Locating Need-to-Translate Constant Strings for Software Internationalization

Xiaoyin Wangd?, Lu Zhand?: Tao Xie**, Hong Mei"?, Jiasu Suh?
Institute of Software, School of Electronics Engineering and Computer Science
2Key laboratory of High Confidence Software Technologies (Peking University), Ministry of Education
Peking University, Beijing, 100871, China
{wangxy06, zhanglu, meih, gj@sei.pku.edu.cn
3Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
xie@csc.ncsu.edu

Abstract Developers of some software applications consider in-
ternationalization in the beginning of development. That is
Modern software applications require internationaliza- to say, developers of these applications try to avoid hard-

tion to be distributed to different regions of the world. In coding elements that need to be changed from one local
various situations, many software applications are not in- version to another. However, in many cases, developers
ternationalized at early stages of development. To interna- need to apply software internationalization on existing code
tionalize such an existing application, developers need towith the following reasons. First, many popular software
externalize some hard-coded constant strings to resourceapplications are originated from open source prototypes or
files, so that translators can easily translate the applica- research prototypes, whose developers do not expect their
tion into a local language without modifying its source users to have requirements specific to particular regions in
code. Since not all the constant strings require external- the beginning. Second, developers of an international soft-
ization, locating those need-to-translate constant strings is ware application may reuse some non-international soft-

a

necessary task that developers must complete for interware components. Thus, the developers may have to inter-

nationalization. In this paper, we present an approach to nationalize these reused components. In all these cases, de-
automatically locating need-to-translate constant strings. velopers need to internationalize existing code, which typ-
Our approach first collects a list of APl methods related ically contains many hard-coded elements specific to one
to the Graphical User Interface (GUI), and then searches local version.

for need-to-translate strings from the invocations of these ~ When internationalizing existing code, developers usu-
API methods based on string-taint analysis. We evaluatedally need to locate those hard-coded elements that need
our approach on four real-world open source applications: translation [5, 13]. The need-to-translate elements include
RText, Risk, ArtOflllusion, and Megamek. The results showconstant strings, time/date objects, number-format objects,
that our approach effectively locates most of the need-to- culture-related objects, etc. In particular, locating need-to-

translate constant strings in all the four applications. translate constant strings is often the most tedious task. The

) reason is that, a software application typically contains a
1 Introduction large number of constant strings, many but not all of which
1.1 The Problem need translation.

Modern software applications often need to be dis- 1.2 Existing Support

tributed to different regions of the world. To be better used There exist tools (e.g., GNU gettéxtJava interna-

by users in a certain region, a software application shoulgtionalization APF) to help developers externalize need-to-
have a local version for local users. Typically, a local ver- translate constant strings after the developer_s locate them.
sion's user-visible texts should be in the local language, andOther tools such as KBabehelp developers edit and man-
its numbers, times and dates should also be in the local for-2ge resource files (called PO files in KBabel) containing
mats. In general, techniques for obtaining and managing htp:/Amww.gnu.org/software/gettext/manual/

these local versions are usually referred to as software in-gettext.html
ternationalization. Zhttp://java.sun.com/docs/books/tutorial/i18n/

index.html

*Corresponding author Shttp://kbabel.kde.org/

externalized constant strings. Some development environ-
ments (e.g., Eclipse) provide help to locate and externalize
all constant strings in the code of an application. However,
not all of the constant strings need translation. Our empiri-
cal results in Section 5 show that in real-world software ap-
plications, less than half of the constant strings need trans-

our approach not only locates most of the strings that the
developers externalized, but also finds some strings that
the developers missed. We reported in a bug report 17
missed strings that are still missing in the latest version
of the Megamek applicatidn All of the 17 strings were
confirmed and later translated by Megamek developers.

lation. Thus, it may be a waste of time for translators to

translate all the constant strings. To be even worse, transla
tion of some constant strings may introduce bugs. For ex-
ample, if the name of a field in an SQL query for a database
is translated into another language, the software applicatio
may suffer from runtime failures when retrieving data from
the database.

1.3 Owur Approach

In this paper, we present an automatic approach to Iocat-2 Example
ing need-to-translate constant strings in source code based We next present an example to illustrate a situation
on string-taint analysis. The basic idea of our approach is tothat a developer may face when manually locating need-
locate invocations of API methods that may output strings t?-translatef COHT:&Q: \s/trln'gs Tosgl“gce cod;a. lee exam-
o the appiaion GrapFicalUser Inerface (GU), and race 2 SomeS fiom REk(uersion L0.7.9) & eal-on cpen,
from the output strings to the constant strings that needsg|iowing code portion in Risk:
translation. In particular, our tracing approach includes four | public class Risk

techniques. 2 private RiskController gui;

. 3 i Stri ;
e The first technique adapts string-taint analysis [14] to 4 S:::ZEZ REQE%;,;?ZZ%?E;
trace from the output strings to their sources. Sourcesg public void GameParser(String mem) {
that are constant strings should be translated. 7

message=mem,
StringTokenizer StringT = new StringTokenizer(message," ");
e The second technique deals with an application involv- String addr = StringT.GetNext():

ing network communication where a source of an output 9
string may be a string variable whose value is transmitted ﬂ
across the network. There we further analyze string trans-12
mission across the network to locate hard-coded constant;
strings in one side of the network but may appear on the 14
GUI of the other side of the network. -

e The third technique deals with complications where the 7
translation of some to-be-translated constant strings also
impacts strings that are compared with these to-be-1®
translated constant strings. There we analyze string com-19
parisons in the code to locate constant strings that string
translation impacts.

