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ABSTRACT
Due to the expensiveness of compiling and executing a large
number of mutants, it is usually necessary to select a subset
of mutants to substitute the whole set of generated mutants
in mutation testing and analysis. Most existing research on
mutant selection focused on operator-based mutant selec-
tion, i.e., determining a set of sufficient mutation operators
and selecting mutants generated with only this set of muta-
tion operators. Recently, researchers began to leverage sta-
tistical analysis to determine sufficient mutation operators
using execution information of mutants. However, whether
mutants selected with these sophisticated techniques are su-
perior to randomly selected mutants remains an open ques-
tion. In this paper, we empirically investigate this open
question by comparing three representative operator-based
mutant-selection techniques with two random techniques.
Our empirical results show that operator-based mutant se-
lection is not superior to random mutant selection. These
results also indicate that random mutant selection can be a
better choice and mutant selection on the basis of individual
mutants is worthy of further investigation.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Measurement, Experimentation

Keywords
Mutation testing, Test-adequacy criterion

1. INTRODUCTION
In software testing, test-adequacy criteria play an impor-

tant role in determining whether the software under test
(SUT) is adequately tested [15, 43]. With a test-adequacy
criterion, a tester can continually create new test cases until
the suite of test cases created so far satisfies the criterion.
Mutation testing, which was first proposed by Hamlet [17]
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and DeMillo et al. [10], is an intensively studied way to con-
struct such a test-adequacy criterion. In mutation testing,
many faulty versions (known as mutants) of the SUT are
generated through automatically changing the SUT with
mutation operators, each of which is a rule to produce faulty
versions and can be applied to various statements. Since the
first proposal, mutation testing has attracted the attention
of many researchers [21]. Recently, researchers used muta-
tion operators to automatically produce faulty software to
facilitate experimentation in research of software testing [6,
5, 28, 38]. Andrews et al. [3] and Do et al. [13] reported
some evidence that faults generated with mutation opera-
tors are similar to real faults in evaluating test effectiveness.
Following the terminology of Andrews et al. [3, 37], we refer
to this way of using mutation as mutation analysis.

Mutation testing and mutation analysis are usually very
expensive. For example, using 108 mutation operators, Pro-
teum [8] generates 4,937 mutants for tcas (which is the
smallest program among the Siemens programs [20] and con-
tains only 137 non-commenting and non-whitespace lines of
code). Thus, compiling and executing a large number of mu-
tants can be a big burden in mutation testing and analysis.
To alleviate this burden, researchers have proposed various
techniques for selecting a subset of all the mutants. Nat-
urally, researchers want the set of selected mutants to be
similar to the set of all mutants (e.g., in terms of defining
a test-adequacy criterion). One simple technique is random
mutant selection [1, 40, 41], in which, given a fixed per-
centage number (denoted as x), x% mutants are randomly
selected. However, researchers seem to be more enthusias-
tic at investigating operator-based mutant selection [27, 40,
41, 31, 4, 37], which aims to select mutants generated with
only a set of sufficient mutation operators1. While early re-
search on operator-based mutant selection [40, 41, 31] tries
to determine sufficient mutation operators via simple rules,
recent research [4, 37] relies on sophisticated procedures to
determine sufficient mutation operators involving statistical
information that can be acquired only through executing a
large number of mutants with a sufficiently large set of test
cases.

Despite the enthusiasm in investigating operator-based
mutant selection, whether operator-based mutant selection
is superior to random mutant selection for mutation testing
remains an open question. That is to say, despite recent
progress in operator-based mutant selection (e.g., Offutt et

1A set of mutation operators are sufficient if the mutants
generated by the mutation operators can very much repre-
sent the mutants generated by all the mutation operators.



al. [31], Barbosa et al. [4], and Siami Namin et al. [37]),
there is lack of empirical evaluation of these operator-based
mutant-selection techniques against random mutant-selection
techniques. Furthermore, as we can view random mutant se-
lection as an approach to mutant selection with average ef-
fectiveness, answering the preceding open question can help
us gain insights and deep understanding to the current re-
search and achievements on mutant selection.

In this paper, we report an empirical study attempting
to answer this open question. To evaluate the effectiveness
of each mutant-selection technique, we adopt a widely used
metric for evaluating mutant-selection techniques. The met-
ric aims to measure to what extent the selected mutants are
able to represent the whole set of mutants. Furthermore, we
also evaluate the stability of each technique by checking how
consistently the technique performs under different circum-
stances. For either effectiveness or stability, our empirical
results do not support that operator-based mutant selec-
tion is superior to random mutant selection. That is to say,
random mutant selection remains a competitive or even bet-
ter choice compared with recent progress in operator-based
mutant selection. As random mutant selection selects mu-
tants on the basis of individual mutants instead of mutation
operators, our empirical results also indicate that mutant-
selection techniques based on individual mutants should be
worthy of further investigation.

The main contributions of our study are as follows.

• Our study empirically evaluates three recent operator-
based mutant-selection techniques (i.e., Offutt et al. [31],
Barbosa et al. [4], and Siami Namin et al. [37]) against
random mutant selection for mutation testing.

• Our study produces the first empirical results concern-
ing stability of operator-based mutant selection and
random mutant selection for mutation testing.

• Beside the random technique studied previously (re-
ferred to as the one-round random technique in this
paper), our study also investigates another random
technique involving two steps to select each mutant
(referred to as the two-round random technique in this
paper).

• The subjects used in our study are larger than those
used in previous studies of random mutant selection.
To the best of our knowledge, due to the extreme
expensiveness of experimenting mutant-selection tech-
niques, the Siemens programs are by far the largest
subjects2 used in studies of mutant selection [37].

We organize the rest of this paper as follows. Section 2
presents the experimental design in our study. Section 3
presents and analyzes the results obtained from our exper-
iments. Section 4 discusses issues in our study. Section 5
discusses related work. Section 6 concludes and presents
some future work.

2. EXPERIMENTAL DESIGN
In this section, we first present the research questions in

our study. Then, we describe the experimented techniques,
the tool used to obtain mutants, the subject programs, and
the way of measuring each technique. Finally, we describe
the details of our experimental procedure.
2Some studies (such as Do et al. [13]) do use larger subjects,
but they do not focus on mutant selection and they do not
consider all the generated mutants.

2.1 Research Questions
In our study, we investigate the following research ques-

tions:
• RQ1: How does operator-based mutant selection com-

pare with random mutant selection in terms of average
effectiveness?

• RQ2: How does operator-based mutant selection com-
pare with random mutant selection in terms of stabil-
ity?

