
Guided Path Exploration for Regression Test Generation

Kunal Taneja1, Tao Xie1, Nikolai Tillmann2, Jonathan de Halleux2, Wolfram Schulte2

1Department of Computer Science, North Carolina State University, Raleigh, NC, 27695, USA
2Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA

1{ktaneja, txie}@ncsu.edu, 2{nikolait, jhalleux, schulte}@microsoft.com

Abstract
Regression test generation aims at generating a test suite

that can detect behavioral differences between the original

and the modified versions of a program. Regression test

generation can be automated by using Dynamic Symbolic

Execution (DSE), a state-of-the-art test generation tech-

nique, to generate a test suite achieving high structural cov-

erage. DSE explores paths in the program to achieve high

structural coverage, and exploration of all these paths can

often be expensive. However, if our aim is to detect behav-

ioral differences between two versions of a program, we do

not need to explore all paths in the program as not all these

paths are relevant for detecting behavioral differences. In

this paper, we propose a guided path exploration approach

that avoids exploring irrelevant paths and gives priority to

more promising paths (in terms of detecting behavioral dif-

ferences) such that behavioral differences are more likely

to be detected earlier in path exploration. Preliminary re-

sults show that our approach requires about 12.9% fewer

runs on average (maximum 25%) to cause the execution

of a changed statement and 11.8% fewer runs on average

(maximum 31.2%) to cause program-state differences after

its execution than the search strategies without guidance.

1 Introduction

Regression test generation aims at generating a test suite

that can detect behavioral differences between the original

and the new versions of a program. A behavioral differ-

ence between two versions of a program can be reflected by

the difference between the observable outputs produced by

the execution of the same test (referred to as a difference-

exposing test) on the two versions. Developers can inspect

these behavioral differences to determine whether they are

intended or unintended (i.e., regression faults).

Regression test generation can be automated by using

Dynamic Symbolic Execution (DSE) [6], a state-of-the-art

test generation technique, to generate a test suite achieving

high structural coverage. DSE explores paths in a program

to achieve a high structural coverage, and exploration of all

these paths can often be expensive. However, if our aim is

to detect behavioral differences between two versions of a

program, we do not need to explore all paths in the program

as not all these paths are relevant for detecting behavioral

differences.

To formally investigate irrelevant paths for exposing be-

havioral differences, we adopt the Propagation, Infection,

and Execution (PIE) model [11] of error propagation. Ac-

cording to the PIE model, a fault can be detected by a test if

a faulty statement is executed (E), the execution of the faulty

statement infects the state (I), and the infected state (i.e., er-

ror) propagates to an observable output (P). A change in

the new version of a program can be treated as a fault and

then the PIE model is applicable for effect propagation of

the change. Many paths in a program often cannot help in

satisfying any of the conditions P, I, or E of the PIE model.

In this paper, we present an approach that uses DSE to

detect behavioral differences based on the notion of the PIE

model. Our approach first determines all the branches (in

the program under test) that cannot help in achieving any

of the conditions P, I, or E of the PIE model in terms of

the changes in the program. To make test generation effi-

cient, we develop a new search strategy for DSE to avoid

exploring these irrelevant branches (including an irrelevant

branch in a path leads to an irrelevant path). In addition,

our approach prioritizes the flipping of branching nodes1 in

such a manner that behavioral differences are more likely to

be detected earlier in path exploration.

This paper makes the following major contributions:

Approach. We propose an approach that uses DSE for effi-

cient generation of regression unit tests. To the best of our

knowledge, ours is the first approach that guides path ex-

ploration specifically for regression test generation.

Preliminary Evaluation. We have conducted experiments

on an original and its 11 different new versions of a class.

Preliminary results show that our approach requires about

1A branching node in the execution tree of a program is an instance of

a conditional statement in the source code. A branching node consists of

two sides: the true branch and the false branch. Flipping a branching node

is flipping the execution of the program from the true (or false) branch of

the branching node to the false (or true) branch.



static public boolean testMe(int x, int[] y){
1 int j=1;

2 if(x==90){
3 for(int i=0; i< y.Length; i++){
4 if(y[i] == 15)

5 x++;

6 else if(y[i] == 16)

7 j=2;

8 else if(y[i] == 25)

9 return false;

10 if(x == 110)

11 x = j+2; //x = 2*j+1

12 if(x>110)

13 return false;

14 }
15 }
26 return false;

}

Figure 1. An example program

12.9% fewer runs on average (maximum 25%) to cause the

execution of a changed statement and 11.8% fewer runs on

average (maximum 31.2%) to cause program-state differ-

ences after its execution than the default search startegy in

Pex [10] (an automated structural testing tool for .NET de-

veloped at Microsoft Research).