. . . 21
e Since not all constant strings that are viewable on the GUI 55
need translation, the last technique filters out strings thatgf'1

are not likely to be translated. 25
26

We organize the rest of this paper as follows. Section 2
presents an example of locating need-to-translate constant
strings. Section 3 presents our approach in detail. Section 4
presents the implementation of our approach. Section 5 re-
r‘lports an empirical study of our approach. Section 6 further
discusses related issues. Section 7 discusses related work
and Section 8 concludes with future work.

if(addr.equals("CARD")) {
if(StringT.hasMoreTokens()) {
String name = StringT.GetNext();
String cardName;

if(name.equals("wildcard"))
cardName = name;
else cardName = card.getName() + " " + name;
gui.sendMessage("You got a new card: \"
+ cardName + " \", false , false);

. 1}
public void DoEndGo(String mem) {

GameParser("CARD "+game.getDeservedCard());

20 public class RiskGame {

public String getDesrvedCard()
Card ¢ = cards.elementAt(r.nextint(cards.size()));
if(c.getCountry() == null)
return "wildcard";
else

- 3}

In the preceding code portion, Lines 16-17 include an
invocation of RiskController.sendMessage(...) ,
and the expression"You got a new card: \"™ +
e Adaptation of string-taint analysis and three other practi- cardName +" \"* corresponds to parameteutput in

cal techniques to further cope with issues of string trans- RiskController.sendMessage(...) , Which sends the

mission, string comparison, and filtering. value ofoutput to the GUI. Now the developer knows that

. return c.getCountry.getName();
This paper makes the following main contributions: ¢ v9 0

e An approach to automatically locating need-to-translate
constant strings in source code based on tracing from in-
vocations of APl methods that output strings to the GUI.

e Anempirical study of applying our approach on four real-
world open source applications to demonstrate the effec-

4http://sourceforge.net/projects/megamek/
50n Sept. 2, 2008, we found that the name of Risk was changed to

tiveness of our approach. The empirical results show thatSametime Risk recently.

"You got a new card:" needs translation. Further- methods as the output API methods. The second step is to
more, the value of variableardName also appears on the search in the application for invocations of the output API
GUI. So the developer needs to further trace to the sourcesnethods and determine the actual arguments that are out-
of cardName . Line 14 indicates thatameis a source ofthe put to the GUI. We refer to these actual arguments as the
value ofcardName . Furthermore, the value eme comes initial output strings. The third step is to trace from the ini-

from a token ofStringTokenizer StringT as shownin tial output strings to other places that may contain need-to-
Line 11. In Lines 6-7, the content &fringT comes from translate constant strings. This step includes four practical
parametememof Risk. GameParser(String) , and the techniques: string-taint analysis, string-transmission analy-

tokenizer splitsmeminto two parts. The first part is used sis, string-comparison analysis, and filtering.

for the branch condition in Line 9, while the second part is .
. ’ 3.1 Collect Output API Method
passed to variableame and output to the GUI. Only the ofecting Lutpu ethoads

second part needs translation. To represent an APl method in the list of output API
Then the developer finds an invocation of methods, we use the signature of a method with full package
Risk.GameParser(String) in Line 19, which passes the and class names, because method names may be overloaded

actual argumenCARD "+game.getDeservedCard() to and classes in different packages may have the same name.
the method. Furthermore, the developer needs to look intoFurthermore, for each output APl method, we also specify

the implementation oRiskGame.getDeservedCard() which parameters of the method are output to the GUI and
and finds that it returns two possible valuésildcard" denote them as output parameters. _
andc.getCountry.getName() . A possible value of the Note that, in API libraries of a programming lan-

latter is actually a country name from a data file, and the guage such as Java, there are typically a small num-
related code is not shown for simplicity. Thus, two possible ber of classes (or modules) containing output APl meth-
values of the actual argument in Line 19 and the parameterods. For example, in API libraries for Java, packages

in Line 5 can be'CARD wildcard” and"CARD XXXX" java.awt.* andjavax.swing.* are the main sources of
where"XXxX" is a country name from the data file. output APl methods for general Java programs, and pack-
From the preceding analysis, the developer can know?2ad€org.eclipse.swt.* is the main source of output AP
that the first part of StringTokenizetringT is "CARD" methods for Java programs running on Eclipse. That is to
and the second part is eithewildcard” or "XXXX". say, output API methods often involve only a small subset

Therefore, the constant strifgARD" in Line 19 is used for of all the API methods, and thus can be collected manually
only the branch condition and does not require translation, With reasonable effort.

while the constant strintyildcard" in Line 24 is output 3.2 Locating Initial Output Strings

and requires translation. Furthermore, the developer can
know that"CARD" in Line 9 does not require translation,
becaus&CARD" in Line 9 is compared to only the first part
of StringT . However,"wildcard" in Line 13 requires
translation, becausevildcard" in Line 13 is compared

For each output API method, we search for all possible
invocations of the method in the software application and
record locations of the invocations. Due to polymorphism,
such an invocation may not appear as an invocation of an
to the second part ftringT and the second part requires output API method syntactically. We consider all the invo-
translation because it is passed to the GUI. cations that. may be bognd t.o an ogtput API method. Note

From this example, we can see that a developer needsthat searching fof posgble Invocations .Of a given method
to perform a tedious and error-prone analysis to determine.unOIer polqurphlsm IS a mature_ technique and has been
which string requires translation and which string does not, implemented in IDEs such as Eclipse.

s the developr nees 1o be experienced enaugh to g ¥ XA e posatie mocations o v A
so. In particular, it is also necessary to analyze contents of ' 9 P 9

string variables and comparisons of strings. Such analysisthe output parameters of the output API methods. These

helps determine that constant stririgéidcard" in Lines actual arguments are the initial output strings.
13 and 24 require translation while constant strit@sRD" 3.3 String-Taint Analysis

in Lines 9 and 19 do not. From each initial output string, we perform an adapted

string-taint analysis to locate the possible sources of the ini-

tial output string in the code. Among the located sources,
Our approach consists of three main steps. The first stepghard-coded constant strings and strings transmitted across

is to maintain a list of APl methods that output strings to the network are of particular interest to us.

the GUI. This step is a preparation step before we begin String-taint analysis is a technique recently proposed by

to locate need-to-translate strings in software applicationsWassermann and Su [14] based on string analysis [1, 11]

that have not been internationalized. We refer to these APIwhose purpose is to predict the possible values of a certain

3 Approach

string variable in the code. Wassermann and Su adapted delim/e—
string analysis to further analyze whether some substrings @ @
in the string variable might come from insecure sources. Q

