
A Characteristic Study on Failures of Production
Distributed Data-Parallel Programs

Sihan Li1,2, Hucheng Zhou2, Haoxiang Lin2, Tian Xiao2,3, Haibo Lin4, Wei Lin5, Tao Xie1

1North Carolina State University, USA, 2Microsoft Research Asia, China, 3Tsinghua University, China,
4Microsoft Bing, China, 5Microsoft Bing, USA

sli20@ncsu.edu, {huzho, haoxlin, v-tixiao, haibolin, weilin}@microsoft.com, xie@csc.ncsu.edu

Abstract—SCOPE is adopted by thousands of developers
from tens of different product teams in Microsoft Bing for
daily web-scale data processing, including index building, search
ranking, and advertisement display. A SCOPE job is composed
of declarative SQL-like queries and imperative C# user-defined
functions (UDFs), which are executed in pipeline by thousands of
machines. There are tens of thousands of SCOPE jobs executed
on Microsoft clusters per day, while some of them fail after a long
execution time and thus waste tremendous resources. Reducing
SCOPE failures would save significant resources.

This paper presents a comprehensive characteristic study
on 200 SCOPE failures/fixes and 50 SCOPE failures with
debugging statistics from Microsoft Bing, investigating not only
major failure types, failure sources, and fixes, but also current
debugging practice. Our major findings include (1) most of
the failures (84.5%) are caused by defects in data processing
rather than defects in code logic; (2) table-level failures (22.5%)
are mainly caused by programmers’ mistakes and frequent
data-schema changes while row-level failures (62%) are mainly
caused by exceptional data; (3) 93% fixes do not change data
processing logic; (4) there are 8% failures with root cause not at
the failure-exposing stage, making current debugging practice
insufficient in this case. Our study results provide valuable
guidelines for future development of data-parallel programs. We
believe that these guidelines are not limited to SCOPE, but can
also be generalized to other similar data-parallel platforms.

I. INTRODUCTION

The volume of data in real-world applications has been
exploding, making traditional solutions with a central database
impractical for storing and processing massive data. To
solve this problem, previous work proposed a distributed
storage system with a data-parallel programming paradigm
on top, such as MapReduce [7]. In industry, state-of-the-art
data-parallel programming languages are hybrid languages
that consist of declarative SQL-like queries and imperative
user-defined functions (UDFs), including Pig Latin [22] at
Yahoo!, Hive [26] at Facebook, FlumeJava [4] at Google.

Inside Microsoft Bing, we have SCOPE [3] built atop
Dryad [11], which is adopted by thousands of developers
from tens of different product teams for index building,
web-scale data mining, search ranking, advertisement display,
etc. Currently, there are thousands of SCOPE jobs per day
being executed on Microsoft clusters with tens of thousands
of machines. A notable percentage of these jobs threw runtime
exceptions and were aborted as failures. Among all failures
from Microsoft clusters within two weeks, 6.5% of them
had execution time longer than 1 hour; the longest one

executed for 13.6 hours and then failed due to un-handled
null values. A similar situation was reported by Kavulya et
al. [14]. They analyzed 10 months of Hadoop [2] logs from
the M45 supercomputing cluster [28], which Yahoo! made
freely available to selected universities. They indicated that
about 2.4% of Hadoop jobs failed, and 90.0% of failed jobs
were aborted within 35 minutes while there was a job with
a maximum failure latency of 4.3 days due to a copy failure
in a single reduce task. Such failures, especially those with
long execution time, resulted in a tremendous waste of shared
resources on clusters, including storage, CPU, and network
I/O. Thus, reducing failures would save significant resources.

Unfortunately, there is little previous work that studies
failures of data-parallel programs. The earlier-mentioned work
by Kavulya et al. [14] studies failures in Hadoop, an
implementation of MapReduce. Their subjects are Hadoop
jobs created by university research groups, being different
from production jobs. Besides, state-of-the-art data-parallel
programs in industry are written in hybrid languages with
a different and more advanced programming model than
MapReduce. Thus, their results may not generalize to these
industry programs. Moreover, they focus on studying the
workloads of running jobs for achieving better performance by
job scheduling, rather than failure reduction in development.

To fill such a significant gap in the literature and
the academia/industry, we conduct the first comprehensive
characteristic study on failures and fixes of state-of-the-art
production data-parallel programs for the purpose of failure
reduction and fixing in future development. Our study includes
200 SCOPE failures/fixes and 50 SCOPE failures with
debugging statistics randomly sampled from Microsoft Bing.
We investigate not only major failure types, failure sources,
and fixes, but also current debugging practice. Note that
our study focuses on only failures caused by defects in
data-parallel programs, and excludes the underlying system
or hardware failures. Particularly, the failures in our study are
runtime exceptions that terminate the job execution. We do
not study failures where the execution is successfully finished
but the produced results are wrong, since we do not have
test oracles for result validation. Moreover, all SCOPE jobs in
our study are obtained from Microsoft clusters. Programmers
may conduct local testing before they submit a job to clusters.
Hence, some failures that are addressed by local testing may
not be present in our study.

TABLE I
OUR MAJOR FINDINGS ON FAILURE CHARACTERISTICS OF REAL-WORLD DATA-PARALLEL PROGRAMS AND THEIR IMPLICATIONS

Findings on Failures Implications
(1) Most of the failures (84.5%) are caused by defects
in data processing rather than defects in code logic.
The tremendous data volume and various dynamic data
sources make data processing error-prone.

Documents on data and domain knowledge from
data sources could help improve the code reliability.
Programmers are encouraged to browse the content of
data before coding, if possible.

(2) 22.5% failures are table-level; the major reasons
for table-level failures are programmers’ mistakes and
frequent changes of data schema.

Local testing with a small portion of real input data
could effectively detect table-level failures.

(3) Row-level failures are prevalent (62.0%). Most of
them are caused by exceptional data. Programmers
cannot know all of exceptional data in advance.

Proactively writing exceptional-data-handling code
with domain knowledge could help reduce row-level
failures.