2 Approach

Our approach takes two versions of the program under

test as input and generates tests for these two versions. The

generated tests on execution detect behavioral differences

between the two versions. Our approach consists of two

phases. In the first phase, we instrument the program code

for regression testing. In the second phase, we perform DSE

on the instrumented code using Pex [10]. We next discuss

in detail the two phases of our approach.

2.1 Instrumentation for Regression Test-
ing

Our approach first transforms the two versions of the

program code such that the transformed program code is

amenable to regression testing. In particular, our approach

instruments both versions of the program under test. The

instrumentation allows us to compare the internal behavior

of running the same generated test on the two versions.

Consider the example in Figure 1. Suppose that the state-

ment at Line 11 of testMe has been modified resulting in

the one shown in the comment at Line 11. Figure 2 shows

the new version of testMe after instrumentation. We in-

sert a statement (Line 12 in Figure 2) just after any changed

statement (Line 11 in Figure 1). The instrumented statement

allows us to store the current value of x in a particular run

(i.e., an explored path) of DSE. In particular, this statement

results in an assertion in the generated test. The generated

test can be executed on the original version of testMe to

compare program states after the execution of the changed

statement with the ones captured in the execution of the new

public boolean testMe(int x, int[] y){
...

10 if(x == 110){
11 x = 2*j+1;

12 PexStore.ValueForValidation("uniqueName", x);

13 }
...

}

Figure 2. Instrumented example program af-

ter instrumentation

version. If there are multiple changed statements in the

program, our approach first finds multiple regions each of

which contains nearby changed statements in the program.

We refer to each of such regions as a changed region in the

rest of the paper. Our approach finds all the variables and

fields that have been defined in a changed region and inserts

statements (such as the statement at Line 12 of Figure 2) to

log the value of each defined variable or field in the changed

region. If a defined variable is a non-primitive type, the

statement enables to compare the object graphs reachable

from the logged values to compare program states. We then

perform DSE on the instrumented new version of the pro-

gram, as described in Section 2.2.

In our approach, we perform DSE on the instrumented

new version of the program. After each run of DSE, we

execute the generated test on the instrumented original ver-

sion to check whether the program state is infected after the

execution of a changed region.

2.2 Dynamic Test Generation

In the second phase, our approach uses Dynamic Sym-

bolic Execution (DSE) [6] to generate regression tests for

the two given versions of a program. DSE iteratively gen-

erates test inputs to cover various feasible paths in the pro-

gram under test (the new version). In particular, DSE flips

some branching node from a previous execution to gener-

ate a test input for covering a new path. The node to be

flipped is decided by a search strategy such as depth-first

search. The exploration is quite expensive since there are

an exponential number of paths with respect to the num-

ber of branches in a program. However, the execution of

many branches often cannot help in detecting behavioral

differences. In other words, covering these branches does

not help in satisfying any of the condition P, I, or E in the

PIE model described earlier. Therefore, we do not flip such

branching nodes in our new search strategy for finding test

inputs that detect behavioral differences between the two

given versions of a program.

2.2.1 Paths being Pruned

We next describe the three categories of paths that our ap-

proach avoids exploring.

Rationale E: Paths not leading to any changed region.

Paths that cannot reach any changed region (denoted as δ)

need not be explored. For example, consider the testMe



program in Figure 1. The changed statement is at Line 11

(δ). While searching for a path to cover δ, we do not need

explore paths containing the true branch of the condition

at Line 8.

Rationale I: Paths not causing any state infection. Sup-

pose that we cover δ at Line 11 in Figure 1 using inputs

x=90 and the array y of length 20 where each element of y

has a value 15. The execution takes a path P executing the

loop 20 times, assigning the variable x to 110 and eventu-

ally covering δ at Line 11 . However, the program state after

the execution of δ is not infected since after the first execu-

tion of δ, the value of x is 3 in both versions. We need not

explore the subpaths after the execution of a changed region

that does not cause any state infection if these subpaths do

net lead to any other changed region.