With source code, a string variable, and insecure locations A/A Ale

as input, string-taint analysis predicts the given string vari- The FST for operation NextToken
able’s possible values and determines whether the possible ‘

values might contain insecure substrings (i.e., those from delim/e
insecure sources). @ \A
The general idea of string analysis is as follows. First,
the program is changed to the static single assignment AJA
(SSA) [3] form. Second, string assignments and concatena- A€ The FST for operation ReduceToken
tions that the string variable under analysis depends on are_. . . :
abstracted as an extended context free grammar (CFG) witﬁ:Igure L FSTs f.osmngT°ken'Zer'getN8Xto (where
. :) . . . A denotes*/delim)
string operations (i.e., library methods managing strings
such asString.subString(int,int) in Java) on the message — parseCard|...
right-hand side. Then these string operations are simulatec{:gfijf:gT rgxtfg;fesggs?ﬁn T
with finite-state transducers (FSTs) [11]. Finally, the lan- syingt1 — ,educeTokger{(St,ingT, "
guage of the extended CFG includes all the possible val—gétmeT; nextTfe‘zeunc(stTfL“k%Tngt'r’in")Tl -
ues of the string variable under analysis. String-taint analy- outpf,'t = You got a new Ca,fj{ " name
sis adapts string analysis by adding annotations to the sub-
strings that are involved in string analysis and propagat- t'm the St.SA c?(jse,_ ;hire_ are .twoth types of
ing these annotations during the process of string analysis.st”nq{ opesra_ |or;sk o tring Tokenizer d : Ne con-
Thus, if strings from insecure sources are properly anno-SHuctor tringTokenizer() an getNext()

tated, examining for their annotations can help determinejmngToge.n'?e.rt. i (|js ft:lh strltng—maljjlputljat:.ng.t cla§s '? d
whether the possible values of the string variable contain avgt ?n IS m('j',?h'zet Wi .aj. r!ggj"." ta elimi e,[(e'tnhotﬁ
insecure substrings. as delim), and the string is divided into segments wi e

To apply string-taint analysis for our problem, we need delim as the separator. Then we can obtain the segments

to do some adaptation. As we are interested in hard-coded'>""Y the methodgetNext) . In the grammar, the

constant strings, we use the locations of these strings asconStrUCtO'St”ngTOKen'Zer() Is treated as an ordinary

their annotations. For strings from other sources such asStr'ng assignment, argetNext() s replaced by two con-

files and network, we further annotated them as “&Fileln- tinuous operauon.snextToken() and reduceToken()

put” and “transmitted”, etc. In thg two operatllonsnextToken() returns the value.of
To illustrate this process, we next describe how our ap- the first token whilereduceToken() returns the remain-

proach analyzes the code in Section 2. First, we compileing string after cutting the first token off the head. The

and transformed the code to the SSA form as below. two operations are simulated by two finite state transducers
if(c.getCountry==null) { (FSTs$ shown in Figure 1. We deduce fromutput
}elsere{tuml = "wildcard" in the last line of the extended CFG and obtain possible
retun2 = &Filelnput; resultd: You got a new card: wildcard and You
fewrn3 = (returnd, retum2); got a new card:&FlleI_nput . From the annotations of
parseCard = "CARD"+return3; the two constant string$vou got a new card:" and
message = ¢(parsecard, {other actual arguments }); "wildcard" , we obtain the locations of these two constant
ringT = new StringTokenizer(message,); X
addr = StringT.getNext(); strings and marked them as need-to-translate.
if(addr.equals("CARD")) {
name = StringT.getNext(); 3.4 String-Transmission Analysis

output = You got a new card: +name;

Then. we transform the SSA form to the extended CEG Using string-taint analysis in Section 3.3, we are able to
as below. In the transformation. we add the exact lo- trace to string variables whose values are transmitted across

cation of each constant string as the annotation to thethe network. We next present our technique to further trace
constant string. For example, for stringldcard , we the transmitted strings. A straightforward idea for tracing

13 H H . 1y, H n . . - . .
gggnﬁ'iﬁg%@,{%ﬁ‘r’]ﬁgzﬁéa‘l‘(’n']'gcjfg\‘/ja) assiigrgngggtig]r? e? transmitted string on one side of an application over the
do not show annotations in the féllowing grammar for brief. Network s to locate the corresponding string variable on the
ness.
retuml — wildcard 8In Figure 1, the character before “/" is the input to the FST and the
retun2 — &Filelnput character after “/” is the output from the FST.
return3 — returni|return2 "We do not deduce strings with infinite length, so when our deduction
parseCard — CARD return3 meets the same non-terminal for the second time, we ignore it.

other side of the application, and use string-taint analysis tothe label variable of the data for transmission. In addition,
trace the corresponding string variable on the other side. there is another one or more member variables @data
However, string variables holding transmitted strings are in the preceding code) holding the data for transmission. If
typically also used to hold strings that do not appear on thethere are strings for transmission, one or more such mem-
GUI. Let us consider a piece of code that implements databer variables are defined as strings. Third, after receiving
transmission between a client and a server. The transmittedh transmitted object, the receiver needs to check the value

data are encapsulated in a class defined as below. of the label variable before using the data, as the receiver
1 class Packet { needs to interpret the meaning of the data according to the
z is"ttr"fgmdgg_‘d? value of the label variable.

4 public Packet(int command, String data) To make more precise analysis of transmitted strings, we
: publi{cthi‘rs]f‘;’:gs”mdr:gﬁg‘(;”a“d? this.data=data; ¥ adopt the following strategy. First, in the class that de-
7 {return command; } fines objects for transmission, we determine the member
S p“b"{cretslj:hng dngDa‘&E(i variable serving as the label variable through analyzing the

receiver’s code. The distinct characteristic of such a mem-
On the server side, the following code portion is used to ber variable is that after receiving an object, the receiver

send two different objects ¢facket to the client side. should check this member variable before using the data
10 Packet packet = new packet(Packet ENDOFGAME, in the received object. Second, if the received object con-
1 Automatic Shuts Down”) tains a member variable as a string, for each different value
12 Packet packet = new packet(Packet.CHAT, of the label variable in the object, we view the string as a
1 obicome saved to'+sFilename) different source of a transmitted string. For example, the
jectOutputStream out = new ' K
15 ObjectOutputStream(socket.getOutputStream()); two occurrences opacket.getData() in Lines 24 and
16 outwriteObject(packet); 26 are viewed as different sources. Third, after we trace

On the client side, the following code portion is used to to a string in a received object in the receiver’s code, we
receive objects oPacket transmitted from the server side. further analyze the instantiation of the object for transmis-
17 ObjectinputStream in = sion in the sender’s code. If the label value of the instanti-
To Packer macer o ook cadop P StreamO) ated object matches the label value of the transmitted object
20 switch(packet.getCommand()) { in the receiver's code, we further trace the sources of the
S O P Ceiadl: ek corresponding string in the sender's code using our adapted

string-taint analysis. If the label value does not match, no

23 case PacketCHAT: string-taint analysis is performed on the sender’s code.