Findings on Fixes Implications
(4) There exist some fix patterns for many failures.
Fixes are typically very small in size, and most of them
(93.0%) do not change data processing logic.

It is possible to automatically generate fix suggestions
to programmers.

Findings on Debugging Implications
(5) There are cases (8.0%) where the current debugging
tool in SCOPE may not work well because the root
cause of the failure is not at the failure-exposing stage.

Automatically generating program inputs to reproduce
the entire failure execution could be a complementary
approach to current debugging practices.

Specifically, our study intends to address the following
research questions:

RQ1: What are common failures of production distributed
data-parallel programs? What are the root causes? Knowing
common failures and their root causes would help
programmers to avoid such failures in future development.

RQ2: How do programmers fix these failures1? Are there
any fix patterns? Fix patterns could provide suggestions to
programmers for failure fixing.

RQ3: What is the current debugging practice? Is it efficient?
Efficient debugging support would be beneficial for failure
fixing.

Our major findings and implications are summarized in
Table I. The most significant characteristic of failures in
data-parallel programs is that most failures (84.5%) are caused
by defects in data processing rather than defects in code
logic. The tremendous data volume and various dynamic data
sources make data processing error-prone. More knowledge
on data properties, such as nullable for a certain column,
could help improve code reliability. We also find that most
failures can be put into a few categories, and there are limited
corresponding failure sources (e.g., exceptional data) and fix
patterns (e.g., setting default values for null columns). Such
knowledge on failure types, failure sources, and fix patterns
would bring substantial benefits to failure reduction and fixing.
Moreover, to balance the cost of data storage and shifting,
the SCOPE debugging tool used in practice enables locally
debugging only the computation stage where the failure is
exposed (i.e., failure-exposing stage). It does not work well
if the root cause of the failure is not at the failure-exposing

1Programmers resolve failures by fixing code defects, system, or hardware
configurations, providing workaround, etc. Without causing confusion, in this
paper, we refer to such failure resolution as failure fixing.

stage. This finding implies that whole-program debugging with
low cost is needed in some cases. Although our study is
conducted on only the SCOPE platform, we believe that most
of our findings and implications can also be generalized to
other similar data-parallel systems. We will discuss in detail
the generality of our study in Section VII.

Besides our study results, we also share our current practices
and ongoing efforts on failure reduction and fixing. There is
a series of tools that could be used to improve reliability of
SCOPE jobs, including compile-time checking, local testing,
failure reproduction, and fix suggestion.

In summary, our paper makes the following contributions:
• We present the first comprehensive characteristic study

on failures and fixes of production data-parallel programs
and provide valuable findings and implications for future
development and research.

• We find the current debugging practice in SCOPE to
be efficient in most cases in terms of fast failure
reproduction, yet revealing some interesting cases that
call for improvement on the current practice.

• We present a series of our existing and
under-development tools for failure reduction and
fixing.

The rest of the paper is organized as follows. Section II
provides a brief primer on SCOPE. Section III describes
our study methodology. Section IV presents our study results
on failures/fixes, which answer our research questions RQ1
and RQ2. Section V presents our study results on current
debugging practice in SCOPE, which answer our research
question RQ3. Section VI presents our current and future
work. Section VII discusses the generality of our study and
our suggestions for failure resilience. Section VIII lists related
work and Section IX concludes this paper.

public class CopyProcessor : Processor {
public Schema Produces(string[] columns,

string[] args, Schema input_schema) {
return input_schema.Clone();

}
public IEnumerable<Row> Process(RowSet input,

Row output_row, string[] args) {
foreach (Row input_row in input.Rows) {

input_row.CopyTo(output_row);
yield return output_row;

}
}

}

Fig. 1. The simplest user-defined processor CopyProcessor, which
returns the copy of input. Any UDF processor inherits from
ScopeRuntime.Processor, and implements two methods: (1) Produce,
which defines the output schema, (2) Process, which implements the
processing logic and generates the output.

II. SCOPE BACKGROUND

SCOPE is the production data-parallel computation platform
for Microsoft Bing services. The SCOPE language is a
hybrid of declarative SQL language for expressing high-level
data flow and imperative C# language for implementing
user-defined functions as local computation extension, similar
to Pig Latin [22], Hive [26], FlumeJava [4] and Microsoft
DryadLINQ [11]. The rest of this section describes the SCOPE
data model and programming model, as well as the execution
and life cycle of a SCOPE job.

A. Relational Data Model

SCOPE provides a relational data model like SQL, which
encapsulates data sets with column, row, and table. A table
consists of a set of rows; a row consists of a set of
columns with primitive or complex user-defined types. Each
table is associated with a well-defined schema represented as
(columnName1 : Type1, ...,columnNamen : Typen). Columns
are accessed by either name or index in the form of
row[columnName] or row[columnIndex].

B. UDF Centric Programming Model

The programming model of SCOPE provides three
elementary operators: processor, reducer, and combiner, as
the base classes for all user-defined functions (UDFs); while
extractor and outputter derived from processor are dedicated
to read from and write to underlying data streams. Processor
and reducer are similar to mapper and reducer in MapReduce,
respectively. SCOPE extends MapReduce with combiner,
which generalizes join on heterogenous data sets. SCOPE
offers built-in implementations of many common relational
operations for programmers’ convenience, and also allows
programmers to implement customized operators as C# UDFs.
Relational operations like filter, selection, and projection are
achieved by processors, while distinct can be implemented
as a reducer. Figure 1 illustrates a simple processor, which
sequentially copies every input row. From a structural
perspective, SCOPE models the application workflow as a

1 REFERENCE "/my/PScoreReducer.dll";
2 t1 = EXTRACT query:string, clicks:long,
3 market:int,...
4 FROM "/my/click_1029"

5 USING DefaultTextExtractor()
6 HAVING IsValidUrl(url);
7 t2 = REDUCE t1 ON query

8 PRODUCE query, score, mvalue, cvalue

9 USING PScoreReducer("clicks")
10 t3 = PROCESS t2 PRODUCE query, cscore

11 USING SigReportProcessor("cvalue")
12 OUTPUT t3 TO "/my/click/1029";

Stage 2

Stage 1

Filter$GenDefaultTextExtractor

SigReportProcessor

Data Shuffling

PScoreReducer

OUTPUT

INPUT

Fig. 2. A SCOPE job with its execution graph.

direct acyclic graph (DAG), different from MapReduce, which
strictly follows a two-phase workflow with mapper-reducer.