Rationale P: Paths not propagating state infection to any

observable output. Suppose δ is executed, the program

state is infected after the execution of δ, but the infection

does not propagate to an observable output. Let χ be the

statement at which infection propagation stops. We need

not explore the subpaths after the execution of χ if these

subpaths do not lead to any other changed region.

2.2.2 Branching Nodes being Pruned

In DSE, path exploration is realized by flipping branch-

ing nodes. We next describe three categories of branching

nodes that we avoid flipping corresponding to the preceding

three categories of paths that we intend to avoid exploring.

Category E. This category contains all the branching nodes

whose the other unexplored branch cannot lead to any

changed region.

Category I. If a changed region is executed but the pro-

gram state is not infected after the execution of the changed

region, all the branching nodes after the changed region in

the current execution path are included in this category.

Category P. Consider that a changed region is executed

and the program state is infected after the execution of the

changed region; However, the infection is not propagated

to any observable output. Let χ be the last location in the

execution path such that the program state is infected be-

fore the execution of χ but not infected after its execution.

χ can be determined by comparing the value spectra [12]

obtained by executing the test on both versions of the pro-

gram. This category contains all the branching nodes after

the execution of χ.

2.2.3 Branching Nodes being Prioritized

In addition to avoiding flipping the preceding categories

of branching nodes, we prioritize branching nodes to be

flipped after each run of DSE in the following two prior-

ity categories (Priority 1 is the highest priority).

Priority 1. This category contains all the branching nodes

that cannot lead to any changed region but the other unex-

plored branch of the branching node can lead to a changed

region.

Priority 2. This category contains all the branching nodes

whose both branches can lead to a changed region.

3 Preliminary Results

We prototyped part of our approach by manually insert-

ing probes in program code to guide Pex [10] to avoid ex-

ploring branches in Categories E and I in the program code.

We also inserted value-storing statements in the program

code to compare the program states in the original and mod-

ified versions. In future work, we plan to completely imple-

ment our approach (including all the proposed pruning and

prioritization) as a search strategy in Pex.

We conducted preliminary evaluation of our approach to

assess its effectiveness. In our preliminary evaluation, we

try to answer the following two research questions:

• RQ1. Can our approach more efficiently execute the

changed regions between the two versions of a pro-

gram than without using our approach?

• RQ2. Can our approach more efficiently infect the

program states after the execution of changed regions

than without using our approach?

To answer RQ1, we compare the number of runs of DSE

required by the default search strategy in Pex with the num-

ber of runs required by our approach to execute a changed

region. To answer RQ2, we compare the number of runs

required by the default search strategy in Pex with the num-

ber of runs required by our approach to infect the program

states after the execution of a changed region.

In our preliminary evaluation, we use the tcas program

from the Software Infrastructure Repository (SIR) [3] as our

subject. We converted the tcas program to C# (since the

original tcas is written in C). We then seeded the first 11

faults available at SIR one by one to generate 11 new ver-

sions of tcas. We then used Pex to generate tests for tcas.

To execute all these 11 changed statements in these 11 ver-

sions, the default strategy in Pex takes 115 runs in total,

whereas our approach takes only 95 runs in total. The av-

erage and maximum percentages of run reduction for one

version are 12.9% and 25%, respectively. To infect the pro-

gram states after the execution of all these 11 changed state-

ments, the default strategy in Pex takes 127 runs in total,

whereas our approach takes 105 runs in total. The average

and maximum percentages of run reduction for one version

are 11.8% and 31.2%, respectively. The details of our pre-

liminary results and the versions of tcas used in the pre-

liminary evaluation are available at our project web page2.

2http://ase.csc.ncsu.edu/projects/regtestgen



In summary, the preliminary evaluation answers the two re-

search questions RQ1 and RQ2:

• RQ1. On average, our approach requires 12.9% fewer

runs (maximum 25%) than the existing search strategy

in Pex to execute the changed regions of the two ver-

sions of tcas.

• RQ2. On average, our approach requires 11.8% fewer

runs (maximum 31.2%) than the existing search strat-

egy in Pex to infect the program states after the execu-

tion of changed regions.

