target activity. The purpose of such investigation
is to locate the critical bottlenecks of app exploration. We
define a critical activity as a not-covered activity that is the
only predecessor of some other not-covered activities in the
ATG. Since covering a critical activity could enable the testing
tool to likely cover its successor activities, locating the critical
activity is crucial to improving the app-exploration strategy
and consequently, improving the code coverage.

To carry out the investigation, we leverage GATOR [18] to
obtain the ATG. In particular, GATOR constructs a Window
Transition Graph (WTG). A WTG is similar to an ATG except
that nodes in a WTG also include windows (e.g., dialog and
fragment) launched on top of activities. GATOR constructs a
WTG in three stages. In the first stage, GATOR constructs the
forward edges. A forward edge denotes the action of launching
a new activity or triggering some default event (i.e., rotate,
home, power, or menu) on the current activity. In the second
stage, GATOR includes operations of “close window” in the

WTG. Since we care only about whether one activity can
launch another activity and the “close window” operation does
not provide that information, we skip the second stage to speed
up the WTG-construction process. In the third stage, GATOR
includes edges triggered by the BACK button. For this study,
we use only the WTG obtained from the first stage to derive
the ATG for our further analysis.

By studying critical activities, we aim to answer the follow-
ing three questions.

• RQ1. Potential Coverage Boost: On average, how many
subsequent activities can a testing tool have a chance to
explore by covering a critical activity?

• RQ2. Critical Events: What are common critical events,
i.e., events needed to cover critical activities?

• RQ3. Characteristics: What are the characteristics of the
critical activities?

RQ1. Potential Coverage Boost. The ATG possesses 428
nodes. Each represents a unique activity in the app and 128
out of those 428 activities are covered by our optimized
approach described in Section III-B. After traversing the ATG,
we locate 20 critical activities. The 20 critical activities have
4,732 immediate successors. 3,724 of the 4,732 immediate
successors are not-covered activities, which includes 84 unique
not-covered activities. Such finding suggests the importance
of exploring the critical activities, because these 20 critical
activities are the dominating entry points to these 84 not-
covered activities.

RQ2. Critical Events. We also investigate why these 20
critical activities are not covered. We find that each of the
critical activities has many covered predecessors. In fact, the
20 critical activities have 10,585 covered predecessor activities
in total (529 on average). In the ATG, these covered prede-
cessor activities have in total 19,531 edges for the 20 critical
activities (i.e., 19,531 events to potentially trigger the critical
activities). We investigate these events and find that 8,252
events are onKey events (i.e., UI events); 11,153 events are
onActivityResult events (i.e., events leading back to the
previous activities); 126 are onNewIntent events (i.e., inter-
component communications). As the results show, most of the
events leading from a covered activity to the critical activities
are onActivityResult events. Such finding suggests that
to explore critical activities, an exploration tool (e.g., Monkey)
should improve its chances to go back to previous activities
so that these activities will more likely start critical activities
in methods such as the onActivityResult method.

RQ3. Characteristics. We also investigate the character-
istics of these 20 critical activities. Consistent with findings
in Section VI-A, many (14 out of 20) of the critical activities
are related to “wallet” functionalities. The distribution of other
critical activities’ characteristics are the following: 3 activities
are about the “mall” functionality; 3 activities are used as
the entry activity for third-party apps (i.e., triggered through
intent). As we can see, these critical activities are typically not
used for WeChat’s core functionalities (e.g., chatting, social
network). This finding suggests that specific testing scenarios
lacking in existing tools are needed to cover these critical

activities. For example, during Monkey runs, the activities
used for third-party app access are infeasible to be covered
because by default Moneky always starts from the app under
test rather than third-party apps.

VII. RELATED WORK

Industry Testing Tools for Android. Monkey, as part of
the Android development bundle, generates pseudo-random
sequences of user and system events that can be used to
stress-test a given Android app. Testers can also use mon-
keyrunner [4] to send UI commands to an Android device or
emulator from outside of Android code. The monkeyrunner
tool differs from Monkey: monkeyrunner controls an emulator
or a device by sending commands from a workstation, whereas
Monkey generate events directly on the device. Robotium [6]
and Espresso [3] are both testing frameworks built on top
of the Android testing framework to automate UI test cases
for Android apps. Robotium can be used for testing both
apps whose source code is available and apps where only the
APK is available. Robolectric [5] is a framework that supports
running Android tests out of an emulator or device. Different
from running tests in a mocked environment, Robolectric
makes the tests more effective for refactoring and allowing
the tests to focus on the behavior of the app under test instead
of the implementation of Android. Barista [1] is a testing
framework that records and translates UI interactions between
a user and app into UI test cases.