In general, average effectiveness measures how good the
selected mutants are on average, and stability measures how
likely the selected mutants can be very bad. Sections 2.5
and 2.6 provide details of calculating average effectiveness
and stability.

2.2 Experimented Techniques
In our study, we experimented three operator-based mutant-

selection techniques (i.e., Offutt et al.’s 5 mutation opera-
tors [31], Barbosa et al.’s 10 mutation operators [4], and
Siami Namin et al.’s 28 mutation operators [37])3 and two
random mutant-selection techniques.

Given a number (denoted as u), the first random mutant-
selection technique is to randomly select u mutants. This
technique is basically the x%-random technique studied by
Wong and Mathur [40, 41]. The second random mutant-
selection technique employs two steps when selecting each
mutant. The first step randomly selects a mutation opera-
tor, and the second step randomly selects a mutant that is
generated with the selected mutation operator. Using the
two steps, the second random technique continually selects
one mutant that has not been selected previously until u mu-
tants are selected. In this paper, we refer to the first random
technique as the one-round random and the second random
technique as the two-round random. For the one-round

random, the probability of selecting each mutant is equal;
but for the two-round random, probabilistically speaking,
the number of selected mutants that are produced by each
mutation operator is about the same.

2.3 Supporting Tool
In our study, we used Proteum [8], which is a mutation

system implementing a comprehensive set of mutation op-
erators for C programs, to generate mutants for each sub-
ject. The version of Proteum used in our study supports
108 mutation operators, including traditional mutation op-
erators [2] and interface mutation operators [7]. As the 108
mutation operators include Offutt et al.’s 5 mutation oper-
ators4, Barbosa et al.’s 10 mutation operators, and Siami
Namin et al.’s 28 mutation operators, we are able to use
Proteum to compare random mutant selection with all the
three operator-based mutant-selection techniques.

2.4 Subject Programs
The subjects used in our study are the Siemens programs.

The Siemens programs include seven C programs whose num-
bers of net lines of code (not counting whitespace or com-
menting lines) range from 137 to 513. Hutchins et al. [20]
3As Wong and Mathur’s two mutation operators [40, 41] are
among Offutt et al.’s five mutation operators [31] and Offutt
et al. showed that any subset of the five mutation operators
is not sufficient, we did not empirically compare Wong and
Mathur’s two mutation operators in our study.
4Offutt et al.’s five mutation operators are defined on pro-
grams in Fortran-77. Agrawal et al. [2] list the mutation
operators in Proteum that correspond to Offutt et al.’s 5
mutation operators.



Table 1: Statistics of subjects

Net Test Non-
Lines of Pool All Equivalent

Program Abb. Code Size Mutants Mutants
print tokens PT 343 4130 11741 9326
print tokens2 PT2 355 4115 10266 8664
replace RE 513 5542 23847 19861
schedule SC 296 2650 4130 3670
schedule2 SC2 263 2710 6552 4832
tcas TC 137 1608 4935 4069
tot info TI 281 1052 8767 7876

first introduced the Siemens programs in 1994, and since
then many researchers (e.g., Rothermel et al. [34, 35], El-
baum et al. [14], Li et al. [24], Jones et al. [22], and Andrews
et al. [3, 37]) used the Siemens programs as subjects in test-
ing experiments. In particular, a recent study on mutant
selection by Siami Namin et al. [37] used only the Siemens
programs as subjects. For each of the Siemens programs,
Hutchins et al. provided a test pool, and Rothermel et
al. [34] augmented the test pool through manually adding
some white-box test cases. After augmentation, the test pool
for each program ensures that “each executable statement,
edge, and definition-use pair in the base program or its con-
trol flow graph was exercised by at least 30 test cases” [34].
Table 1 depicts the statistics of the subjects. Note that the
second column in Table 1 lists the abbreviations of the seven
subjects, and we use these abbreviations to denote the sub-
jects when presenting our experimental results in Section 3.

Similar to Siami Namin et al. [37], we considered the fol-
lowing three reasons when choosing our subjects. First, the
Siemens programs contain typical structures that also ap-
pear in various large programs in C. Second, there is a large
test pool for each of the Siemens programs. As measur-
ing the effectiveness of selected mutants relies on the use of
different test suites (see Section 2.5 for the details of mea-
surement in our study), a large test pool allows us to con-
struct a large number of test suites containing different test
cases. Third, as Proteum generates a large number of mu-
tants for even a small program, using programs significantly
larger than the Siemens programs as subjects may result in
huge computational cost. Actually, beside Siami Namin et
al. [37], who used only less than one third of the mutants
that Proteum generates for the Siemens programs5, other
researchers (i.e., Wong [40], Offutt et al. [31], and Barbosa
et al. [4]) used programs much smaller than the Siemens
programs for evaluating mutant-selection techniques.

2.5 Measurement
In our study, we adopted a metric that researchers used

to evaluate the effectiveness of mutant-selection techniques
in previous studies on mutant selection for mutation testing
(e.g., Wong and Mathur [40, 41], Offutt et al. [31], and Bar-
bosa et al. [4]). Given a program (denoted as P ) and a set of
mutants (denoted as AM) generated for P with all mutation
operators, we removed equivalent mutants from AM and ac-
quired a set of non-equivalent mutants (denoted as NEM).
When evaluating a mutant-selection technique (denoted as
T ), we used T to select mutants from NEM , and denote
the set of selected non-equivalent mutants as MT . To eval-
uate the effectiveness of T , we created a series of test suites

5Except for the smallest subject (i.e., tcas), Siami Namin et
al. [37] used 2000 mutants for each other subject.

(denoted as {ts1, ts2, ..., tsn}), each of which can kill all mu-
tants in MT . We denote the subset of mutants in NEM

that can be killed by tsi (1 ≤i≤n) as KilledNEM (tsi), and
then we use Formula 1 to measure the effectiveness of T .

Eff(T ) =

Pn

i=1
|KilledNEM (tsi)|

|NEM|

n
(1)

Intuitively, this metric measures the effectiveness of T as
the representativeness of the set of non-equivalent mutants
selected by T for the whole set of non-equivalent mutants
NEM . As the aim of mutation testing is to provide a test-
adequacy criterion, this metric measures the representative-
ness of MT for NEM as the representativeness of the test-
adequacy criterion based on MT for the test-adequacy crite-
rion based on NEM . Thus, the closer Eff(T ) is to 1.0, the
more effective T is. When Eff(T ) is equal to 1.0, technique
T is able to select a subset of mutants that fully represent
the whole set of non-equivalent mutants.