24 Output(packet.getData()); break;

25 case PacketENDOFGAME: 3.5 String-Comparison Analysis

% saveEntityStatus(packet.getData()) break; } In Sections 3.3 and 3.4, our aim is to trace constant
From the preceding code portions, we know that the strings that may be viewable on the GUI. However, not only

client side may receive different objectsfdcket . How- strings viewable on the GUI require translation in software

ever, only when the value ofommand in Packet is internationalization. In the example presented in Section 2,

Packet.CHAT , the value ofdata in Packet is output to "wildcard" in Line 24, which is a source afame, needs

the GUI on the client side. In the preceding code por- translation. Since the constant stritvgldcard" in Line

tions, "Game saved to" (Line 13), which is sent with 13 is compared tmame, "wildcard" also needs transla-
Packet.CHAT , is passed to the GUI and thus needs trans- tion. Therefore, after we locate constant strings viewable

lation while"Automatic Shuts Down" (Line 11), which on the GUI, we need to further locate the strings that are
is sent withPacket. ENDOFGAME, does not need transla- compared with these viewable strings.
tion. Thus, if we continue to tracdata in Packet on the To address this issue, we first locate all the compar-

server side using string-taint analysis, we may trace to somdsons between strings in the source code. In particular,
constant strings that are assignediata in Packet when we locate comparisons between strings through identify-

the value otommandin Packet is notPacket.CHAT . The ing invocations of string-comparison methods provided by
reason is that string-taint analysis does not analyze differentthe supporting libraries (e.gstring.endWith() in Java,
values ofcommandin Packet . stremp() in C). Then for each side of each comparison,

In fact, the preceding way of data transmission repre- we perform our adapted string-taint analysis to locate all the
sents a typical mechanism used in object-oriented softwareconstant strings that are the sources of the side. If any con-
for data transmission. First, data for transmission is imple- stant string located as a source for one side is in the set of
mented as objects for transmission. Second, in the claswviewable strings located with the techniques in Sections 3.3
definition of objects for transmission, there is a member and 3.4, we include all the constant strings located as
variable (i.e.,command in the preceding code) serving as sources for the other side as need-to-translate strings. We it-

eratively perform the preceding string-comparison analysis applications represent software in different categories and
until we cannot locate any more need-to-translate strings. their GUI structures are different. Both RText and AOI have
3.6 Filtering typical _component-based GUls (|.e._, GUIs built v_wth _bu_t-
_) _ tons, dialogs, menus, etc.). As AOI is a graph editor, it in-

As a practical matter, not all the strings located with the ¢,des more operations on canvas and graphs. By contrast,
technlqges descrlbed. in Sections 3.3, 34 and 3.5.reqU|quiSk and Megamek are two different games with more styl-
translation. Some strings should remain the same in Most, ey and complex GUIs. We chose two games as subjects
or even all local languages (e.g., strings composed of arapecause the GUISs of games are typically more complex than
bic numerals), while some other strings may be intention- yher types of applications and it would be interesting to see
ally reserved as untranslated (e.g., trademarks). Thereforey,q\ our approach performs on this type of applications.

as the final technique of our approach, we further filter O.Ut The developers of all these four subjects did not consider
some located constant strings that may not need tranSIat'on'rnternationalization at the beginning, and they used many

Currently, we usg two simple heurllst|cs. First, we filter out hard-coded constant strings in English in early versions of
any constant string that does not include any letter charac+,oqeg subjects. In Summer 2004, the developers of RText

t_er. S_ecorr:d, we filter EUt any cofnsk;cant sfmng It:hat IS equlalinternationalized RText and updated the application from
(ignoring the case) to the name of the project. For examp €.\ersion 0.8.6.9 to Version 0.8.7.0. During this time of inter-

we f_llter.out thg constant St,”ng\"" n I_.|ne 17 n the code nationalization, they internationalized only the core pack-
portion in Section 2 according to the first heuristic. age of the application (i.e., packagey.fife.rtext).
4 Implementation The primary aim of the internationalization was to create
))) a version for Spanish users. In Winter 2004, the developers
We implemented an Eclipse plug-in called TranStrL ¢ picy internationalized Risk and updated the application
(need-to-Translate String Locator) for our approach. In from Version 1.0.7.5 to Version 1.0.7.6. In Summer 2002,

TranStrL, we chose Java as the target language because Jaygy) \yas internationalized and updated from Version 1.1 to
is a widely used programming language in open source apsergion 1.2. In Spring 2005, the developers of Megamek

plications. For a Java application, TranStrL presents all the oo g internationalize Megamek and finished the first in-
located need-to-translate constant strings, the source f”e%rnationalized version (i.e., Version 0.29.73).

that contain these strings, and the exact locations of these
strings in the source files. We first used the front-end of the
JSA tool (a Java string analyzer) [1] to obtain the extended
context free grammar (CFG) with string operations; then we
built FSTs [11] to simulate string operations in Java; and
finally we added annotations before deducing with the ex-
tended CFG. In TranStrL, we collected output API methods
from two packagesjava.awt.* and javax.swing.*

So TranStrL currently supports Java applications using only
these two packages to implement their GUI.

For all the four subjects, the developers externalized
some hard-coded constant strings to resource files and trans-
lated the externalized constant strings to the target lan-
guages during internationalization.