C. Job Execution

A SCOPE job consists of input data, compiled binaries,
and a DAG execution plan describing computation and
data-shuffling stages. A computation stage includes one or
more chained operators, starts after all its predecessors have
finished, and independently runs on a group of machines
with partitioned data. A data-shuffling stage then connects
two consecutive computation stages by transmitting requisite
data among machines. A typical SCOPE job has three phases:
data extraction, extracting raw data into a structured table
format; data manipulation, manipulating and analyzing data;
and output, exporting results to an external storage.

Figure 2 shows a sample SCOPE job with its execution plan.
An external DLL file is first explicitly referenced (Line 1).
Next, rows of typed columns (Line 2) are extracted from a raw
log file (Line 4) as the initial input using a default text extractor
(Line 5) and filtered by certain conditions (Line 6). Then
input rows are fed to a user-defined operator PScoreReducer

(Line 9) to produce a new table with four columns (Line 8).
Finally, the user-defined operator SigReportProcessor (Line 11)
is applied and the ultimate result is exported (Line 12). In
the execution plan graph, the Filter$Gen operator is generated
from the HAVING clause at Line 6; other operators correspond to
keywords EXTRACT, REDUCE, PROCESS, respectively. Each directed
edge represents the data flow between operators.

D. Life Cycle

The typical life cycle of a SCOPE job starts from the
development phase. After being tested locally, source scripts
are submitted to clusters and the job is executed in parallel.
If the job fails or ends with an unexpected result, the

TABLE II
CLASSIFICATION OF SCOPE FAILURES

Dimension Category Failure Description No. Ratio

Table
Level

Undefined Column Accessing column with incorrect name or index 24 12.0%
Wrong Schema Mismatch between data schema and table schema 16 8.0%
Others Other table-level failures 5 2.5%
Subtotal Total table-level failures 45 22.5%

Row
Level

Incorrect Row Format Corrupt rows with exceptional data 45 22.5%
Illegal Argument Argument not satisfying method requirement 34 17.0%
Null Reference Dereference on null column values 21 10.5%
User-defined Customized exceptions defined in UDFs 14 7.0%
Out of Memory Memory used up by accumulating data under processing 3 1.5%
Others Other row-level failures 7 3.5%
Subtotal Total row-level failures 124 62%

Data
Unrelated

Resource Missing Cannot find DLLs or scripts for execution 10 5.0%
Index Out of Range Accessing array element with out-ranged index 9 4.5%
Key Not Found Accessing dictionary item with non-existing key 5 2.5%
Others Other data-unrelated failures 7 3.5%
Subtotal Total data-unrelated failures 31 15.5%

programmer downloads relevant data to a local computer and
starts debugging in the SCOPE IDE, the environment for
developing SCOPE jobs. After defects are fixed, the patched
job is re-executed until the correct result is returned.

III. METHODOLOGY

A. Subjects

We took real SCOPE jobs submitted by Microsoft
production teams as our study subjects, and collected all
job information including initial input data, source scripts,
compiled binaries, execution plan, and runtime statistics.

Failures in our study were runtime exceptions that
terminated job executions. We did not study failures where the
execution was successfully finished but the produced results
were wrong since we did not have test oracles for result
validation. Hence, the job that ended without exceptions was
regarded as a successful one.
Sample Set A. To study failures and fixes in production jobs,
we collected all Failed/Successful (F/S) job pairs within two
weeks by matching both job names and submitter names. 200
F/S job pairs were randomly sampled out as Sample Set A.
Sample Set B. To study the current debugging practice in
SCOPE, we collected all failed jobs that were debugged using
the local debugging tool, along with their debugging statistics.
We randomly sampled 50 of them as Sample Set B.

B. Classification and Metrics

Failure classification for Sample Set A was done manually.
We first carefully went through all 200 F/S job pairs and
understood why the failures happened and how they were
fixed. Then we classified these failures from the data point of
view: whether the failure was related to input data, and which
data level (table or row) triggered the failure. Furthermore, we
classified these failures based on their exception types obtained
from the error messages.

We next describe the metrics used in our study. First, the
number of lines of source code (LOC) was used to measure the
size of fixes. We relied on the WinDiff tool to find differences
between the failed and successful scripts, and then manually
counted the LOC of changes belonging to the fixes since there
might be fix-irrelevant code modifications. We also measured
the execution time of SCOPE jobs and the size of downloaded
data for debugging, which were directly obtained from runtime
statistics and SCOPE IDE logs.

C. Threats To Validity

Threats To Internal Validity. Subjectiveness in the failure
classification was inevitable due to the large manual effort
involved. Besides, there also might be human mistakes in
counting LOC and filtering fix-irrelevant code changes. These
threats were mitigated by double-checking all manual work.
If there were different opinions, a discussion was brought up
to reach an agreement.
Threats To External Validity. We conducted our study within
only Microsoft, making it possible that some of our findings
might be specific to SCOPE and would not hold in other
systems. Hence, we do not intend to draw general conclusions
for all distributed data-parallel programs. In Section VII, we
discuss in detail which findings could be generalized to other
systems similar to SCOPE.

IV. FAILURES AND FIXES IN DISTRIBUTED
DATA-PARALLEL PROGRAMS

In this section, we first present the failure classification in
Sample Set A, and then describe root causes and fixes for
each category. Finally, we summarize what we learned from
real-world cases.

A. Failure Classification

Compared to traditional counterparts, data-parallel programs
are more data centric and their code logic generally focuses on

QueryData = SELECT RawQuery, FormCode,
- Frequency,...
+ Market, Frequency,...

FROM RawData;
FilteredData = PROCESS QueryData

USING FormCodeFilter();
...
public class FormCodeFilter: Processor {

...
if(allowedMarkets.Contains(

row["Market"].String))
...