As measuring the effectiveness of a subset of mutants in
our study requires a series of test suites, we used a proce-
dure similar to the procedure used by Offutt et al. [31] to
construct the test suites. In particular, for a subset of mu-
tants, we continually selected k test cases from the test pool
until the test suite composed of all the selected test cases is
able to kill all the mutants in the subset. Offutt et al. [31]
selected 200 (i.e., k=200) test cases each time when con-
structing such a test suite. That is to say, the numbers of
test cases in test suites used by Offutt et al. are multiples
of 200 (i.e., 200, 400, 600, etc.). Actually, Offutt et al. used
this way of test-suite construction to simulate the situation
of applying mutation testing as a test-adequacy criterion,
and the number of test cases selected each time represents
an increment of test cases in the process of building up each
test suite for evaluating mutant selection. Considering that
testers may use different incremental numbers to create the
test suite, we used four different incremental numbers (i.e.,
k=25, 50, 100, and 200) including Offutt et al.’s incremen-
tal number. In our study, given an incremental number, we
constructed 50 test suites when measuring the effectiveness
of a subset of selected mutants.

2.6 Experimental Procedure
For each subject, we used all the 108 mutation operators

in Proteum to generate mutants. The fifth column in Ta-
ble 1 lists the number of all the generated mutants for each
subject.

After acquiring all the mutants, for each subject, we exe-
cuted each test case in the test pool of the subject against
each mutant of the subject and the subject in the origi-
nal form. Thus, we acquired the information of which mu-
tants are killed by which test cases for each subject. Similar
to Siami Namin et al. [37], we deemed mutants that can-
not be killed by any test case as equivalent mutants in our
study. The last column in Table 1 lists the number of non-
equivalent mutants for each subject.

For a subject, different operator-based mutant-selection
techniques select different numbers of mutants. Thus, it
is difficult for us to compare all the three techniques with
random mutant selection on the same ground. Therefore,
we used the following way to compare an operator-based
mutant-selection technique with random mutant selection.

When comparing an operator-based mutant-selection tech-
nique (denoted as T ) with random mutant selection on one
subject, we used T to select a subset of mutants (denoted



Table 2: Offutt et al.’s technique v.s. random mutant selection

Incr Program PT PT2 RE SC SC2 TC TI
Result Eff Dev Eff Dev Eff Dev Eff Dev Eff Dev Eff Dev Eff Dev

Offutt et al. 99.11 0.27 99.84 0.17 99.09 0.29 99.94 0.07 99.29 0.23 99.54 0.21 99.57 0.32
one- 50% 99.09 0.21 99.52 0.14 99.20 0.15 99.11 0.38 99.09 0.29 98.16 0.49 99.76 0.11

round 75% 99.35 0.16 99.74 0.10 99.48 0.09 99.44 0.26 99.21 0.25 98.56 0.37 99.84 0.07
25 random 100% 99.52 0.12 99.79 0.08 99.57 0.07 99.58 0.18 99.44 0.17 98.81 0.30 99.87 0.05

two- 50% 98.60 0.28 99.40 0.16 99.04 0.19 99.38 0.24 99.03 0.30 98.15 0.59 99.67 0.15
round 75% 99.02 0.22 99.58 0.12 99.30 0.14 99.50 0.20 99.32 0.23 98.66 0.34 99.77 0.11

random 100% 99.18 0.19 99.70 0.10 99.40 0.11 99.59 0.17 99.52 0.18 98.86 0.30 99.80 0.10

Offutt et al. 99.26 0.21 99.91 0.13 99.27 0.20 99.97 0.04 99.40 0.23 99.68 0.11 99.66 0.17
one- 50% 99.14 0.21 99.58 0.12 99.42 0.12 99.31 0.34 99.17 0.27 98.62 0.44 99.79 0.11

round 75% 99.47 0.15 99.79 0.08 99.57 0.08 99.53 0.25 99.32 0.23 98.95 0.33 99.88 0.06
50 random 100% 99.60 0.12 99.89 0.06 99.61 0.08 99.62 0.20 99.58 0.15 99.13 0.25 99.90 0.06

two- 50% 98.68 0.30 99.48 0.14 99.22 0.16 99.48 0.23 99.32 0.25 98.60 0.50 99.73 0.14
round 75% 99.18 0.22 99.67 0.10 99.37 0.14 99.64 0.17 99.46 0.20 98.95 0.32 99.80 0.11

random 100% 99.28 0.21 99.77 0.08 99.53 0.09 99.68 0.14 99.65 0.14 99.18 0.25 99.90 0.06

Offutt et al. 99.34 0.23 99.97 0.05 99.54 0.18 99.98 0.02 99.62 0.21 99.80 0.13 99.74 0.20
one- 50% 99.32 0.20 99.66 0.11 99.53 0.10 99.43 0.34 99.36 0.25 98.99 0.38 99.83 0.10

round 75% 99.56 0.15 99.77 0.08 99.65 0.08 99.65 0.21 99.52 0.19 99.23 0.28 99.92 0.05
100 random 100% 99.62 0.13 99.93 0.04 99.71 0.07 99.73 0.15 99.68 0.14 99.37 0.23 99.94 0.04

two- 50% 99.00 0.27 99.46 0.15 99.36 0.15 99.60 0.20 99.44 0.23 99.05 0.38 99.74 0.17
round 75% 99.20 0.23 99.59 0.12 99.50 0.12 99.70 0.16 99.69 0.15 99.32 0.25 99.88 0.08

random 100% 99.46 0.19 99.76 0.08 99.61 0.10 99.75 0.12 99.72 0.13 99.45 0.21 99.90 0.06

Offutt et al. 99.54 0.26 99.97 0.07 99.65 0.17 99.99 0.01 99.60 0.18 99.89 0.11 99.76 0.20
one- 50% 99.46 0.20 99.72 0.08 99.63 0.11 99.64 0.25 99.54 0.22 99.26 0.35 99.93 0.06

round 75% 99.59 0.17 99.83 0.07 99.73 0.09 99.75 0.16 99.62 0.17 99.47 0.27 99.94 0.05
200 random 100% 99.79 0.09 99.92 0.04 99.83 0.06 99.78 0.13 99.75 0.13 99.60 0.21 99.95 0.04

two- 50% 99.15 0.28 99.61 0.12 99.48 0.14 99.70 0.18 99.65 0.18 99.31 0.33 99.84 0.12
round 75% 99.35 0.25 99.73 0.09 99.65 0.10 99.77 0.14 99.78 0.12 99.54 0.23 99.89 0.08

random 100% 99.57 0.19 99.85 0.06 99.71 0.09 99.82 0.10 99.81 0.11 99.63 0.20 99.93 0.05