To evaluate how useful our approach is for real-world
internationalization tasks, for each subject, we applied
TranStrL to the version before internationalization and
compared the results achieved by TranStrL with the actual
changes for internationalization made by the developers.
Before we report the empirical results, we present the statis-
5 Empirical Study tics of the subjects in Table 1. For each subject, Columns

1-6 show the name and version number of the application,
5.1 Study Setup the starting month of the application, the number of devel-

In our empirical study, we used four real-world open opers involved in the development of the applicaticthe
source applications as subjects: RText, Risk, ArtOflllu- number of lines of code (LOC) of the application, the num-
sion (AOI) and Megamek. All the four applications are ber of files of the application, and the number of constant
accessible from the web site of sourcefdig&RText is a strings of the application, respectivély
programmer-oriented text editor started since Nov. 2003. column 7 shows the number of the need-to-translate
Risk is a board game started since May 2004. AOl is a constant strings, which serve as the golden solution in
graph editor started since Nov. 2000. Megamek is a real-oyr empirical study. We obtained our golden solution as
time strategy game started since Feb. 2002. We chose thesgyjows. First, we deemed constant strings in the ver-
four applications with two main reasons. First, all the four sjon pefore internationalization as need-to-translate con-
applications are among the highest ranked programs thaktant strings, if the developers externalized them in the
meet the requirement of our study (i.e., having versions be-
fore and after internationalization, and having GUIs built 9sourceforge counts all the persons who contributed to a project as

on java.awt.* andjavax.swing.*). Second, the four developers, so itis no wonder that there are 16 developers for RText.
10The statistics for Ver 0.8.6.9 of RText are only for packayg.

8www.sourceforge.net , accessed on June 20, 2008 fife.rtext , as the developers internationalized only this package.

subsequent internationalized version. Second, since oufour subjects. Among the 1670 strings, 1422 (87 in RText,

approach did find a number of need-to-translate constantl0 in Risk, 746 in AOI, and 579 in Megamek) were ex-

strings that were not externalized in the subsequent inter-ternalized and translated in a later version and 248 still re-

nationalized version for each subject, we also deemed asmained hard-coded in all the later versions or were removed

need-to-translate constant strings the constant strings thatlue to modifications other than internationalization. We

were located by TranStrL and manually verified by us to next present two examples of the two preceding situations.

need translation. The first example is from RText. In the subsequent in-
In particular, when TranStrL located a constant string not ternationalized version (i.e., 0.8.7.0), the text editor shows

externalized in the subsequent internationalized version, wethe position of the cursor at the lower right corner of the

further checked versions later than the subsequent internapanel in the form ofLine xx, Col. xx" . However,

tionalized version. If the constant string was externalized constant stringsLine” and"Col." are not externalized.

in a later version, we also deemed it as need-to-translate. IfThe developers of RText externalized and translated the two

not, we used some manually generated input data to executstrings 11 months later in Version 0.9.1.0.

the subsequent internationalized version. If the string was__The second example is from Megamek as shown in the

viewable on the GUI and not understandable to a user not©lloWing piece of code.

familiar with English, we deemed it as need-to-translate; PUP¢ Mechview(Entity entiy) {

otherwise, we deemed it as not needing translation. In StringBuffer sBasic;

principle, we adopted a conservative policy to avoid mis- ~ SBasicappend(Messages.getString("MechView.Movement’))

classifying strings that do not need translation as need-to- sBasic.append(entity.getMovementTypeAsString()) }

translate. That is to say, we tried to avoid biasing our eval- Pulic Sting getMovementTypeAsString() {

. switch (getMovementType()) {
uation favorably to our approach.
case Entity.MovementType. TRACKED:

5.2 Empirical Results return "Tracked";
case Entity.MovementType.WHEELED:
5.2.1 Overall Results and Analysis }getum "Wheeled";
Results. We present the results of applying TranStrL o Variable sBasic in the method Mechview() (in
the four subjects in Table 2. In this table, we refer to strings megamek.client.Mechview.java) is finally passed to

that need translation but are not located by our approach ashe GUI as the description of weapons in the game. There-
false negatives, and strings that are located by our approachiore, the developers externalized the first padsic as

but actually do not need translation as false positives. Frommessages.getString("MechView.Movement") , and

the table, we have the following observations. added an iteriMechview.Movement" in the resource file

First, our approach (using all the tracing techniques) (i.e.,"Movement:" for English andBewegung:" for Ger-
is able to locate most of the need-to-translate strings. Inman). But even in the latest version they did not external-
RText, our approach locates all the need-to-translate stringsjze the second part, which is a return value from method
while in Risk, AOI, and Megamek, our approach locates getMovementTypeAsString() . Therefore, a strange
491 of 509, 1215 of 1221, and 1724 of 1734 need-to- string with its first part translated to German but second
translate strings, respectively. That is to say, the false negapart remaining in English appears on the GUI of the Ger-
tives of our approach for all the four subjects are quite small. man version of the game. We have reported all 17 untrans-

Second, for each subject, our approach does find a fewlated need-to-translate strings located by TranStrL to the
false positives. In RText, Risk, AOI, and Megamek, the Megamek developers as bug report #2085049 and all these
numbers of strings that are located by our approach but17 strings were confirmed and fixed by the developers. We
do not need translation are 37, 7, 65, and 41, respectivelynext further discuss the reasons for the false negatives (i.e.,
Compared to the numbers of need-to-translate strings in theneed-to-translate strings not located) and the false positives
four subjects, the numbers of false positives are also quite(i.e., located need-to-translate strings that actually do not
small. need translation).

Third, for each subject, our approach is able to locate Analysis of false negatives.Generally, the false nega-
some constant strings that the developers did not externalizeives fall into three categories. The first category is constant
in the subsequent internationalized version but were verifiedstrings that are compared to string variables whose values
by us as need-to-translate. The developers might have eithecome from viewable items in widgets (such as an AWT Ta-
missed them or did not externalize them at that time due toble item or an AWT List item) on the GUI. If the developers
time or workload limit. In both cases, locating such strings translate constant strings whose value appears in a widget
should be helpful for the developers to produce a versionon the GUI, the translation may impact string variables that
with better quality of internationalization earlier. are compared to these translated strings. This category in-

In total, our approach locates 1670 such strings in the cludes all the 6 false negatives from AOI, all the 10 false

Table 1: Basic information of the subjects

Application Starting | #Developers| #LOC | #Files | #Constant| #Need-to-Trans(Not externalized
/\Version Month Strings | in the subsequent version)
Rtext 0.8.6.9(Core Package)11/2003 16 17k 55 1252 408(121)
Risk 1.0.7.5 05/2004 4 19k 38 1510 509(55)
AOI1.1 11/2000 2 71k 258 2889 1221(816)
Megamek 0.29.72 02/2002 33 110k | 338 10464 | 1734(678)