Automated Testing Techniques for Android. TEMA [17]
is a model-based testing tool for testing Android apps. Models
are created manually and known to be error-prone. Dyn-
odroid [9], [14] applies concolic execution to generate and
symbolically analyze feasible event sequences for Android
apps. Dynodroid also includes an effective criterion for prun-
ing away many redundant event sequences. However, even
with the pruning, Dynodroid is only applicable to fairly short
event sequences, because of the computing-intensive nature of
symbolic analysis and explosion in the sheer number of event
sequences being enumerated exhaustively. JPF [16] has been
used to deduce the set of feasible event sequences on Android
apps and represent them using context-free grammar (CFG).
The deduced event sequences are then analyzed through sym-
bolic execution. ORBIT [19] statically analyzes the source
code of the app under test to understand which UI events are
relevant for a specific activity and builds a model of the app
under test by crawling it from a starting state. PUMA [13]
is a framework that helps testers incorporate Monkey’s basic
exploration strategy into dynamic analysis on Android apps. It
provides a finite-state-machine representation of the app under
test for testers to implement different exploration strategies.

VIII. CONCLUSION

In this paper, we have presented two optimization tech-
niques to improve the effectiveness and efficiency of our

previous approach extended from Monkey. We have also pre-
sented manual categorization of not-covered activities and two
automatic coverage-analysis techniques (i.e., substring hole
analysis and ATG analysis) to provide insightful information
about not-covered activities.

IX. ACKNOWLEDGMENTS

We thank Zhenyu Lei for helping set up testing accounts and
configurations. The work of the UIUC authors is supported in
part by NSF under grants no. CCF-1409423, CNS-1434582,
CNS-1513939, CNS-1564274.

REFERENCES

[1] Barista: an Android framework for making automated tests. https://
moquality.com/barista/.

[2] EMMA: a free Java code-coverage tool. http://emma.sourceforge.net/.
[3] Espresso: a unit test framework for Android. https://google.github.io/

android-testing-support-library/docs/espresso/.
[4] monkeyrunner. https://developer.android.com/studio/test/monkeyrunner/

index.html.
[5] Robolectric: a unit test framework for Android. http://robolectric.org/.
[6] Robotium: a unit test framework for Android. https://github.com/

robotiumtech/robotium.
[7] Y. Adler, N. Behar, O. Raz, O. Shehory, N. Steindler, S. Ur, and

A. Zlotnick. Code coverage analysis in practice for large systems. In
Proc. ICSE, pages 736–745, 2011.

[8] Y. Adler, E. Farchi, M. Klausner, D. Pelleg, O. Raz, M. Shochat, S. Ur,
and A. Zlotnick. Advanced code coverage analysis using substring holes.
In Proc. ISSTA, pages 37–46, 2009.

[9] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic
testing of smartphone apps. In Proc. FSE, pages 599–609, 2012.

[10] T. Azim and I. Neamtiu. Targeted and depth-first exploration for
systematic testing of Android apps. In Proc. OOPSLA, pages 641–660,
2013.

[11] W. Choi, G. Necula, and K. Sen. Guided GUI testing of Android apps
with minimal restart and approximate learning. In Proc. OOPSLA, pages
623–640, 2013.

[12] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation
for Android: Are we there yet? In Proc. ASE, pages 429–440, 2015.

[13] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. PUMA:
programmable UI-automation for large-scale dynamic analysis of mobile
apps. In Proc. MobiSys, pages 204–217, 2014.

[14] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for Android apps. In Proc. ESEC/FSE, pages 224–234, 2013.

[15] R. Mahmood, N. Mirzaei, and S. Malek. EvoDroid: Segmented evolu-
tionary testing of Android apps. In Proc. FSE, pages 599–609, 2014.

[16] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood.
Testing Android apps through symbolic execution. In Proc. JPF, 2012.

[17] T. Takala, M. Katara, and J. Harty. Experiences of system-level model-
based GUI testing of an Android application. In Proc. ICST, pages
377–386, 2011.

[18] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-flow
analysis of user-driven callbacks in Android applications. In Proc. ICSE,
pages 89–99, 2015.

[19] W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for automated
GUI-model generation of mobile applications. In Proc. FASE, pages
250–265, 2013.

[20] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and
T. Xie. Automated test input generation for Android: Are we really
there yet in an industrial case? In Proc. FSE, Industry Track, pages
987–992, 2016.

https://moquality.com/barista/
https://moquality.com/barista/
http://emma.sourceforge.net/
https://google.github.io/android-testing-support-library/docs/espresso/
https://google.github.io/android-testing-support-library/docs/espresso/
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
http://robolectric.org/
https://github.com/robotiumtech/robotium
https://github.com/robotiumtech/robotium