as MT ) from all the non-equivalent mutants (denoted as
NEM) of the subject. To compare T with random mutant
selection, we used each random mutant-selection technique
to select a series of subsets of mutants from NEM , each
subset containing 50% ∗ |MT |, 75% ∗ |MT |, and 100% ∗ |MT |
mutants. To reduce accidental results, for each random
technique and each size of subsets, we randomly selected
m subsets of the same size. That is to say, for each subject
and each random technique, we randomly selected m sub-
sets each containing 50% ∗ |MT | mutants, m subsets each
containing 75% ∗ |MT | mutants, and m subsets each con-
taining 100%∗ |MT | mutants. After acquiring the subsets of
mutants selected with T and the random mutant-selection
techniques, we used the metric defined in Section 2.5 to mea-
sure the effectiveness of each technique. For each random
technique and each size of subsets (e.g., using a random tech-
nique to select 100% ∗ |MT | mutants), we used the average
effectiveness of the m subsets as the effectiveness of that
technique with that size. In our study, we set the value of
m as 50, which is large enough to avoid accidental results.

We further studied the stability of each technique in terms
of standard deviation of its effectiveness. For a random tech-
nique, we calculated the standard deviation over the 50 test
suites and the 50 subsets of mutants; and for an operator-
based technique, we calculated the standard deviation over
the 50 test suites.

3. RESULTS AND ANALYSIS
In this section, we present and analyze the results of com-

parison to answer the two research questions. We further

analyze the ability of reduction in mutants for the three
operator-based mutant-selection techniques. The detailed
results of our study are available at https://sites.google.
com/site/asergrp/projects/ranmu.

3.1 Effectiveness
Tables 2, 3, and 4 depict the average effectiveness values

and standard-deviation values for comparing Offutt et al.’s
technique, Barbosa et al.’s technique, and Siami Namin et
al.’s technique with random mutant selection, respectively6.
In the three tables, we use Incr to represent the four in-
cremental numbers for creating test suites for evaluating se-
lected mutants; Eff to represent average effectiveness val-
ues measured by the metric defined in Section 2.5; Dev to
represent standard-deviation values among the correspond-
ing effectiveness values; and 50%, 75%, and 100% to repre-
sent the use of random mutant selection to select 50%, 75%,
and 100% of the number of mutants selected by each of the
three operator-based mutant-selection techniques. Both the
effectiveness values and the standard-deviation values are in
percentage points. To make the difference clear, we keep
two digits after the decimal point for each value. From the
three tables, we have the following observations related to
the average effectiveness.

First, our results confirm that all the three operator-based
mutant-selection techniques are able to achieve good effec-
tiveness values. In other words, our results confirm that all

6Due to space limit, we use tables instead of figures to
present the experimental results. Tables are more concise
but less intuitive than figures.



Table 3: Barbosa et al.’s technique v.s. random mutant selection

Incr Program PT PT2 RE SC SC2 TC TI
Result Eff Dev Eff Dev Eff Dev Eff Dev Eff Dev Eff Dev Eff Dev

Barbosa et al. 99.20 0.21 99.89 0.13 99.42 0.18 99.97 0.02 99.73 0.13 99.57 0.13 99.62 0.23
one- 50% 99.61 0.10 99.91 0.04 99.64 0.06 99.50 0.21 99.45 0.18 98.93 0.26 99.85 0.07

round 75% 99.73 0.07 99.93 0.03 99.75 0.05 99.60 0.18 99.61 0.14 99.26 0.19 99.91 0.04
25 random 100% 99.80 0.05 99.94 0.03 99.81 0.04 99.76 0.11 99.73 0.10 99.45 0.15 99.92 0.04

two- 50% 99.39 0.16 99.86 0.06 99.54 0.09 99.59 0.16 99.46 0.19 99.01 0.25 99.79 0.10
round 75% 99.65 0.11 99.93 0.03 99.66 0.05 99.70 0.11 99.68 0.13 99.30 0.18 99.85 0.07

random 100% 99.78 0.08 99.94 0.03 99.75 0.05 99.76 0.09 99.77 0.09 99.47 0.15 99.91 0.04

Barbosa et al. 99.31 0.23 99.96 0.05 99.60 0.19 99.98 0.02 99.82 0.11 99.70 0.14 99.73 0.20
one- 50% 99.68 0.10 99.94 0.04 99.71 0.06 99.63 0.18 99.46 0.19 99.29 0.22 99.88 0.06

round 75% 99.78 0.07 99.96 0.02 99.80 0.04 99.74 0.13 99.72 0.11 99.47 0.17 99.92 0.04
50 random 100% 99.83 0.05 99.97 0.02 99.85 0.04 99.75 0.11 99.78 0.09 99.61 0.14 99.95 0.03

two- 50% 99.49 0.17 99.89 0.04 99.57 0.08 99.67 0.15 99.61 0.16 99.27 0.22 99.85 0.08
round 75% 99.69 0.10 99.96 0.02 99.73 0.05 99.74 0.12 99.74 0.12 99.53 0.16 99.91 0.05

random 100% 99.82 0.08 99.97 0.02 99.79 0.04 99.80 0.09 99.82 0.08 99.67 0.13 99.93 0.04

Barbosa et al. 99.45 0.21 99.96 0.07 99.66 0.17 99.99 0.02 99.84 0.12 99.84 0.11 99.77 0.16
one- 50% 99.77 0.09 99.96 0.02 99.78 0.06 99.69 0.17 99.62 0.16 99.48 0.20 99.92 0.05

round 75% 99.86 0.06 99.97 0.02 99.84 0.04 99.77 0.13 99.77 0.11 99.63 0.16 99.94 0.04
100 random 100% 99.88 0.04 99.97 0.02 99.89 0.03 99.84 0.09 99.84 0.09 99.78 0.11 99.96 0.03

two- 50% 99.61 0.16 99.94 0.03 99.70 0.07 99.74 0.12 99.65 0.16 99.54 0.19 99.89 0.07
round 75% 99.79 0.09 99.96 0.02 99.79 0.05 99.78 0.10 99.83 0.09 99.71 0.14 99.91 0.06

random 100% 99.87 0.06 99.98 0.02 99.84 0.04 99.84 0.08 99.89 0.06 99.80 0.11 99.94 0.04