Table 2: Results of applying our tool on the four applications

Application | Need-to-Trans(Not externalized in the subsequent yedrpcated | False Neg (FN)| False Pos (FP
RText 408(121) 445 0 37
Risk 509(55) 498 18 7
AOI 1221(816) 1280 6 65
Megamek 1734(678) 1765 10 41

negatives from Megamek, and 3 of the 18 false negativestotal, 18 of 37 false positives in RText, 3 of the 7 false pos-
from Risk. In principle, string-comparison analysis should itives in Risk, 4 of 65 false positives in AOI, and 6 of 41
be able to locate strings in this category. The reason thatfalse positives in Megamek belong to this category.
our tool failed to do so in our empirical study is as fol- The second category of false positives consists of strings
lows. This category involves some string assignments orthat are viewable on the GUI but cannot be translated. For
even string comparisons implemented in library code. Our example, file-extension or directory names (such as “*.txt”
tool cannot trace into library code whose source code isor “C:/abc”) appear in dialogs related to file selection, but
not available, but if we can extend string-taint analysis and these names should be the same for different languages. An-
string-comparison analysis to library code, we can addressother example is the names of fonts (e.g., Times New Ro-
this category of false negatives. man). These names may also appear on the GUI, but should
The second category is constant strings related to theremain the same for different languages. Furthermore,
names of language-related file folders (e.g., maps andstring-comparison analysis introduces more false positives
cards). 10 of the 18 false negatives in Risk belong to this if strings are compared with false positives in this category.
category. Let us take map folders as an example. Since Riskn total, 14 of 37 false positives in RText, 4 of 7 false posi-
is a game application, various maps are used. As maps mayives in Risk, 61 of 65 false positives in AOI, and 35 of 41
contain texts specific to particular languages, versions forfalse positives in Megamek belong to this category.
different languages may require different sets of maps. To The third category includes 3 of 37 false positives in
internationalize maps, the developers used different foldersRText. These strings are HTML tags. They are passed to
to store maps for different languages. Thus, when switch-some texts in the HTML format and these texts are then
ing from one language to another, the names of map folderspassed to a window that displays HTML files. That is to say,
should also be switched. the texts are for display on the GUI, but translating these
The third category is debugging messages viewable onHTML tags may result in improper display.
the console but not output through output APl methods. In The fourth category is those used for debugging. This
Risk, 5 of the 18 false negatives belong to this category. category includes 2 false positives in RText. That is to say,
Note that developers may choose to or not to international-these 2 strings can appear in windows for displaying debug-
ize debugging messages. For RText, our approach located 3jing information. As the developers may not be familiar
debugging messages (which are output through API meth-with multiple languages, translating these strings may im-
ods), but the developers did not externalize them and wepact the debugging process negatively.
counted them as false positives. However, developers of Summary. For all the four subjects, our approach is able
Risk externalized 5 debugging messages, which we countedp |ocate most of the need-to-translate strings while produc-
as 5 false negatives. ing only small numbers of false negatives and false posi-
Analysis of false positivesGenerally, the false positives tives. Among the false negatives, the first category may re-
fall into four categories. The first category of false positives sultin run time errors but can be addressed by extending the
consists of strings that are viewable on the GUI but may analysis to analyze library code. The second category can
be intentionally left as not translated. Such strings include be easily detected by analyzing the file system. The third
version information, copyright information, acronyms, etc. category is relatively trivial for users to detect. Among the
Since we used a conservative policy when verifying strings false positives, the first category actually can be removed by
that are located by our approach but not externalized by thetranslators who know about the customs of local users. The
developers, we counted these strings as false positives. Irsecond and the third categories of false positives may result

Table 3: Turning on and off string-transmission analysis

Table 4: Turning on and off string-comparison analysis

Application Need-to| Located| FN | FP Application | Need-to| Located| FN | FP
-trans -trans
Megamek 1734 1765 10 | 41 RText 408 445 0 | 37
Megamek(NT) | 1734 1188 | 585 | 39 RText(NC) 408 445 0 | 37
Megamek(ALL) | 1734 1777 10 | 53 Risk 509 498 18 7
in run time errors, but can be detected by heuristic-based Risk(NC) 509 474 2] 7
checkers. The fourth category is also trivial for users to de- AOI 1221 1280 6 | 65
tect. Furthermore, for each subject, our approach is able to AQI(NC) 1221 1280 | 6 | 65
locate some need-to-translate strings that the developers did Megamek 1734 1765 | 10 | 41
not locate when internationalizing the subject. Megamek(NC)| 1734 1730 | 36 | 32
. The preceding re;ults show that our ap.proach is useful Table 5: Turning off the string filter
in at least the following two scenarios. First, developers Application | Need-to| Located| FN | FP
can use our approach to generate candidates for translation, -trans
since our approach achieves acceptable results for develop- RText 408 445 0 | 37
ers t? s(;art |nterr;a_1t|onat1::zzt;1tc|ion. ISecond, smci our_?pfrt()jagh RText(NF) 408 581 0 173
can find some strings that developers cannot easily find by .
themselves, they can use our approach to check internation- .R'Sk 509 498 18 !
alized versions and find missed need-to-translate strings. Risk(NF) 209 232 18 | 41
5.2.2 Effects of Different Techniques ACI 1221 1280 6 65
: . o AOI(NF) 1221 1487 | 6 | 272
In our approach, the basic tracing technique is string-
taint analysis, and we also develop three other techniques Megamek 1734 1765 | 10 | 41
(i.e., string-transmission analysis, string-comparison analy- | Megamek(NF)] 1734 | 2080 | 10 | 356

sis, and filtering) to cope with practical complications. To
evaluate the effects .Of the three tephniques in our_approachresults of turning on and off string-comparison analysis in
we performed a series of evaluations. The baseline was tOTabIe 4, in which the lines marked with “(NC)" present the
use all of the three techniques with string-taint analysis, andresults (’)f turning off string-comparison analysis

we turned off each technique at a time to see how the spe- First, string-comparison analysis is helpful to find more