}

Fig. 3. A real-world example of an undefined-column failure. The
Market column is not selected into QueryData but accessed through
expression row["Market"], causing the failure. The fix is adding the
Market column to QueryData.

data analytics and processing. Table II depicts the classification
of 200 failures in Sample Set A. We classify these failures
into two big categories: data-related failures and data-unrelated
failures. Most failures (169/200) belong to the former as being
caused by data-processing defects, while only 31 failures
belong to the latter due to defects in code logic, or other
reasons. We further divide data-related failures into table-level
and row-level, and build subcategories by failure exception
types. We next go through each failure category in detail: how
the failure happens, what is the root cause, and how to fix it.

1) Table-Level Failures: A failure is regarded as table-level
if every row in the table could trigger it. 22.5% failures
in Sample Set A are table-level failures, classified into the
following major subcategories.
Undefined Column. This subcategory is the most frequent
table-level failures (24/45). SCOPE enables column access by
either name or index. Such failures occur when an invalid
column is referenced: its column name cannot be found
or its index is not within the range. Figure 3 shows an
undefined-column example. In the C# code, the expression
row["Market"] gets the value of column named Market in
the row. This operation is similar to accessing items in a
dictionary. However, there is no Market column in the QueryData

table because it is not produced by the SELECT statement.
The fix, the code in red, is straightforward by adding the
Market column in selection. An immediate impression from
this example is that an undefined column can be detected at
compile-time. It is true in this example because the Market

column is accessed through a constant string name. However,
the column name or index could be variables whose values are
determined at runtime. In this case, the compiler can never
decide whether the column access is valid or not. Hence,
column-access validity is always checked at runtime.
Wrong Schema. A wrong-schema failure (16/45) usually
occurs in the data-extraction phase, where raw input data
are extracted into a structured table for later manipulation.
A wrong schema is caused by mismatch of either the column
number or column type. For example, there are 10 columns
in the input while only 9 columns are defined in the schema,

input data

empty column

f410dc8 192.168.32.2 cart 10/22 …

9607a5a 192.168.32.3 payorder 10/23 …

7e599f7 192.168.32.4 10/23 …

…

ResultSet = SELECT ClientId, UserIp,
ScenarioName, Date,...
FROM @InputData

- USING DefaultTextExtractor();
+ USING DefaultTextExtractor("-silent");

...

Fig. 4. A real-world example of a row-level column-number
mismatch due to a null column value. The DefaultTextExtractor

extracts one fewer column for the third row because of the null value
for column ScenarioName. The failure is fixed by adding the silent
option to filter out rows with incorrect format.

or the first column contains float values while it is declared
as integer.

There were two major reasons that led to table-level
failures. One reason (13/45) was programmers’ mistakes. It
was common to see misspells in column names and miscounts
in column indices. At first, we were a little surprised at
the high mistake ratio. However, after further investigation,
we found that real-world SCOPE scripts may involve tables
with hundreds or even thousands of columns. In this case,
manually writing schemas or accessing columns could be
error-prone. Another major reason was the frequent changes
of input-data schema without updating processing programs.
Since the data were usually from multiple dynamic sources
such as web contents or program outputs, the programmers
might be unaware of the changes of data sources. We found
that the input of quite some failed jobs changed its schema
frequently. Even worse, it was often the case that the data
producer was not the SCOPE job programmer. Fortunately, for
most table-level failures, our study indicated that programmers
could easily locate the defects based on the error message,
and fixes were usually straightforward, such as modifying the
schema or correcting the corresponding column name or index.

2) Row-Level Failures: A failure is said to be row-level
when only a portion of rows in the table could cause the failure
while the other rows are processed successfully. In Sample
Set A, there are 124 (62.0%) row-level failures including the
following major subcategories.
Incorrect Row Format. Incorrect row format is the most
frequent subcategory (22.5%) among all failures. Similar to the
wrong-schema failure, it also happens in the data extraction
phase due to column-number mismatch or column-type
mismatch. The difference is that the incorrect-row-format
failure is caused by a few rows with exceptional data rather
than schema mismatch. Here, by exceptional data, we mean
special cases in data under processing. Thus, only those
exceptional rows could trigger the failure while the other rows
are well processed. Figure 4 shows a real-world example of
a row-level column-number mismatch due to a null column

...
SELECT AVG(a.StrToInt(Duration)) AS AvgD,

MAX(Helper.StrToInt(Duration)) AS MaxD

FROM Rowset;
OUTPUT TO @PARAM_OUTPUT_SET;

public class Helper {
public int StrToInt {

...
- if(String.IsNullOrEmpty(val))
+ if(!Int32.TryParse(val, out ivalue))

ivalue = 0;
- ivalue = Int32.Parse(val);

...
}

}

Fig. 5. A real-world example of an illegal-argument failure. Any
integer value that exceeds the range of Int32 will trigger the failure.
The fix is adding a safer method TryParse to guard against all
exceptional data.

value, from Sample Set A. The input file in the figure is
synthesized by us to simulate real input characters. When
processing the third row with the empty column ScenarioName,
the DefaultTextExtractor would not know there is a null value
for ScenarioName column, and thus extracts one fewer column
for this row. Hence, an incorrect-row-format exception is
thrown. The failure is fixed by adding the silent option, which
tells the DefaultTextExtractor to discard rows that cannot be
extracted into the correct format.
Illegal Argument. The illegal argument is the second most
frequent (17.0%) subcategory. Such failures happen when the
argument value does not satisfy the requirement of the invoked
method (e.g., requiring none-empty/null value or positive
integer). Figure 5 shows an example of an illegal-argument
failure from Sample Set A. Although the programmer already
considers exceptional values like null and empty, and replaces
them with default value 0. However, there are some other
integer values that exceed the range of Int32 and thus violate
the argument requirement of Int32.Parse. The fix is using a
safer method TryParse, which returns true and assigns the
parsed result to ivalue if the parsing succeeds; returns false if
the parsing fails.
Null Reference. A null-reference failure happens when a
null value is dereferenced. The null value usually comes
from a null column in data under processing rather than an
uninitiated object declared in C# code. A typical example
is that a string column contains a null string value, and the
programmer performs string operations on this column (e.g.,
row["StringColumn"].IndexOf("-")) without nullity checking so
that the null value is dereferenced.
Out of Memory. An out-of-memory failure occurs when
the programmer attempts to load extremely huge data
into memory all at once. Although we find only 3 such
failures, this subcategory is very interesting and important. It
reveals an essential difference between distributed data-parallel
programming and traditional small-scale counterpart: more
memory-efficient algorithms should be devised facing
unpredictably massive data. Figure 6 shows a typical example

