
Aladdin: Automating Release of Android Deep
Links to In-App Content

Yun Ma1, Xuanzhe Liu1, Ziniu Hu1, Dian Yang1, Gang Huang1, Yunxin Liu2, Tao Xie3

1Key Lab of High-Confidence Software Technology, MoE (Peking University), Beijing, China
2Microsoft Research. Beijing, China 3University of Illinois at Urbana-Champaign, Urbana, USA

{mayun, xzl, bull, yangdian, hg}@pku.edu.cn, yunxin.liu@microsoft.com, taoxie@illinois.edu

Abstract—Unlike the Web where each web page has a global
URL to reach, a specific “content page” inside a mobile app
cannot be opened unless the user explores the app with several
operations from the landing page. Recently, deep links have
been advocated by major companies to enable targeting and
opening a specific page of an app externally with an accessible
uniform resource identifier (URI). In this paper, we present an
empirical study of deep links over 20,000 Android apps, and
find that deep links do not get wide adoption among current
Android apps, and non-trivial manual efforts are required for app
developers to support deep links. To address such an issue, we
propose the Aladdin approach and supporting tool to release deep
links to access arbitrary locations of existing apps. We evaluate
Aladdin with popular apps and demonstrate its effectiveness and
performance.

Keywords-Deep link; Android apps; Program analysis.

I. INTRODUCTION

One significant feature of the Web is that there are zillions
of hyperlinks to access web pages and even to a specific piece
of “deep” web content. In the current era of mobile computing,
apps have been the dominant entrance to access the Internet
rather than web pages. However, mobile apps historically lack
the consideration of hyperlinks. Accessing a specific in-app
content requires users to launch this app and land on the
“home” page, locate the page/location containing the content
by a series of actions such as search-and-tap and copy-and-
paste, and finally reach the target. Compared to the Web, the
support such as “hyperlinks” is inherently missing so that users
have to perform tedious and trivial actions. Other benefits from
traditional web hyperlinks are naturally missing as well.

Realizing such a limitation, the concept of “Deep Link”
has been proposed to enable directly opening a specific
page/location inside an app from outside of this app by means
of a uniform resource identifier (URI) [6]. Intuitively, deep
links are “hyperlinks” for mobile apps. Currently, Google [5],
Facebook [4], Baidu [2], and Microsoft [3] strongly advocate
the concept of deep links, and major mobile OS platforms
such as iOS [7] and Android [1] encourage their developers to
release deep links. With deep links, mobile users can directly
navigate into a specific page/location of apps installed on the
device.

Essentially, releasing deep links for apps is to support
programmable execution of apps to a specific location. How-
ever, manually implementing programmable execution to all
the locations inside an app is not possible due to the high
complexity of current apps. To address such a challenge, in
this paper, we propose Aladdin, a novel approach that can help
developers automate the release of deep links for Android apps

based on a cooperative framework. Our cooperative framework
combines static analysis and dynamic analysis as well as
engaging minimal human efforts to provide inputs to the
framework for automation. Different from related efforts such
as uLink [8], Aladdin requires minimal developer efforts and
no intrusion to apps’ original code.

II. EMPIRICAL STUDY OF DEEP LINKS

In this section, we present an empirical study to understand
the state of the art of deep links. In current Android apps, deep
links are implemented based on implicit intents, i.e., activities
that support deep links must have a special kind of intent fil-
ters declared in the AndroidManifest.xml file. Such kind of
intent filters should use the android.intent.action.VIEW
with the android.intent.category.BROWSABLE category.
We denote these intent filters as deep-link related. Therefore,
we can simply take the number of activities with deep-link
related intent filters as an indicator to estimate the number of
deep links for an Android app.
• Deep links are becoming popular. We choose top 200 apps
ranked by Wandoujia, a leading Android app store in China.
We crawl each app’s first version that could be publicly found
and its latest version published on its official website as of
August 2016. We compare the number of deep links of the
two versions of each app. Figure 1 shows the change of the
number of deep links across these two versions. Generally,
it is observed that when apps are first released, only about
35% of apps have deep links. In contrast, more than 87% of
these apps have supported deep links in their latest versions.
Such a change indicates that the popularity of deep links keeps
increasing in the past few years.
• The coverage of deep links is still low. We then study
the latest versions of top 20,000 apps ranked by Wandoujia.
About 73% of the apps do not have deep links, while 18%
of the apps have only one deep link. Such result indicates
that deep links are not well supported in a large scope of
current Android apps. We also compute the ratio of deep-
link-supported activities against the total number of activities.
The median percentage is just about 5%, implying that a very
small fraction of the pages can be actually accessed via deep
links.
• Supporting deep links requires high developer efforts.
We search on GitHub with the keyword “deep link” among
all the code-merging requests in the Java language. There are
totally 4,514 results returned. After manually examining the
results, we find 8 projects that actually add deep links in their
code-commit history. We observe that adding one deep link



Number of Deep Links
0 5 10 15 20

CD
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

First Version
Latest Version

Fig. 1. Trend of apps with deep links.