cific technique aﬂeCtS the r.esglts. . need-to-translate strings (or reduce false negatives) in two
Effects of string-transmission _anaIyS|s.V_/e TQ’hOW the . of four subjects (i.e., 24 in Risk and 26 in Megamek). Sec-
_results of trning on and off string-transmission analysis ond, string-comparison analysis brings in 9 false positives
in Table 3. Smcg only Megamek transmn; st-nngs across;, Megamek. Specifically, these 9 false positives belong to
the network, turning on or c_:ff strmg—transmlssm.n analysis the second category of false positives. That is to say, string-
affects the result of only this subject. We considered two comparison analysis locates these 9 strings because they are

ways of turmng off strlng-tra'nsmlss]on analysis. In the first compared directly or indirectly to some strings viewable on
way, we did not analyze string variables whose values are he GUI but cannot be translated

transmitted across the network. In the second way, we use Effects of filtering. We show the results of turning on
string-taint analysis to analyze all string variables whose and off filtering in Table 5, in which the lines marked with
va]ues are transm_itted across the netwprk without consid—“(NF),, present the results’of turning off filtering.
ering the label varlgble n transnjltt?d ObJ,,GCtS' From Table 5, we observe that, in each subject, filtering
In Table 3, the line ma}rked W.'th (NT) presents the e can effectively reduce the number of false positives. Fur-
sults O.f our apprqach with turnmg off sFrlng—transm|ss!on thermore, filtering does not cause any false negatives in all
‘z‘;\nalys’!s in the first way, while the line ma_rked W_'th the four subjects. The reason is that we use conservative
(ALL.) presents_ th_e results O.f our approach with turning heuristics in filtering. Actually, if we use some aggressive
off string-transmission analysis in the second way. . heuristics, we may further reduce the number of false pos-
From the .table, we pbserve th_at,. compared. to thg fIrStitives, but the number of false negatives may increase. In
way of turning off string-transmission analysis, string- fact, we tried some aggressive heuristics as well, butin gen-

transmission analysis helps find 57.5 more need—to—trar\slateeral the aggressive heuristics did not significantly outper-
strings (or reduce 575 false negatives) in Megamek, Intro- ¢ our simple conservative heuristics

ducing 2 false positives (falling into the second category L.

of false positives discussed in Section 5.2.1). Compared to®-3 Threats to Validity

the second way of turning off string-transmission analysis, = The main threats to internal validity lie in the way we
string-transmission analysis helps reduce 12 false positivesverify constant strings not externalized in the subsequent

Effects of string-comparison analysis. We show the

internationalized version to be need-to-translate strings for The main weakness of string-taint analysis is that string-
each subject. First, it may be error-prone to verify constant taint analysis deems all the sources of each initial output
strings as need-to-translate in versions later than the subsestring as need-to-translate. However, when whether a par-
guent internationalized version, because the later versiongicular value of an initial output string is output to the GUI
involve various modifications for other purposes. Second, depends on values of variables of other types, string-taint
manually verifying constant strings not externalized in any analysis may induce inaccuracy, which then may result in
later version as need-to-translate may be prone to accidensome false positives. One possible way to reduce this kind
tal mistakes or personal perspectives to the notion of beingof false positives is to use dynamic analysis [2]. The main
“need-to-translate”. To reduce these threats, for each subdisadvantage of using dynamic analysis for locating need-
ject, we examined all these strings in all later versions care-to-translate constant strings is that dynamic analysis re-
fully, executed the internationalized subject to see whetherquires a set of test data to cover possible usages of the soft
these strings appear on the GUI and decided whether theyare application under analysis. Furthermore, according to
are not understandable to a user not familiar with English our experience, developers typically do not use other vari-
using a conservative policy. In fact, some of the false pos- ables to determine whether a particular value of an initial
itives are related to this policy. The second threat to inter- output string is output to the GUI. Thus, the weakness of
nal validity is that we did not consider the strings that were string-taint analysis may not result in many false positives in
missed by both the developers and our approach. To reduc@ractice. One exception that we know is transmitted strings.
this threat, we chose popular software applications to carryThere a label variable is used to determine which values of a
out our experiments, so that the quality of manual string transmitted string are output to the GUI and which are not.
externalization should be high. The third threat to internal To deal with this situation, we developed a technique for
validity is that we collected output APl methods manually transmitted strings.
and the collected list may not be complete. Although anin- Our current string-transmission analysis is able to deal
complete list is not in favor of our results, it may affect the with the situation of string transmission via objects through
false positives and false negatives in our evaluation. sockets. However, there are still other ways to transmit
The main threats to external validity are as follows. First, strings across the network. One popular way to transmit
the results of our study may be specific to the applications strings is to use a remote function call such as RPC and
used in the evaluation. To reduce this threat, we chose apRMI. Our approach can address this situation with minor
plications from various domains and their GUI structures adaptation by matching object names rather than socket
are different from one another. Second, the four subjectsnumbers. Other transmission strategies such as SOAP and
used in our empirical study are all open source applica- EventBus require more specific techniques beyond our tech-
tions in Java, and all of them are of moderate sizes. There-hique, and we plan to address them in future work.
fore, the findings of our empirical study may be specificto 7 Related Work
open source applications in Java with moderate sizes, and
may not be generalized to other applications. Third, we fort directly focusing on automatically locating need-to-

evaluated the effects of string-transmission analysis only on .
. translate constant strings. There have been a couple of
Megamek, as among the four subjects only Megamek trans-

mits strings across the network. Therefore, the findings onpgbll;hed books on how to mterngUonahze a s'oftvyare ap-
. o - s plication [5, 13]. The books provide some guidelines on
string-transmission analysis in our empirical study may not

X L how to find out need-to-translate constant strings and ex-
be generalized to other applications. To further reduce these[ernalize them. Some researchers analyzed the process

threats, we plan to apply our approach to more appllcanons,of internationalization and presented issues to be consid-

especially those for commercial use, with larger code bases, . . : :
.) . ered during the process, including locating need-to-translate
or having strings transmitted across the network.

)) strings [9, 4]. However, none of them provides any auto-
6 Discussion matic approach to locating need-to-translate strings.