t2 = REDUCE t1 ON name

PRODUCE tag, name, seconds, count

USING MyReducer();
...
public class MyReducer: Reducer {

List<Row> list = new List<Row>();
int last = -1; int i;
foreach (Row row in input.Rows {

list.Add(row);
if (row[3].String == "pattern")

last = list.Count - 1;
}
for (i = last + 1; i < list.Count; i++) {

...
}

}

Fig. 6. A simplified real-world example of the out of memory failure.
All input rows are accumulated in memory for later global processing.
The fix requires a more memory efficient algorithm.

that the programmer accumulates all input rows in memory so
as to conveniently process them after the last occurrence of
a certain pattern. The input to MyReducer is a group of rows
with the same key to be reduced. As the row number of the
group could be very large, such an attempt, adding all rows
of a group into a list, results in memory exhaustion quickly.
Fixing an out-of-memory failure is not straightforward since
the programmer has to come up with a more memory-efficient
implementation for the same code logic.

As we can see from the preceded typical examples, most
(99/124) of the row-level failures are due to exceptional data.
However, we should not blame programmers for these failures
because the data volume is so large that it is impossible for
programmers to know about all exceptional data in advance.

We find two patterns for fixing the failures caused by
exceptional data. One is the row-filtering pattern (43/99),
which discards exceptional rows. Since there are millions of
rows in datasets, a few exceptional rows could be treated as
noises and filtered out without really affecting the job results.
The other is the default-value pattern (31/99), which replaces
the exceptional values with the default value of its type.

3) Data-unrelated failures: We find 31 failures not to be
closely related to data in Sample Set A. Some of them involve
language features while the others are due to semantic errors.
Resource Missing. A resource-missing failure occurs when the
job cannot find the needed resources (e.g., referenced scripts
or external DLLs) for execution. In Sample Set A, the main
reason (8/10) for resource-missing failure is the programmer’s
neglect of an important SCOPE language feature. That is,
if one needs to reference an external resource, she should
explicitly import the referenced resource in the script by using
SCOPE keyword RESOURCE for script files or REFENRENCE for
DLL files. Only with these keywords, the SCOPE engine
would know that the referenced files should be copied to each
distributed machine because these distributed machines are
independent and they all need a copy of referenced files for
execution. Hence, even if one uploads the referenced resources
to the cluster without these keywords, the referenced resources

would not be copied to each machine. The tricky part is
that in the local development environment, these keywords
are not required when the referenced resources are in the
default project workspace, making such failures not revealed
in local testing. All such failures are fixed by adding keywords
RESOURCE/REFENRENCE to import the missing resources.
Other Data-unrelated Failures. The index-out-of-range and
key-not-found exceptions are just like those in ordinary C#
programs. The index-out-of-range exception is thrown when
accessing an element of an array with the index outside the
array bound, and the key-not-found exception is thrown when
retrieving an element from a collection (e.g., dictionary) with
a key that does not exist in the collection. In Sample Set
A, there are various reasons for these failures including the
programmer’s mistakes and defects in algorithms. Due to these
various reasons, the fixes are diverse and we do not find any
fix pattern for these failures.

B. Learning From Practice

The major characteristic of SCOPE failures is that most
of them are caused by defects in data processing rather than
defects in code logic. Essentially, such characteristic is due
to the tremendous volume and dynamism of input data. Since
the data are extremely large and come from various domains,
it is common that there are missing data or certain special
case data. It is impossible for programmers to know all these
exceptional data before they really run programs against them.
Moreover, the data are usually obtained from multiple dynamic
sources, such as web contents and program outputs, which
may change frequently. It is difficult and undesirable to keep
programmers updated with these changes all the time. These
challenges are not unique for SCOPE but also exist in other
similar platforms for big-data processing.

However, we can somehow alleviate such problems by
providing more information on data. For example, for those
data with relatively stable schema, the data producer, such as
log-file designers, could provide detailed documentation on
data schema or some default data extractors. The programmer
is encouraged to look at the content of data to know more
about the data before coding. Moreover, the programmer could
leverage domain knowledge to infer some data properties,
e.g., a certain column is nullable.

Finding 1: Most of the failures (84.5%) are caused by
defects in data processing rather than defects in code logic.
The tremendous data volume and various dynamic data
sources make data processing error-prone.
Implication: Documents on data and domain knowledge
from data sources could help improve the code reliability.
Programmers are encouraged to browse the content of data
before coding, if possible.

The table-level failures are mainly caused by the
programmers’ mistakes and frequent changes of data schema.
Since the table-level failure could typically be triggered by
every row in the table, running the job against a small portion
of the real input data could effectively detect these failures.

Finding 2: 22.5% failures are table-level; the major reasons
for table-level failures are programmers’ mistakes and
frequent changes of data schema.
Implication: Local testing with a small portion of real
input data could effectively detect table-level failures.

Most of row-level failures are due to exceptional data.
Since the exceptional data are unforeseeable, programmers
could proactively write exceptional-data-handling code with
domain knowledge to help reduce failures, sharing the similar
philosophy with the defensive programming.

Finding 3: Row-level failures are prevalent (62.0%). Most
of them are caused by exceptional data. Programmers
cannot know all of exceptional data in advance.
Implication: Proactively writing exceptional-data-handling
code with domain knowledge could help reduce row-level
failures.