1 2

3 4

A1: 
A2: A1A2; p1
A3: A1A3; p2
A4: A1A2A4; p1

F1: click v1; #review
F2: click v2; #tip
F3: click v3; #photo
F4: click v4; #mark

F1

F2

F3

F4

Deep link 
templates

Source 
code

Deep-link proxy

Extract 
activities

1

2 34
activities and intents navigation graph

Analyze 
navigation

Analyze 
shortcuts

shortcuts to each activity

Launched on 
an emulator

running app

app
(source code)

Analyze 
actions to 
Fragments

activity instance
actions to each 

fragment

Transfer to an 
instance of each 
selected activity

Package

Released APK with 
deep link enabled

Phase 1: Derive deep links to activities by static analysis

Phase 2: Derive deep links to fragments by dynamic analysis

Phase 3: Release the app with deep links

Select

Fig. 2. Approach Overview.

requires 45∼411 LoC changes. We find that a large number
of changes attribute to the refactoring of app logics to enable
an activity to be directly launched without relying on other
activities. Such a factor could be a potential reason why deep
links are of low coverage.

III. APPROACH

The findings of our empirical study demonstrate the low
coverage and non-trivial developer efforts of supporting
deep links in current Android apps. To improve coverage,
one possible solution is to leverage program analysis of apps
to extract how to reach locations of in-app contents pointed
by deep links. However, static analysis of Android apps can
build structure relations among activities but cannot analyze
dynamic fragments inside an activity; dynamic analysis of
Android apps can analyze dynamic fragments but suffer from
low coverage of activities, i.e., only a small fraction of
activities can be reached by dynamic analysis.

To address the challenge, we propose a cooperative frame-
work and design a tool Aladdin to automate the release of deep
links. Our cooperative framework combines static analysis
and dynamic analysis while minimally engaging developers
to provide inputs to the framework for automation. Figure 2
shows the overview of our approach, and the workflow is
illustrated as follows.

Given the source code of an app, Aladdin first derives
deep-link templates that record the scripts of how to reach
arbitrary locations inside the app. Each template is associated
with an activity and consists of two parts: one part is the
intent sequence extracted based on static analysis, recording
how to reach the activity from the main activity of the app;
the other part is the action sequence extracted based on
dynamic analysis, recording how to reach fragments in the
activity from the entrance of the activity. After developers
configure to verify the activities and fragments to be deep
linked, the corresponding templates and a deep-link proxy are
automatically generated, and are packaged with the original
source code of the app as a new .apk file. Each template
has a URI schema used to populate a concrete deep link. The
deep-link proxy provides a replay engine that can replay the
sequences at runtime to execute the deep links.

When a deep link is requested with a URI conforming
to a schema, the deep-link proxy is triggered to work. The
corresponding template is instantiated by assigning values to
parameters in the template. Then the proxy first makes the
app transfer to the target activity by issuing the intents one by

one in the intent sequence. Then the proxy makes the activity
transfer to the target fragment by performing the actions one
by one in the action sequence. Finally, the target location could
be reached. Such a proxy-based architecture does not modify
any original business logic of the app and is coding-free for
developers.

IV. RESULTS

We evaluate Aladdin on 20 apps chosen from Google Play.
We apply Aladdin to these apps to release deep links for
activities1. Although the current number of deep links in these
apps is very low (the median is 0), Aladdin can derive deep
links for all the apps (with median of 9). In particular, all the
activities of 5 apps out of the total 20 apps can have deep links
after being analyzed by Aladdin, indicating 100% coverage.

V. CONCLUSION

Although more and more apps have supported deep links,
the coverage of deep links is still very low and implementing
deep links requires non-trivial developer efforts. To address the
issues, we propose Aladdin, a novel approach to automatically
release deep links for Android apps. The evaluations on 20
apps demonstrate that the coverage of deep links can be
increased by 52% on average.

ACKNOWLEDGMENTS

This work was supported by the National Basic Research
Program (973) of China under Grant No. 2014CB347701, the
Natural Science Foundation of China (Grant No. 61370020,
61421091, 61528201, 61529201), the Microsoft-PKU Joint
Research Program, and NSF under grants no. CCF-1409423,
CNS-1434582, CNS-1513939, CNS-1564274.

REFERENCES

[1] App links in android 6. https://developer.android.com/training/app-links/
index.html.

[2] Baidu app link. http://applink.baidu.com.
[3] Bing app linking. https://msdn.microsoft.com/en-us/library/dn614167.
[4] Facebook app links. https://developers.facebook.com/docs/applinks.
[5] Google app indexing. https://developers.google.com/app-indexing/.
[6] Mobile deep linking. https://en.wikipedia.org/wiki/Mobile_deep_linking.
[7] Universal links in iOS 9. https://developer.apple.com/library/ios/

documentation/General/Conceptual/AppSearch/UniversalLinks.html.
[8] T. Azim, O. Riva, and S. Nath. uLink: Enabling user-defined deep

linking to app content. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys
2016, pages 305–318, 2016.

1Please refer to http://sei.pku.edu.cn/~mayun11/aladdin/ for more details.

https://developer.android.com/training/app-links/index.html
https://developer.android.com/training/app-links/index.html
http://applink.baidu.com
https://msdn.microsoft.com/en-us/library/dn614167
https://developers.facebook.com/docs/applinks
https://developers.google.com/app-indexing/
https://en.wikipedia.org/wiki/Mobile_deep_linking
https://developer.apple.com/library/ios/documentation/General/Conceptual/AppSearch/UniversalLinks.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/AppSearch/UniversalLinks.html
http://sei.pku.edu.cn/~mayun11/aladdin/

	Introduction
	Empirical Study of Deep Links
	Approach
	Results
	Conclusion
	References