Barbosa et al. 99.61 0.24 99.99 0.01 99.80 0.15 99.99 0.01 99.90 0.06 99.89 0.11 99.79 0.20
one- 50% 99.82 0.09 99.96 0.02 99.83 0.06 99.78 0.14 99.70 0.15 99.63 0.20 99.95 0.04

round 75% 99.89 0.05 99.99 0.01 99.89 0.04 99.83 0.09 99.87 0.08 99.82 0.13 99.96 0.03
200 random 100% 99.92 0.04 99.98 0.01 99.92 0.03 99.89 0.07 99.87 0.08 99.87 0.10 99.97 0.03

two- 50% 99.71 0.15 99.95 0.03 99.77 0.08 99.81 0.11 99.81 0.11 99.67 0.18 99.90 0.07
round 75% 99.87 0.07 99.99 0.01 99.85 0.05 99.86 0.08 99.90 0.07 99.82 0.13 99.95 0.04

random 100% 99.92 0.05 99.98 0.01 99.89 0.04 99.88 0.08 99.93 0.05 99.88 0.10 99.96 0.03

the three sets of mutation operators are sufficient. Accord-
ing to the criterion proposed by Offutt et al. [31], a mutant-
selection technique is good in effectiveness if it achieves an
average effectiveness value over 99% using test suites created
with 200 as the incremental number7. Based on this crite-
rion, all the three technique are good in effectiveness, except
for Siami Namin et al.’s technique on tcas (i.e., 98.79%).

Second, despite the good effectiveness of the three operator-
based mutant-selection techniques, none of them is superior
to random mutant selection when selecting the same number
of mutants. Both random techniques outperform Offutt et
al.’s technique for four subjects (i.e., print tokens, replace,
schedule2, and tot info) out of seven. This trend is consis-
tent for all the four incremental numbers. Both random
techniques consistently outperform Barbosa et al.’s tech-
nique for print tokens, replace, and tot info with differ-
ent incremental numbers. For print tokens2 and schedule2,
the two random techniques achieve almost the same aver-
age effectiveness as Barbosa et al.’s technique. Both ran-
dom techniques consistently outperform Siami Namin et al.’s
technique for replace, tcas, and tot info with different in-
cremental numbers. The two-round random technique also
achieves similar effectiveness values as Siami Namin et al.’s
technique for schedule for different incremental numbers.
Overall, for any subject, the difference between one operator-
based mutant-selection technique and its corresponding ran-
dom mutant-selection techniques is quite small. This ob-

7Note that Offutt et al.’s criterion [31] of using an effective-
ness value over 99% is specific to the incremental number of
200.

servation indicates that random mutant selection is still as
competitive as or even better than operator-based mutant-
selection in terms of average effectiveness.

Third, compared with the three operator-based mutant-
selection techniques, random mutant selection is able to
achieve competitive effectiveness when selecting fewer mu-
tants. In general, for any random technique and any sub-
ject, the differences between selecting 50%, 75%, and 100%
mutants are quite small. Thus, the difference between each
operator-based mutant-selection technique and its correspond-
ing random techniques selecting 50% or 75% mutants are
also small. Based on Offutt et al.’s criterion, for each operator-
based mutant-selection technique, using its corresponding
random techniques to select 50% is also good in effective-
ness, since the average effectiveness values are also over 99%
for all the subjects using test suites created with incremen-
tal number 200. Since there is no sophisticated strategy
in random mutant selection, this observation indicates that
mutants selected by any of the three operator-based mutant-
selection techniques are likely to be more than necessary.

Fourth, when comparing the two random techniques, the
one-round technique is less effective than the two-round tech-
nique for smaller subjects, but more effective than the two-
round technique for larger subjects. We suspect the reason
to be that the one-round technique may fail to select any
mutant for some important mutation operators when the
number of mutants generated with these mutation operators
is small. Without mutants generated with these mutation
operators, the selected set of mutants is not as representative
as those containing mutants generated with all the different



Table 4: Siami Namin et al.’s technique v.s. random mutant selection

Incr Program PT PT2 RE SC SC2 TC TI
Result Eff Dev Eff Dev Eff Dev Eff Dev Eff Dev Eff Dev Eff Dev

Siami Namin et al. 99.71 0.14 99.95 0.02 99.36 0.11 99.60 0.13 99.60 0.19 97.58 0.54 98.94 0.32
one- 50% 99.30 0.17 99.70 0.10 99.24 0.14 99.11 0.37 98.99 0.30 98.23 0.48 99.68 0.14

round 75% 99.47 0.13 99.80 0.07 99.42 0.12 99.40 0.26 99.17 0.29 98.60 0.38 99.75 0.12
25 random 100% 99.57 0.10 99.89 0.05 99.56 0.08 99.49 0.21 99.43 0.18 98.94 0.27 99.85 0.07

two- 50% 98.71 0.26 99.61 0.11 99.01 0.18 99.20 0.31 99.08 0.26 98.30 0.46 99.57 0.19
round 75% 99.13 0.21 99.67 0.10 99.26 0.14 99.49 0.20 99.34 0.21 98.70 0.32 99.71 0.13

random 100% 99.38 0.16 99.85 0.06 99.37 0.11 99.59 0.16 99.51 0.18 98.97 0.27 99.72 0.14

Siami Namin et al. 99.81 0.10 99.97 0.02 99.47 0.11 99.66 0.13 99.64 0.19 98.08 0.5 99.16 0.42
one- 50% 99.31 0.17 99.83 0.08 99.38 0.12 99.21 0.41 99.13 0.28 98.72 0.42 99.81 0.09

round 75% 99.53 0.13 99.85 0.06 99.55 0.09 99.48 0.25 99.42 0.21 98.99 0.31 99.80 0.10
50 random 100% 99.64 0.11 99.91 0.04 99.66 0.07 99.57 0.22 99.52 0.16 99.14 0.25 99.86 0.08

two- 50% 99.03 0.23 99.62 0.11 99.22 0.16 99.40 0.29 99.33 0.25 98.79 0.39 99.64 0.18
round 75% 99.32 0.20 99.74 0.09 99.37 0.13 99.60 0.18 99.43 0.21 99.07 0.29 99.69 0.17

random 100% 99.51 0.15 99.87 0.05 99.50 0.11 99.64 0.16 99.63 0.15 99.28 0.22 99.79 0.11