How to fix the failures is closely related to the reasons
that cause the failures. For most failure categories, there
exist fix patterns. Fixes under these patterns are very small
in terms of LOC. In Sample Set A, 95.0% fixes are within
10 LOC and 87.0% fixes are within 5 LOC; the average
size of fixes is 3.5 LOC. In addition, fix patterns such
as row filtering, nullity checking, and resources import,
usually do not involve program semantics. Hence, based on
these patterns, it is possible to automatically generate some
fix suggestions to help programmers fix corresponding defects.

Finding 4: There exist some fix patterns for many failures.
Fixes are typically very small in size, and most of them
(93.0%) do not change data processing logic.
Implication: It is possible to automatically generate fix
suggestions to programmers.

V. DEBUGGING IN SCOPE

Debugging in distributed systems is challenging. Since the
input data are huge, it is prohibitively expensive to re-execute
the whole job for step-through diagnosis. To balance the cost
of data storage and shifting, SCOPE enables programmers to
debug the failure-exposing stage of the job locally. When a
failure happens, the SCOPE system locates the commodity
machine where the failure happens, and persistently stores
the input data (a partition of the whole stage input) on that
machine. Later the programmers could download the input
data along with executables from the failed machine, and
start live diagnosis in their local simulation environment.
The downloaded input would guarantee to reproduce the
failure because executions on each distributed machine are
independent so that the local environment is the same with
that on the failed machine.

To investigate the effectiveness of current debugging
practice, we studied Sample Set B, consisting of 50 failed
jobs that were debugged with the local debugging tool.
An important indicator for effectiveness of the debugging
tool was whether programmers came up with correct fixes

...
Statistics = SELECT StartTime, EndTime,

- (EndTime-StartTime)/60
+ (EndTime-StartTime)/60.0

AS Duration, ...
FROM ResultSet;

...
Out = SELECT TaskID, Name, ... ,

WaitingTime/Duration AS Percentage

FROM Info;
...

Fig. 7. A real-world example that illustrates the root-cause problem.
A divide-by-zero exception is thrown in the second select statement
due to zero values in Duration while the root cause is in the first
select statement from a different computation stage.

by using this tool. We found that all the 50 failures in
Sample Set B were correctly fixed, which, to some extent,
demonstrated the effectiveness of the debugging tool, although
the debugging tool might not be the only helper to find a fix.
Moreover, from the programmer’s perspective, we measured
how long it took to initiate the debugger (i.e., time to download
debugging-required data to the local machine). Our results
showed that 35 out of 50 jobs in Sample Set B downloaded less
than 1 Gigabytes data, and the average size of downloaded data
for each job was 5.3 Gigabytes. With the high-speed internal
network, the debugger could be initiated within few minutes
in most cases.

Hence, the debugging tool was efficient in most cases, in
terms of quickly reproducing partial failure execution locally.
However, we found an interesting case in which the debugging
tool may not work well. When a failure occurs, the root
cause of the failure may not lie in the computation stage
that exhibits the failure (failure-exposing stage). The program
state may already turn bad long before the bad state is finally
exposed. In this case, debugging the failure-exposing stage
may not give sufficient information on how the program state
turns bad. Hence, an interesting phenomenon happens that the
programmer wants to debug earlier successful stages. We did
find such request in the SCOPE internal mailing list. However,
it is impractical to enable debugging all successful stages
because it would require persistently storing all intermediate
data between each stage for later downloading, and the cost is
unaffordable. Even if we can afford temporarily storing such
intermediate data, we are still unable to download all input
data for a stage because they are too huge, sometimes even
larger than the original input.

We found that there were 4 out of 50 failures with the root
cause outside the failure-exposing stage. Figure 7 shows one
example of them. A divide-by-zero exception is thrown in the
second statement due to the zero value in Duration. The root
cause for the zero value lies in the first select statement. Since
StartTime and EndTime are integers, (EndTime - StartTime) / 60
is zero when the numerator is less than 60. However, the first
statement is not in the failure-exposing stage and will never
be debugged with this tool.

Essentially, this root-cause problem is due to the balance
act: partial-program (failure-exposing stage) debugging.

#IF (LOCAL)

#DECLARE input string = "input.tsv";

#ELSE

#DECLARE input string = "/my/input.tsv";

#ENDIF

Fig. 8. Adaptive data selection by local versus remote execution.

To achieve low-cost whole-program debugging, we could
try to automatically generate small program inputs to
reproduce the entire failure execution by leveraging existing
symbolic-execution engines [27], [9], [24]. This approach
could be complementary to the current debugging approaches.

Finding 5: The current debugging practice is efficient in
most cases in terms of fast failure reproduction. However,
there are some cases (8.0%) where the debugging tool may
not work well because the root cause of the failure is not
inside the failure-exposing stage.
Implication: Automatically generating smaller program
inputs to reproduce the entire failure execution could be
complementary to current debugging approaches.

VI. CURRENT AND FUTURE WORK

In this section, we present a series of our current practices
on failure reduction for SCOPE jobs, including language
extension of SCOPE and compile-time analysis. Data synthesis
and bug-fix suggestion remain as the future work to reduce
debugging efforts.
SCOPE Extension. We extend SCOPE with the following
embedded language supports.

1) Nullable Type is used to tolerate Null-Reference failures.
“Nullable” data types defined in C# [19] can be assigned
null to value types such as numeric and boolean types.
It is particularly useful when dealing with databases
containing elements that may not be assigned a value.
We extend SCOPE by supporting C# nullable data types,
and annotate them with “?” postfix, a shorthand for
“Nullable<T>”. If a nullable column is null, it returns
the default value for the underlying type.

2) Structured Stream is designed to avoid failures occurring
in the data-extraction phase. It provides schema metadata
for unstructured streams so that SCOPE can directly read
from and write to structured streams without extractor and
outputter, and thus reduces data-extraction failures.

3) Local Testing greatly facilitates testing and diagnosis by
enabling jobs to run entirely on a single machine with
local test inputs. The local execution has nearly identical
behaviors to its distributed execution in clusters. If the
programmer specifies the LOCAL keyword together with
the #IF directive in the script (see Figure 8), the SCOPE
IDE generates a special job that has no data-shuffling
stages and spawns very few instances. The programmers
can test and debug the job step-by-step, as if the job is a
local process.