The basis of our approach is string-taint analysis, which String analysis and string-taint analysis are recent ad-
was developed based on data-flow analysis. Compared tozances in static data-flow analysis [10]. Christensen et
traditional data-flow analysis, which should also be applica- al. [1] first suggested string analysis, which is an approach
ble to trace possible sources of the initial output strings, thefor obtaining possible values of a string variable. Gould et
main strength of string-taint analysis lies in that it can fur- al. [6] used string analysis to check the correctness of dy-
ther analyze contents of strings through formulating string namically generated query strings. Halfond and Orso [8]
assignments and concatenations as an extended CFG angsed string analysis to detect and neutralize SQL injection
string operations as FSTs. As a result, string-taint analy-attacks. Minamide [11] suggested to simulate string oper-
sis can help reduce some false positives, such as the stringtions in an extended CFG with FSTs, and implemented a
"CARD" in Line 19 of the example in Section 2. string analyzer on PHP code to check contents of dynami-

To our knowledge, our work is the first reported ef-

cally generated web pages. Recently, Wassermann and SAcknowledgment
developed string-taint analysis [14] based on Minamide’s The authors from Peking University are sponsored by
work and further applied the technique on detecting cross-the National Basic Research Program of China (973) No.
site scripting [15]. In our approach, we adapted string-taint 2009CB320703, the High-Tech Research and Development
analysis for a new problem (i.e., locating need-to-translate Program of China (863) No. 2007AA010301 and No.
constant strings), and developed techniques to cope with2006AA017156, the Science Fund for Creative Research
practical complications in the problem. Groups of China No. 60821003, and the National Science
Our approach can also be viewed as determining a SubFounde_ltion of China No. 90718016. Tao Xie's work is sup-
set of constant strings that are related to the GUI. From thisPOrted in part by NSF grants CNS-0720641, CCF-0725190,
perspective, our approach is also related to research on ab@nd Army Research Office grant W911NF-08-1-0443.

stract type determination, which tries to decide the semanticReferences

role of a variable in the code. O’Callahan and Jackson [12]

proposed a technique based on static data-flow analysis to [1] A. Christensen, A. Miler, and M. Schwartzbach. Precise
decide the abstract type of a variable. Guo et al. [7] fur- analysis of string expressions. Rroc. SAS pages 1-18,
ther improved the approach to the same problem using dy- 2003.

namic data-flow analysis. Our approach differs from these [2] J- A. Clause, W. Li, and A. Orso. Dytan: a generic dynamic
approaches in two main aspects. First, our approach targets ~ t@int analysis framework. IRroc. ISSTApages 196-206,
at a new problem not addressed by these approaches. Sec- 2007.

d his based . techni f [3] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
ond, our approach IS based on various techniques for ana- K. Zadeck. Efficiently computing static single assignment

lyzing strings in source code while these approaches do not form and the control dependence grapACM Trans. on

focus on strings. Prog. Lang. and Sys13(4):451-490, October 1991.
. [4] V. Dagiene and R. Laucius. Internationalization of open
8 Conclusion and Future Work source software: framework and some issuedntin Conf.

. . on Information Technology: Research and Educatjmages
In this paper, we present a novel approach to automat 204207, 2004.

ically locating need-to-translate constant strings. Our ap- (5] g Esselink. A Practical Guide to Software Localization:

proach is based on string-taint analysis, and proposes three -~ For Translators, Engineers and Project Managersiohn
practical techniques to cope with the complications in the Benjamins Publishing Co, 2000.
targeted problem. Furthermore, we implemented our ap- [6] C. Gould, Z. Su, and P. T. Devanbu. Static checking of
proach as an Eclipse plug-in. We evaluated our approach dynamically generated queries in database applications. In
on four real-world open-source applications: RText, Risk, Proc. ICSE pages 645-654, 2004.
ArtOfillusion (AOI), and Megamek. The empirical results 1] P Guo. Jf H. Perk'fns’bst' M(t:(t:amant,mz;md l\I/IS.SD'I.'AI\EmSt. Dy-
show that our approach is able to locate most of the constant gg?_'gég ezrggge Of abstract fypes. ioc. npages
strings externalized by the developers, with small numbers [g] w. G. J. Halfond and A. Orso. AMNESIA: analysis and
of false positives and false negatives. monitoring for neutralizing SQL-injection attacks. Froc.

In future work, we plan to extend our approach to ad- ASE pages 174-183, 2005.
dress the following research issues. First, we plan to extend [9] J- Hogan, C. Ho-Stuart, and B. Pham. Currentissues in soft-
our tool for analyzing Java library code, because the current ware internationalisation. IRroc. Australian Computer Sci-

inability to trace into Java library code causes some false ence Conf.2003. : : ;
y y 10] J. Kamand J. Uliman. Global data flow analysis and iterative

negatives. Second, we plan to extend our approach to sup- algorithms. Journal of the ACM (JACM)23(1):158-171,

port other ways of string transmission across the network. January 1976.
Third, we plan to further automate the collection of the out- [11] Y. Minamide. Static approximation of dynamically gener-
put APl methods in our approach. In particular, we plan ated web pages. IRroc. WWWpages 432-441, 2005.

to mine the list of output APl methods from existing inter- [12] R. O'Callahan and D. Jackson. Lackwit: a program under-
nationalized software applications, in which we can trace standing tool based on type inference Pc. ICSE pages

; : 338-348, 1997.
forwardly from the externalized strings to the methods that [13] E. Uren, R. Howard, and T. PerinotSoftware Internation-

eventually send the strings to the GUI. Fourth, there are fac- alization and Localization: An IntroductionvVan Nostrand
tors other than text translation that affect the quality of soft- Reinhold, 1993.

ware internationalization (e.g., date/time, number formats, [14] G. Wassermann and Z. Su. Sound and precise analysis
different colors for emphasis in different cultures), we plan of web applications for injection vulnerabilities. Froc.

to further address such problems. Finally, we plan to ex- PLDI, pages 32-41, 2007.

[15] G. Wassermann and Z. Su. Static detection of cross-site
scripting vulnerabilities. InProc. ICSE pages 171-180,
2008.

tend our approach to locate need-to-translate strings in Web
applications, in which texts viewable on Web pages are typ-
ically concatenated with non-viewable tags.