Siami Namin et al. 99.87 0.10 99.98 0.02 99.61 0.08 99.73 0.07 99.68 0.20 98.56 0.51 99.25 0.40
one- 50% 99.52 0.16 99.78 0.08 99.47 0.12 99.46 0.33 99.31 0.27 99.12 0.33 99.79 0.13

round 75% 99.63 0.13 99.92 0.04 99.64 0.08 99.61 0.23 99.54 0.18 99.36 0.24 99.86 0.09
100 random 100% 99.76 0.09 99.95 0.03 99.73 0.06 99.67 0.19 99.65 0.16 99.45 0.21 99.91 0.06

two- 50% 99.16 0.25 99.64 0.11 99.32 0.15 99.57 0.23 99.43 0.22 99.12 0.32 99.64 0.20
round 75% 99.43 0.19 99.83 0.07 99.54 0.11 99.68 0.16 99.62 0.17 99.33 0.25 99.78 0.14

random 100% 99.61 0.17 99.90 0.05 99.64 0.09 99.75 0.13 99.71 0.14 99.49 0.20 99.83 0.10

Siami Namin et al. 99.94 0.04 99.99 0.01 99.67 0.07 99.75 0.10 99.79 0.18 98.79 0.44 99.44 0.37
one- 50% 99.59 0.17 99.83 0.07 99.20 0.11 99.61 0.27 99.58 0.21 99.39 0.29 99.86 0.10

round 75% 99.76 0.11 99.96 0.02 99.74 0.08 99.74 0.18 99.68 0.16 99.52 0.23 99.92 0.06
200 random 100% 99.80 0.09 99.96 0.02 99.80 0.07 99.78 0.14 99.73 0.14 99.60 0.21 99.91 0.06

two- 50% 99.33 0.24 99.77 0.09 99.50 0.14 99.68 0.20 99.60 0.19 99.33 0.33 99.78 0.16
round 75% 99.57 0.17 99.85 0.05 99.64 0.11 99.75 0.15 99.72 0.14 99.53 0.24 99.85 0.10

random 100% 99.70 0.15 99.94 0.03 99.71 0.09 99.81 0.11 99.80 0.12 99.69 0.18 99.85 0.11

mutation operators. However, for the two-round technique,
the distribution of selected mutants over the mutation oper-
ators may be very different from the distribution of all the
non-equivalent mutants over the mutation operators when
the subject becomes large. Thus, mutants selected by the
two-round technique may be less representative than those
selected by the one-round technique for large subjects.

Finally, although different incremental numbers impact
the effectiveness values for any experimented techniques and
any subjects, the preceding observations are consistent for
different incremental numbers. Typically, with the increase
of the incremental number, the effectiveness value for any
technique on any subject also increases. We suspect the
reason to be that different incremental numbers result in
different sizes of created test suites and the differences in
test-suite sizes lead to the differences in effectiveness values.
We further checked the average sizes of test suites under dif-
ferent incremental numbers and corroborated this suspicion.
Table 5 depicts average test-suite sizes for measuring Offutt
et al.’s technique on the seven subjects under different in-
cremental numbers. The trends in average test-suite sizes
for other experimented techniques are similar. Due to space
limit, we do not present the average test-suite sizes for them
here. Note that, due to the nature of the metric used in our
study, the test suites created with any incremental number
usually are of different sizes, and thus the average test-suite
sizes are not multiples of 25, 50, 100, or 200.

Table 5: Average test-suite sizes for measuring Of-

futt et al.’s technique

Program Increment Increment Increment Increment
25 50 100 200

PT 309 479 725 1190
PT2 196 307 471 725
RE 638 1019 1609 2445
SC 237 383 591 894
SC2 290 464 710 970
TC 474 700 910 1175
TI 185 261 351 468

3.2 Stability
Based on the standard-deviation values depicted in Ta-

bles 2, 3, and 4, we have the following observations on com-
paring the stability of the three operator-based mutant-selection
techniques and random mutant-selection techniques.

First, all the experimented techniques are quite stable in
effectiveness. For any experimented technique, the standard-
deviation values are typically less than 0.20 percentage points,
and standard-deviation values are rarely larger than 0.30
percentage points. Most of those exceptionally large standard-
deviation values come from Siami Namin et al.’s technique
and random techniques with 50% mutants on tcas, which
is the smallest subject. Siami Namin et al.’s technique is
less effective and less stable for tcas. Random techniques
seem to be less stable for smaller subjects but more stable
for larger subjects.



Table 6: Percentage of selected mutants

Program Offutt Barbosa Siami Namin
et al. (%) et al. (%) et al. (%)

PT 6.00 14.89 7.33
PT2 5.90 18.89 8.64
RE 6.84 16.30 6.62
SC 7.77 14.11 7.11
SC2 8.09 14.84 7.88
TC 6.07 15.31 7.08
TI 10.27 17.92 7.29

Average 7.28 16.04 7.42

Second, similar to the observation on average effective-
ness, any of the three operator-based mutant-selection tech-
niques is not more stable than random mutant selection
when selecting the same number of mutants. Both random
techniques are more stable than Offutt et al.’s technique for
print tokens, replace, schedule2, and tot info; and are as
stable as Offutt et al.’s technique for print tokens2. Both
random techniques are more stable than Barbosa et al.’s
technique for print tokens, replace, and tot info; and are
as stable as Barbosa et al.’s technique for print tokens2,
schedule2, and tcas. Both random techniques are more sta-
ble than Siami Namin et al.’s technique for schedule2, tcas,
and tot info; and are as stable as Siami Namin et al.’s tech-
nique for replace. It is interesting to note that a technique
achieving better effectiveness values is typically also more
stable.

Third, when comparing the two random techniques, the
one-round technique seems to be less stable than the two-
round technique for smaller subjects, but more stable than
the two-round technique for larger subjects. This observa-
tion is in accordance with the observation on comparing the
effectiveness of the two random techniques. Furthermore,
given a random mutant-selection technique, selecting more
mutants is more stable than selecting fewer mutants.

3.3 Reduction in Mutants
As the preceding results indicate that none of the three

operator-based mutant-selection techniques is superior to
random mutant selection in terms of either effectiveness or
stability, we further examine their ability to reduce the num-
ber of mutants. Table 6 depicts the percentage of selected
mutants among all the non-equivalent mutants for each sub-
ject. From this table, we have the following observations.

First, all the three operator-based mutant-selection tech-
niques are able to substantially reduce the number of mu-
tants. Either Offutt et al.’s technique or Siami Namin et
al.’s technique is able to reduce about 93% mutants (i.e.,
select about 7% mutants), while Barbosa et al.’s technique
is able to reduce 84% mutants (i.e., select about 16% mu-
tants). Our result for Siami Namin et al.’s technique is sim-
ilar to that reported by Siami Namin et al. [37] (i.e., 92.6%).
Our result for Offutt et al.’s technique is different from that
reported by Offutt et al. [31] (i.e., 78%). We suspect the
reason to be that we considered much more mutation op-
erators than Offutt et al. Our result for Barbosa et al.’s
technique is also different from that reported by Barbosa et
al. [4] (i.e., 78%). We suspect the reason to be that Barbosa
et al. used 71 mutation operators (which were implemented
in Proteum by 2001) rather than 108 mutation operators in
our study. This result also indicates that Barbosa et al.’s
technique selects much more mutants than either Offutt et
al.’s technique or Siami Namin et al.’s technique.

