
Pathways to Technology Transfer and Adoption:

Achievements and Challenges (Mini-Tutorial)

Dongmei Zhang

Microsoft Research Asia

Beijing, 100080, China

Email: dongmeiz@microsoft.com

Tao Xie

North Carolina State University

Raleigh, NC 27695, USA

Email: xie@csc.ncsu.edu

Abstract—Producing industrial impact has often been one
of the important goals of academic or industrial researchers
when conducting research. However, it is generally challenging to
transfer research results into industrial practices. There are some
common challenges faced when pursuing technology transfer and
adoption while particular challenges for some particular research
areas. At the same time, various opportunities also exist for
technology transfer and adoption.

This mini-tutorial presents achievements and challenges of
technology transfer and adoption in various areas in software
engineering, with examples drawn from research areas such
as software analytics along with software testing and analysis.
This mini-tutorial highlights success stories in industry, research
achievements that are transferred to industrial practice, and chal-
lenges and lessons learned in technology transfer and adoption.

I. INTRODUCTION

Producing industrial impact (such as producing successful

technology transfer and adoption) has often been one of the

important goals of academic or industrial researchers when

conducting research. However, it is generally challenging

to transfer research results into industrial practices. Some

research areas within software engineering may have more

successful stories of technology transfer and adoption than

some other areas. There are some common challenges faced

when pursuing technology transfer and adoption while partic-

ular challenges for some particular research areas. At the same

time, various opportunities also exist for technology transfer

and adoption.

Built upon a mini-tutorial on Software Analytics in Prac-

tice [26] that we presented in the ICSE 2012 Software En-

gineering in Practice (SEIP) track, this mini-tutorial presents

achievements and challenges of technology transfer and adop-

tion in various areas in software engineering, with examples

drawn from research areas such as software analytics [25]

along with software testing and analysis [20]. In particular,

the objective of this mini-tutorial is to allow the attendees

to gain an overview of successful technology transfer and

adoption, learn about challenges and opportunities in technol-

ogy transfer and adoption, and acquire knowledge needed to

carry out technology transfer and adoption. The mini-tutorial

covers the topic in the domain of software engineering and

includes examples from software engineering, such as code-

clone detection for reliability, security, and maintenance [16],

[8], [9], mining runtime callstacks [15] or logs [11], [12] for
performance diagnosis, static defect detection [16], [4], [2],

[27], [3], and test generation [21], [22], [5], [18], [23], [10],

[1], [14], [19].

II. TARGET AUDIENCE

The mini-tutorial is targeted at academic researchers, indus-

trial researchers, and software practitioners who have interest

in technology transfer and adoption.

Academic researchers. The mini-tutorial gives an overview

of collaborations between academic researchers (from univer-

sities) and industrial researchers (from industrial research labs)

or software practitioners (from product teams at companies).

Academic researchers are expected to acquire knowledge

needed to carry out collaborations with industrial researchers

or software practitioners to strive for successful technology

transfer and adoption.

Industrial researchers. The mini-tutorial gives an overview

of collaborations between industrial researchers (from indus-

trial research labs) and academic researchers (from universi-

ties) or software practitioners (from product teams at compa-

nies). Industrial researchers are expected to acquire knowledge

needed to carry out collaborations with academic researchers

or software practitioners to strive for successful technology

transfer and adoption.

Software practitioners. The mini-tutorial gives an

overview of collaborations between software practitioners

(from product teams at companies) and industrial researchers

(from industrial research labs) or academic researchers (from

universities). Software practitioners are expected to acquire

knowledge needed to carry out collaborations with industrial

researchers or academic researchers to strive for successful

technology transfer and adoption.

The reasons why the topic is timely and relevant are primar-

ily three folds. First, a set of promising research results have

been produced by the research community and demonstrated

to be useful on various real-world open source projects. There

are huge opportunities for exploiting these research results to

improve industrial practices of software engineering. Second,

there are substantial demands from software practitioners to

address their urgent and critical issues in software engineering

practices. Third, the research community has already realized

gaps between academic research and industrial practices [17],

and has called for training and education of researchers and

practitioners in conducting successful technology transfer and



adoption. For example, gaps between academic research and

industrial practices were discussed in both Carlo Ghezzi’s

ICSE 2009 keynote speech [13] along with Lionel Briand’s

ICSM 2011 keynote speech [6] and his recent article [7].

Furthermore, successful experiences on technology transfer

were shared by Yuanyuan Zhou in her MSR 2011 keynote

speech [27] and Dongmei Zhang in her MSR 2012 keynote

speech [24].