Compile-Time Program Analysis. We have built the SCA
(SCOPE Code Analysis) tool, which has been integrated

into the SCOPE IDE, to report potential defects before job
execution. SCA, built atop FXCOP [18] and PHOENIX [20]
compiler, includes 11 SCOPE-related checking rules, e.g., the
null reference and column assignment should accept correct
types. A rule is a piece of C# code targeting at a specific
failure category. Currently, SCA is capable of detecting the
Undefined-Column, Wrong-Schema, Resource-Missing, and
Null-Reference failures. However, there are non-trivial false
alarms produced by SCA. Our ongoing efforts focus on
reducing these false alarms by performing whole-program
analysis across function calls, operators, and stages.
Data Synthesis. Motivated by Finding 5, it is useful to
develop a small-scale-data synthesis tool for both testing and
debugging purposes. First, to help failure diagnosis, we could
leverage part of initial inputs and temporary results of the
failed job to synthesize much smaller failure-triggering inputs
for quick reproduction of the same failure. Second, we could
generate special input to trigger the hidden defects to cause
failures. It is feasible to implement these features by extending
current symbolic-execution techniques.
Fix Suggestion. Motivated by Finding 4, it is promising to
develop a tool to generate fix suggestions interactively with
the programmers. A straightforward implementation is to
first identify the failure pattern (type and reason) from error
messages and call stacks, and then generate suggestions based
on the corresponding fix patterns found in our study.

VII. DISCUSSION

A. Generality of Our Study

Although our study is conducted exclusively on SCOPE
jobs from Microsoft Bing, most of our results can still be
generalized to other data-parallel systems, such as Pig Latin,
Hive, and FlumeJava.

From the input-data perspective, the volume of datasets
processed by SCOPE jobs ranges from a few gigabytes to tens
of petabytes, representing the typical data volume of current
big-data applications in industry. Moreover, the data processed
by SCOPE jobs are from similar sources (e.g., websites,
user logs) with those from web companies, such as Google,
Facebook, and Yahoo!. Finally, the relational data model used
in SCOPE is widely adopted by data-parallel platforms. From
the programming-model perspective, SCOPE shares the same
hybrid programming model with Pig Latin, Hive, FlumeJava.
Such model is state-of-the-art for data-parallel programming.

Hence, our Findings 1, 2, and 3 about failure characteristics
could be generalized, at least to those web companies who
share similar data and programming models. For Finding 4,
we believe that some of our fix patterns, such row filter and
default value, also exist in other systems because they are quite
intuitive and straightforward ways to handle exceptional data.
While other patterns related to SCOPE language features, like
adding RESOURCE keyword to import resources, are specific in
SCOPE. Finding 5 can be generalized to systems that enable
only partial-program debugging.

B. System Design for Failure Resilience

In our study, we found a job that executed for 13.6 hours
and failed due to a null column value. The defect was easy
to locate, and was fixed by just filtering out rows with null
column values. Unfortunately, the patched job had to start all
over again and execute for another long time.

Motivated by this observation, we propose a stop/resume
mechanism for failure resilience. Instead of killing the job right
upon a failure, SCOPE job manager could first suspend the job
execution, and then notify the programmer of the failure, wait
for her to fix the defect. After the programmer submits the
patched job, it is re-compiled into a new execution plan, and
the job manager resumes the execution by determining the
stages needed to be re-computed based on the execution-plan
changes. In this manner, we reuse the previously computed
results so that resources for re-computation are saved and
the job latency is also reduced, compared to re-executing the
patched job from the beginning.

One key fact making this stop/resume mechanism promising
is that in our study, 93.0% fixes do not change the code logic.
This fact implies that a large portion of previous results could
be reused. There may be some cases where our proposed
mechanism would not work. Example cases are when the fix
changes the program a lot or the programmer can not come
up with a fix in short time. In such cases, the failure resilience
could be turned off by programmers.

VIII. RELATED WORK

Bug Characteristics Studies. A lot of work has been done
to study bug characteristics in software systems. Most of
these studies share the same goal of improving reliability
of software systems. Earlier work mainly studied bugs in
large open-source software systems such as operating systems,
databases. Chou et al. [6] studied bugs in Linux and OpenBSD
that were detected by their static-analysis tool. Gu et al. [10]
studied Linux kernel behaviors under injected bugs. Chandra
et al. [5] studied bugs in open-source software from a
failure recovery perspective. Recently, there were some studies
that focused on certain types of bugs, such as concurrency
bugs [17], performance bugs [12].

Unfortunately, there was little work that studied the failures
of distributed data-parallel programs. Kavulya et al. [14]
studied failures in MapReduce programs. Although we shared
some similar findings on failure workloads, there were
essential differences between their work and ours. First, their
subjects were jobs created by university research groups while
ours came from production jobs. Second, the SCOPE jobs
in our study were written with a hybrid programming model
whereas their Hadoop jobs were based on the MapReduce
model. Different programming models may lead to different
failure characteristics. Third, their work mainly focused on
studying the workloads of running jobs for achieving better
system performance such as job scheduling whereas our work
focused on studying source code and input data of failed jobs
for the purpose of failure reduction and fixing. There was
work [13] that studied fault tolerance in MapReduce. However,

the failures in their study referred to failures in the underlying
distributed systems including hardware failures, whereas our
failures were caused by defects in data-parallel programs.
Fix Characteristics Studies. There were several studies on
fixing patterns. Pan et al. [23] defined 27 bug-fixing patterns
in Java software using syntax components involved in
source-code changes. To fix bugs, Kim et al. [15] built
bug fix memories, which were a project-specific knowledge
base on bugs and the corresponding fixes. Some previous
work [29], [25] also studied incorrect bug fixes. Again,
our study about fixing patterns was specific to data-parallel
programs, particularly for SCOPE jobs.
Debugging in Distributed Systems. Olston et al. [21] provided
a framework Inspector-Gadget for monitoring and debugging
Pig Latin [22] jobs. Their interviews of programmers, which
served as the motivation of their work, shared some common
conclusions with our study, such as the needs for detecting
exceptional data that violated certain data properties and
needs for step-through debugging. However, their debugging
support was different from ours. Instead of debugging on local
machine in SCOPE, they provided a remote debugger on the
failed commodity machine. Although remote debugging did
not require downloading data to the local machine, it occupied
shared resources on the commodity machine until the end
of debugging process. Moreover, their debugger also had the
root-cause problem described in our Finding 5 because their
debugger enabled only partial-program debugging as we did.
Some other work employed program-analysis techniques to
help debugging in distributed systems. Liu et al. [16] used
runtime checkers of program states to reveal how the program
states turned bad. Taint analysis for data tracing [8], [1] was
used to locate data that triggered failures.