Second, for each technique, the precentage of selected mu-
tants does not differ much for a different subject. This obser-
vation indicates that the reduction in mutants is highly pre-
dictable for any of the three operator-based mutant-selection
techniques. Furthermore, when applying random mutant se-
lection in practice, we may use the average ratio of selected
mutants for an operator-based mutant-selection technique
as a guidance to determine the number of mutants to select.
For example, randomly selecting 7% mutants from mutants
generated with the 108 Proteum mutation operators is likely
to achieve similar effectiveness and stability as Offutt et al.’s
technique.

4. DISCUSSION
In this section, we discuss the following issues related to

our study: threats to validity, cost of mutant selection, and
some further implications of our experimental results.

4.1 Threats to Validity
4.1.1 Internal Validity

Threats to internal validity are concerned with uncon-
trolled factors that may also be responsible for the results.
In our study, the main threat to internal validity is the pos-
sible faults in our experiments and result analysis. To re-
duce this threat, we used Proteum for mutant generation.
Furthermore, we reviewed all the code that we produced
for our experiments and analysis before conducting the ex-
periments. Note that the experimented techniques are all
straightforward to implement and their implementation is
thus less likely to threaten the internal validity.

4.1.2 External Validity
Threats to external validity are concerned with whether

the findings in our study are generalizable for other situa-
tions. The main threat to external validity lies in the rep-
resentativeness of the subjects. To reduce this threat, we
chose seven subjects written in C and these subjects con-
tain a wide range of data and control structures commonly
used in C (or even C++ and Java) programs [37]. Conduct-
ing more experiments using more subjects of larger sizes and
with structures not contained in our subjects is one way to
further reduce this threat. Note that, when experimenting
with subjects containing object-oriented structures, muta-
tion operators on these structures [26] should also be con-
sidered.

4.1.3 Construct Validity
Threats to construct validity are concerned with whether

the measurement in our study reflects real-world situations.
The main threat to construct validity is the way we mea-
sured the effectiveness of selected mutants. To reduce this
threat, we used a metric commonly used by previous stud-
ies, such as Offutt et al. [31] and Barbosa et al. [4]. Further
reduction of this threat requires the design of better metrics
to assess the effectiveness of selected mutants in mutation
testing. The metric used in our study actually measures
to what extent the selected mutants are representative for
mutants generated with all the mutation operators. Indeed,
users of mutant-selection techniques may be more concerned
with the representativeness of the selected mutants for real
faults. Such concerns may be alleviated by previous empiri-
cal studies [3, 13] showing evidence that mutants generated
with mutation operators are similar to real faults in evalu-
ating test effectiveness. But it is worthwhile of conducting



empirical studies directly on representativeness of the se-
lected mutants for real faults in future work. Furthermore,
the metric used in our study requires a series of randomly
created test suites, but test suites used in practice may not
be created randomly.

4.2 Cost of Mutant Selection
According to Offutt et al. [31], the expensiveness of muta-

tion testing mainly lies in the need to compile and execute a
large number of mutants against each test case. Compared
with the cost of compiling and executing mutants, the cost
of mutant selection is typically very small. In our study, we
used Proteum as the platform for mutant selection. In par-
ticular, we ran Proteum on a PC with a Genuine Intel CPU
T1400 at 1.83GHz and 1GB memory running SUSE Linux
(version 2.6.25.5-1.1) with the tcsh shell (version 6.15.00).
For each subject, Proteum generated the selected mutants in
a few seconds. For the smallest subject (i.e., tcas), the time
is less than one second; for the largest subject (i.e., replace),
the time is less than four seconds; for each other subject, the
time is less than two seconds. But the total time for us to
compile and execute all the mutants for all the seven sub-
jects against all the test cases under the same hardware and
software environment is about one month CPU time. Note
that Offutt et al.’s, Barbosa et al.’s, and Siami Namin et al.’s
techniques averagely select 7.28%, 16.04%, and 7.42% mu-
tants, respectively. That is to say, compiling and executing
mutants selected by one of the three operator-based mutant-
selection techniques for all the seven subjects against all the
test cases may take two to five days. As a result, for either
operator-based mutant selection or random mutant selec-
tion, there is little difference in the cost of mutant selection.

One issue that we may need to consider is the way that
Barbosa et al.’s and Siami Namin et al.’s techniques use
to determine mutant operators. In particular, both tech-
niques determine the set of sufficient mutation operators us-
ing training data acquired through compiling and executing
mutants against test cases. That is to say, both techniques
may require some extra cost besides compiling and execut-
ing the selected mutants. However, as their cross-validation
indicates that the set of sufficient mutation operators deter-
mined with some programs may also be applicable for other
programs, the extra cost of either Barbosa et al.’s technique
or Siami Namin et al.’s technique should be considerably
small.

4.3 Further Implications
The findings of our study have the following implications.
First, as the three operator-based mutant-selection tech-

niques are not superior to the two random mutant-selection
techniques in terms of either effectiveness or stability, ran-
dom mutant-selection techniques may be a better choice in
practice due to their flexibility in controlling the number of
selected mutants. Note that random mutant-selection tech-
niques can achieve similar effectiveness and stability even
when selecting much fewer mutants.

Second, the findings in our study also imply that we may
need much fewer mutants in mutation testing than those
selected by existing operator-based mutant-selection tech-
niques. That is to say, it is very likely that new mutant-
selection techniques can be invented to select much fewer
mutants but with similar or even better effectiveness and
stability. Random mutant selection may be a good starting
point.

Third, considering the nature of random mutant selec-
tion, the following difference between random mutant selec-
tion and operator-based mutant selection may be an expla-
nation of the surprisingly good results of random mutant
selection. Random mutant selection selects mutants on the
basis of individual mutants, but operator-based mutant se-
lection needs to include or exclude all the mutants generated
with one mutation operator as a whole. If this difference
accounts for the goodness of random mutant selection, tech-
niques that both consider the difference in operators and se-
lect mutants individually may outperform existing random
or operator-based mutant-selection techniques.

5. RELATED WORK
We next discuss related work on mutation testing and

analysis, and mutant selection.