4 Related Work

Previous approaches [4, 9] generate regression unit tests

achieving high structural coverage on both versions of the

class under test. However, these approaches explore all the

irrelevant paths, which cannot help in achieving any of the

conditions P, I, or E in the PIE model. In contrast, we have

developed a new search strategy for DSE to avoid explor-

ing these irrelevant paths. In addition, our approach also

prioritizes flipping of branching nodes to detect behavioral

differences.

Santelices et al. [8] use data and control dependence in-

formation along with state information gathered through

symbolic execution, and provide guidelines for testers to

augment an existing regression test suite. Unlike our ap-

proach, their approach does not automatically generate tests

but provides guidelines for testers to augment an existing

test suite.

Some existing search strategies [2, 13] guide DSE to ef-

fectively achieve high structural coverage in a software sys-

tem under test. However, these techniques do not specifi-

cally target to cover a changed region. In contrast, our ap-

proach guides DSE to avoid exploring paths that cannot help

in executing a changed region. In addition, our approach

avoids exploring paths that cannot help in P or I of the PIE

model [11].

Differential symbolic execution [7] determines behav-

ioral differences between two versions of a method (or

a program) by comparing their symbolic summaries [5].

Summaries can be computed only for methods amenable to

symbolic execution. However, summaries cannot be com-

puted for methods whose behavior is defined in external li-

braries not amenable to symbolic execution. Our approach

still works in practice when these external library methods

are present as our approach does not require summaries. In

addition, both approaches can be combined using demand-

driven-computed summaries [1], which we plan to investi-

gate in future work.

5 Discussion and Future Work

In our current approach, we perform DSE on the new

version of a program. We then execute the test (generated

after each run) on the original version. We can also perform

DSE on the original version instead of the new version. In

future work, we plan to conduct experiments to compare

the effectiveness of the two approaches with respect to the

types of changes.

Our current prioritization of branching nodes helps to-

wards satisfying E of the PIE model. Currently, our ap-

proach does not prioritize branching nodes specifically to-

ward satisfying I or P of the PIE model. In future work,

we plan to prioritize branching nodes based on the proba-

bility to cause infection and to propagate the infection to

an observable output. Moreover, we plan to develop addi-

tional priority categories based on data dependency from a

changed region.

In future work, we plan to conduct experiments on sys-

tems with multiple changes and more complex systems to

assess the benefit of our approach. For larger and more com-

plex systems, the benefit of our approach is expected to be

more substantial although the analysis cost of our approach

would also increase in proportion to the size of systems.

Acknowledgments

This work is supported in part by NSF grant CCF-

0725190 and ARO grant W911NF-08-1-0443.

References

[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional sym-

bolic execution. In Proc. TACAS, pages 367–381, 2008.

[2] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In

Proc. ASE, pages 443–446, 2008.

[3] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimenta-

tion with testing techniques: An infrastructure and its potential impact. ESE,

pages 405–435, 2005.

[4] R. B. Evans and A. Savoia. Differential testing: a new approach to change

detection. In Proc. FSE, pages 549–552, 2007.

[5] P. Godefroid. Compositional dynamic test generation. In Proc. POPL, pages

47–54, 2007.

[6] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random

testing. Proc. PLDI, pages 213–223, 2005.

[7] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Differential sym-

bolic execution. In Proc. FSE, pages 226–237, 2008.

[8] R. A. Santelices, P. Chittimalli, T. Apiwattanapong, A. Orso, and M. J. Har-

rold. Test-suite augmentation for evolving software. In Proc. ASE, pages

218–227, 2008.

[9] K. Taneja and T. Xie. DiffGen: Automated regression unit-test generation. In

Proc. ASE, pages 407–410, 2008.

[10] N. Tillmann and J. de Halleux. Pex-white box test generation for .NET. In

Proc. TAP, pages 134–153, 2008.

[11] J. Voas. PIE: A dynamic failure-based technique. TSE, 18(8):717–727, 1992.

[12] T. Xie and D. Notkin. Checking inside the black box: Regression testing

based on value spectra differences. In Proc. ICSM, pages 28–37, 2004.

[13] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte. Fitness-guided path explo-

ration in dynamic symbolic execution. Technical Report MSR-TR-2008-123,

Microsoft Research, Sep 2008.