IX. CONCLUSION

This paper has presented the first comprehensive
characteristic study on failures/fixes of production distributed
data-parallel programs. We studied 250 failures of production
SCOPE jobs, examining not only the failure types, failure
sources, and fixes, but also current debugging practice. The
major failure characteristic of data-parallel programs was that
most of the failures (84.5%) were caused by defects in data
processing rather than defects in code logic. The tremendous
data volume and various dynamic data sources made data
processing error-prone. In addition, there were limited major
failure sources, with existing fix patterns for them, such as
setting default values for null columns. We also revealed some
interesting cases where the current SCOPE debugging tool did
not work well and provided our suggestions for improvement.
We believe that our findings and implications provide valuable
guidelines for future development of data-parallel programs,
and also serve as motivations for future research on failure
reduction and fixing in large-scale data-processing systems.

ACKNOWLEDGEMENTS

This work is supported in part by a NIST grant and NSF
grants CCF-0845272, CCF-0915400, and CNS-0958235. We

thank the anonymous reviewers for their valuable comments.
We are grateful to Lidong Zhou, and Jingren Zhou for
their valuable feedback. We also thank the SCOPE team in
Microsoft Bing for sharing their production jobs and data.

REFERENCES

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed systems of
black boxes. In SOSP, pages 74–89, 2003.

[2] Apache. Hadoop. http://hadoop.apache.org/.
[3] R. Chaiken, B. Jenkins, P. ke Larson, B. Ramsey, D. Shakib, S. Weaver,

and J. Zhou. SCOPE: Easy and efficient parallel processing of massive
data sets. PVLDB, 1(2):1265–1276, 2008.

[4] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. FlumeJava: easy, efficient
data-parallel pipelines. In PLDI, pages 363–375, 2010.

[5] S. Chandra and P. M. Chen. Whither generic recovery from application
faults? a fault study using open-source software. In DSN, pages 97–106,
2000.

[6] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical
study of operating systems errors. In SOSP, pages 73–88, 2001.

[7] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

[8] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace: a
pervasive network tracing framework. In NSDI, pages 20–20, 2007.

[9] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In PLDI, pages 213–223, 2005.

[10] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang. Characterization of
Linux kernel behavior under errors. In DSN, pages 459–468, 2003.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In EuroSys,
pages 59–72, 2007.

[12] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. In PLDI, pages 77–88, 2012.

[13] H. Jin, K. Qiao, X.-H. Sun, and Y. Li. Performance under failures of
MapReduce applications. In CCGRID, pages 608–609, 2011.

[14] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An analysis of traces
from a production mapreduce cluster. In CCGRID, pages 94–103, 2010.

[15] S. Kim, K. Pan, and E. E. J. Whitehead, Jr. Memories of bug fixes. In
FSE, pages 35–45, 2006.

[16] X. Liu, W. Lin, A. Pan, and Z. Zhang. Wids checker: combating bugs
in distributed systems. In NSDI, pages 19–19, 2007.

[17] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. In
ASPLOS, pages 329–339, 2008.

[18] Microsoft. FxCop. http://msdn.microsoft.com/en-us/library/
bb429476(v=vs.80).aspx.

[19] Microsoft. Nullable Types. http://msdn.microsoft.com/en-us/library/
1t3y8s4s(v=vs.80).aspx.

[20] Microsoft. Phoenix Compiler. http://research.microsoft.com/en-us/
collaboration/focus/cs/phoenix.aspx.

[21] C. Olston and B. Reed. Inspector Gadget: A framework for custom
monitoring and debugging of distributed dataflows. In SIGMOD, pages
1221–1224, 2012.

[22] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A not-so-foreign language for data processing. In SIGMOD, pages
1099–1110, 2008.

[23] K. Pan, S. Kim, and E. J. Whitehead, Jr. Toward an understanding of
bug fix patterns. Empirical Softw. Engg., 14(3):286–315, 2009.

[24] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine
for C. In ESEC/FSE, pages 263–272, 2005.

[25] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? In MSR, pages 1–5, 2005.

[26] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Li, and R. Murthy. Hive – a petabyte scale data warehouse
using Hadoop. In ICDE, pages 996–1005, 2010.

[27] N. Tillmann and J. de Halleux. Pex-white box test generation for .NET.
In TAP, pages 134–153, 2008.

[28] Yahoo! M45 supercomputing project. http://research.yahoo.com/
node/1884.

[29] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram. How
do fixes become bugs? In ESEC/FSE, pages 26–36, 2011.

http://research.microsoft.com/en-us/collaboration/ focus/cs/phoenix.aspx
http://research.microsoft.com/en-us/collaboration/ focus/cs/phoenix.aspx

	Introduction
	SCOPE Background
	Relational Data Model
	UDF Centric Programming Model
	Job Execution
	Life Cycle

	Methodology
	Subjects
	Classification and Metrics
	Threats To Validity

	Failures and Fixes in Distributed Data-Parallel Programs
	Failure Classification
	Table-Level Failures
	Row-Level Failures
	Data-unrelated failures

	Learning From Practice

	Debugging in SCOPE
	Current and Future Work
	Discussion
	Generality of Our Study
	System Design for Failure Resilience

	Related Work
	Conclusion
	References