5.1 Mutation Testing and Analysis
Mutation testing is a fault-based testing approach, which

is first proposed by Hamlet [17] and DeMillo et al. [10]. In
mutation testing, the primary aim is to provide a rigorous
test-adequacy criterion that can help enhance test suites.
For the software under test (SUT), a tester can use muta-
tion operators to generate a number of mutants. After iden-
tifying equivalent mutants, the tester can use the remaining
non-equivalent mutants to enhance test suites. For example,
if a test suite cannot kill all the remaining non-equivalent
mutants, more test cases may be required to enhance the
test suite. Another usage of mutation is mutation analy-
sis, whose aim is not to enhance test suites but to provide
assessment of test effectiveness to facilitate experiments in
testing research. It is interesting to note that researchers
such as Briand et al. [6] have already used mutation faults
to measure test effectiveness even before the empirical con-
firmation of their appropriateness by Andrews et al. [3] and
Do et al. [13].

For both mutation testing and analysis, a major concern
is the expensiveness of compiling and executing a large num-
ber of mutants. In the literature, there are mainly four cate-
gories of techniques to reduce this cost. The first category is
to select a subset of mutants as substitute. As our research
in this paper falls into this category, we detailedly discuss re-
search in this category in Section 5.2. The second category is
to use low-cost ways to determine which test case kills which
mutant. Weak mutation [19] and firm mutation [42] are two
representative techniques in this category. The third cate-
gory is to use efficient ways to generate, compile, and execute
mutants. As mutants only slightly differ from the original
program, taking the advantage of the commonalities of the
mutants may accelerate the generation, compilation, and
execution of the mutants. Compiler-integrated mutation [9]
and schema-based mutation [39] are two representative tech-
niques in this category. The last category is to compile and
execute mutants in parallel. Researchers have investigated
parallel compilation and execution of mutants on different
computer architectures [23, 33]. Techniques in different cat-
egories are typically complementary to each other, as they
can be combined together to reduce the cost of mutant com-
pilation and execution.

The second concern in mutation testing and analysis is
the cost in identifying equivalent mutants. In the litera-
ture, researchers proposed techniques for detecting equiva-
lent mutants statically [29, 32, 18] or dynamically [16, 36].
For mutation testing, there is still another concern: the cost



of acquiring mutation-adequate test suites. In the literature,
researchers also proposed some techniques to automatically
generate mutation-adequate test suites [12, 30, 25]. Tech-
niques addressing both concerns are also complementary to
research on mutant selection, the focus of our research in
this paper.

5.2 Mutant Selection
Mutant selection is an important way to reduce the cost

of mutation testing and analysis. Since Mathur [27] first
proposed the idea of excluding some mutation operators in
mutation testing, several researchers have studied operator-
based mutant selection. In operator-based mutant selection,
researchers first determine a set of mutation operators, and
then select only mutants generated with this set of mutation
operators.

Wong and Mathur [40, 41] studied 2 mutation operators
among the 22 mutation operators in Mothra [11], and found
that mutants generated with these 2 mutation operators can
achieve similar results as mutants generated with all the 22
mutation operators. Offutt et al. [31] experimentally deter-
mined 5 mutation operators among the 22 mutation oper-
ators in Mothra, and found that the effectiveness values of
the 5 mutation operators are between 99.0% and 100% on
ten subjects, with the average 99.5%. Note that the effec-
tiveness values are based on test suites created with incre-
mental number 200. Furthermore, Offutt et al. also found
that, without any of the 5 mutation operators, the effective-
ness value on some subject would be lower than 99%, which
they defined as the minimal requirement of a set of suffi-
cient mutation operators for mutation testing. Note that
Wong and Mathur’s 2 mutation operators are among Offutt
et al.’s 5 mutation operators. Barbosa et al. [4] proposed six
guidelines to determine sufficient mutation operators. The
application of some of the six guidelines requires compila-
tion and execution of a large number of mutants. Based on
the six guidelines, Barbosa et al. determined 10 mutation
operators, and found that, using the same way as Offutt
et al. to measure the effectiveness, the effectiveness values
of the 10 mutation operators on 27 subjects (which were
also used to determine the 10 mutation operators) are be-
tween 95.8% and 100%, with the average of 99.6%. Siami
Namin et al. [37] leveraged variable reduction to determine
28 mutation operators using the execution information of a
subset of mutants. As their work aims at mutation analysis
rather than mutation testing, they evaluated the 28 muta-
tion operators on the Siemens programs only in the context
of mutation analysis. They did not provide evidence about
whether the 28 operators are sufficient in mutation testing.

Compared with studies on operator-based mutation se-
lection, studies on random mutant selection, which Acree
et al. [1] first proposed in 1979, are limited. Wong and
Mathur [40, 41] empirically studied the technique of ran-
domly selecting 10% to 40% mutants generated with 22 mu-
tation operators in Mothra. Barbosa et al. [4] used ran-
dom mutant selection as a control technique when evaluat-
ing their 10 mutation operators. In their study, Barbosa et
al.’s 10 mutation operators are more effective than random
mutant selection. Our study differs from previous studies
on random mutant selection for mutation testing as follows.
First, our study investigates some operator-based techniques
(i.e., Offutt et al.’s technique [31] and Siami Namin et al.’s
technique [37]) previously not empirically compared with

random mutant selection, and our results on Barbosa et
al.’s technique [4] contradict previous results. Second, our
study investigates two random mutant-selection techniques,
while previous studies investigated only one random mutant-
selection technique. Third, our study uses larger subjects
than previous studies on random mutant selection. Finally,
our study investigates both average effectiveness and stan-
dard deviation of effectiveness, while previous studies inves-
tigate only average effectiveness.

6. CONCLUSION AND FUTURE WORK
In this paper, we report an empirical study attempting

to answer one important open question in the field of mu-
tant selection for mutation testing. Our experimental results
show that none of the three experimented operator-based
mutant-selection techniques is superior to random mutant
selection in terms of either effectiveness or stability. Fur-
thermore, random mutant selection can still achieve compet-
itive results when selecting much fewer mutants than each
operator-based mutant-selection technique.

In future work, we plan to investigate the following is-
sues. First, as Siami Namin et al.’s mutation operators
(which are determined for mutation analysis) are quite effec-
tive in mutation testing, we are thus interested in whether
random and operator-based mutant-selection techniques for
mutation testing are also effective in the context of muta-
tion analysis. Second, we plan to extend our experiments
to other and larger subjects to further corroborate the find-
ings in our study. Finally, we also plan to investigate new
techniques of mutant selection, such as techniques combin-
ing random and operator-based mutant selection as well as
techniques on the basis of individual mutants.
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