ACKNOWLEDGMENT

Tao Xie’s work is supported in part by NSF grants CCF-

0845272, CCF-0915400, CNS-0958235, CNS-1160603, an

NSA Science of Security Lablet grant, a NIST grant, a

Microsoft Research Software Engineering Innovation Foun-

dation Award, and National Science Foundation of China No.

61228203.

REFERENCES

[1] Microsoft’s protocol documentation program: Interoperability testing at
scale. Queue, 9(6):20:20–20:27, June 2011.

[2] N. Ayewah and W. Pugh. The Google FindBugs fixit. In Proc. ISSTA,
pages 241–252, 2010.

[3] T. Ball, V. Levin, and S. K. Rajamani. A decade of software model
checking with SLAM. Commun. ACM, 54(7):68–76, July 2011.

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. R. Engler. A few billion lines of
code later: using static analysis to find bugs in the real world. Commun.

ACM, 53(2):66–75, 2010.
[5] M. Boshernitsan, R. Doong, and A. Savoia. From Daikon to Agitator:

lessons and challenges in building a commercial tool for developer
testing. In Proc. ISSTA, pages 169–180, 2006.

[6] L. C. Briand. Useful software engineering research - leading a double-
agent life. In Proc. ICSM, Keynote Speech, page 2, 2011.

[7] L. C. Briand. Embracing the engineering side of software engineering.
IEEE Software, 29(4):96, 2012.

[8] Y. Dang, S. Ge, R. Huang, and D. Zhang. Code clone detection
experience at Microsoft. In Proc. IWSC, pages 63–64, 2011.

[9] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie. XIAO: Tuning
code clones at hands of engineers in practice. In Proc. ACSAC, pages
369–378, 2012.

[10] J. de Halleux and N. Tillmann. Moles: tool-assisted environment
isolation with closures. In Proc. TOOLS, pages 253–270, 2010.

[11] R. Ding, Q. Fu, J.-G. Lou, Q. Lin, D. Zhang, J. Shen, and T. Xie.
Healing online service systems via mining historical issue repositories.
In Proc. ASE, pages 318–321, 2012.

[12] Q. Fu, J.-G. Lou, Q.-W. Lin, R. Ding, Z. Ye, D. Zhang, and T. Xie.
Performance issue diagnosis for online service systems. In Proc. SRDS,
pages 273–278, 2012.

[13] C. Ghezzi. Reflections on 40+ years of software engineering research
and beyond: an insider’s view. In Keynote address at ICSE, 2009.

[14] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: Whitebox fuzzing
for security testing. Queue, 10(1):20:20–20:27, Jan. 2012.

[15] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance debugging
in the large via mining millions of stack traces. In Proc. ICSE, pages
145–155, 2012.

[16] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding copy-paste
and related bugs in large-scale software code. IEEE Trans. Software

Eng., 32(3):176–192, 2006.
[17] L. J. Osterweil, C. Ghezzi, J. Kramer, and A. L. Wolf. Determining the

impact of software engineering research on practice. IEEE Computer,
41(3):39–49, 2008.

[18] N. Tillmann and J. de Halleux. Pex – white box test generation for
.NET. In Proc. TAP, pages 134–153, 2008.

[19] N. Tillmann, J. D. Halleux, T. Xie, S. Gulwani, and J. Bishop. Teaching
and learning programming and software engineering via interactive
gaming. In Proc. ICSE, Software Engineering Education (SEE), 2013.

[20] X. Xiao, S. Thummalapenta, and T. Xie. Advances on improving
automation in developer testing. Advances in Computers, 85:165–212,
2012.

[21] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting
redundant object-oriented unit tests. In Proc. ASE, pages 196–205, 2004.

[22] T. Xie and D. Notkin. Tool-assisted unit-test generation and selection
based on operational abstractions. Automated Software Engineering

Journal, 13(3):345–371, July 2006.
[23] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte. Fitness-guided

path exploration in dynamic symbolic execution. In Proc. DSN, pages
359–368, 2009.

[24] D. Zhang. MSR 2012 keynote: Software analytics in practice -
approaches and experiences. In Proc. MSR, page 1, 2012.

[25] D. Zhang, Y. Dang, J.-G. Lou, S. Han, H. Zhang, and T. Xie. Software
analytics as a learning case in practice: Approaches and experiences. In
Proc. MALETS, 2011.

[26] D. Zhang and T. Xie. Software analytics in practice: Mini tutorial. In
Proc. ICSE, SEIP, Mini Tutorial, page 997, 2012.

[27] Y. Zhou. Connecting technology with real-world problems - from copy-
paste detection to detecting known bugs (keynote abstract). In Proc.

MSR, pages 2–2, 2011.


