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Abstract

Programming languages such as Java and C++ provide
exception-handling constructs to handle exception condi-
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releases the lock after timeout. A case study [21] conducted
on a real application demonstrates the necessity of releas-
ing resources in exception paths for improving reliability

and performance. The case study found that there was a

tions. Applications are expected to handle these exceptionsurprising improvement of 17% in performance of the ap-

conditions and take necessary recovery actions such as re

leasing opened database connections. However, exception

plication after correctly releasing resources in the prese
of exceptions.

handling rules that describe these necessary recovery ac-

tions are often not available in practice. To address this

issue, we develop a novel approach that mines exception-

handling rules as sequence association rules of the form
“(FCL.FCM A FC, = (FCL..FC™)". This rule de-
scribes that function calF'C, should be followed by a se-
quence of function callsKC!...FC™) when F'C, is pre-
ceded by a sequence of function call&{}...FC?). Such
form of rules is required to characterize common exception-

handling rules. We show the usefulness of these mined rule§

by applying them on five real-world applications (includ-
ing 285 KLOC) to detect violations in our evaluation. Our
empirical results show that our approach minz$t real
exception-handling rules in these five applications and als
detectsl60 defects, wher&7 defects are new defects that
are not found by a previous related approach.

1 Introduction

Software verification can be challenging for exception
ases as verification techniques require specificatiorts tha
describe expected behaviors when exceptions occur. These
specifications are often not available in practice [10]. To
address this issue, association rules of the fofid'; =
FC,” are mined as specifications [22], where bét&', and
FC, are function calls that share the same receiver object.
These specifications are used to verify whether the function
all FC, is followed by the function calF'C. in all excep-
tion paths. However, simple association rules of this form
are often not sufficient to characterize common exception-
handling rules. The rationale is that there are various sce-
narios wherd’'C,, is not necessarily followed b C, when
exceptions are raised ByC,, although both function calls
share the same receiver object.

We next present an example using Scenarios 1 and 2
(extracted from real applications) shown in Figure 1. Sce-

C

Programming languages such as Java and C++ providenario 1 attempts to modify contents of a database through

exception-handling constructs suchtgscatch ~ to han-
dle exception conditions that arise during program execu-
tion. Under these exception conditions, programs follow
paths different from normal execution paths; these addi-
tional paths are referred to azceptiorpaths. Applications

developed based on these programming languages are exXGonnection rollback
pected to handle these exception conditions and take necrollback
essary recovery actions. For example, when an applicatiorwhenever an object afonnection
reuses resources such as files or database connections, tlaConnection

the function callStatement.executeUpdate (Line 1.9),
whereas Scenario 2 attempts to read contents of a database
through the function callStatement.executeQuery

(Line 2.8). Consider a simple specification in the
form of an association ruleConnection creation =

".  This rule describes that a
function call should appear in exception paths

is created. Although
object is created in both scenarios, this rule

application should release the resources after the usage impplies only to Scenario 1 and does not apply to Scenario

all paths includingexceptionpaths. Failing to release the

2. The primary reason is that thellback  function call

resources can not only cause performance degradation, buthould be invokednly when there are any changes made to
can also lead to critical issues. For example, if a databasehe database. This example shows that simple association
lock acquired by a process is not released, any other pro+ules of the form FC, = FC.” are often insufficient to
cess trying to acquire the same lock hangs till the databasecharacterize exception-handling rules.



Scenario 1

Scenario 2

1.1: .. 2.1: Connection conn = null;
1.2: OracleDataSource ods = null; Session session = null; 2.2: Statement stmt = null;
Connection conn = null; Statement statement = null; 2.3: BufferedWriter bw = null; FileWriter fw = null;
1.3: logger.debug("Starting update"); 2.3:try {
1.4:try { 2.4: fw = new FileWriter("output.txt");
1.5: ods = new OracleDataSource(); 2.5: bw = BufferedWriter(fw);
1.6: ods.setURL("jdbc:oracle:thin:scott/tiger@192.168.1.2:1521:catfish"); 2.6: conn = DriverManager.getConnection("jdbc:pl:db", "ps", "ps");
1.7: conn = ods.getConnection(); 2.7: Statement stmt = conn.createStatement();
1.8: statement = conn.createStatement(); 2.8: ResultSet res = stmt.executeQuery("SELECT Path FROM Files");
1.9: statement.executeUpdate("DELETE FROM table1"); 2.9: while (res.next()) {
1.10: connection.commit(); } 2.10: bw.write(res.getString(1));
1.11: catch (SQLException se) { 2.11: }
1.12: if (conn != null) { conn.rollback(); } 2.12: res.close();
1.13: logger.error("Exception occurred"); } 2.13: } catch(IOException ex) { logger.error("IOException occurred");
1.14: finally { 2.14: } finally {
1.15: if(statement != null) statement.close(); 2.15: if(stmt != null) stmt.close();
1.16: if(conn != null) conn.close(); 2.16: if(conn != null) conn.close();
1.17: if(ods != null) ods.close(); 2.17: if (ow != null) bw.close();
1.18:} 2.18:}

Figure 1. Two example scenarios from real applications.
The insufficiency of simple association rules calls for scope, i.e., from only a few example applications. There-

more general association rules, hereby referred tgeas
quence association ruleof the form “(FCL..FC?) A
FC, = (FCL..FC™)". This sequence association rule
describes that function ca’C, should be followed by
function-call sequencEC....FC™ in exception paths only
when preceded by function-call sequere€....FC?. Us-

fore, these approaches may not be able to mine rules that do
not have enough supporting samples in those example ap-
plications, and hence the related defects remain unddtecte
by these approaches. To address this challenge, CAR-Miner
expands the data scope by leveraging a code search engine
(CSE) for gathering relevant code samples from existing

ing this sequence association rule, the preceding exampl@pen source projects available on the web. From these rel-

can be expressed ag"(C} FC?) A FC, = (FCL)", where

FC! : OracleDataSource.getConnection

FC? : Connection.createStatement

FC, . Statement.executeUpdate

FC! : Connection.rollback

This
and does not apply to Scenario 2 due to the presence
FC,: Statement.executeUpdate . The key aspects to
be noted in this rule are: (Btatement.executeUpdate
is the primary reason to hav€onnection.rollback

o

in an exception path and (2) the receiver object of

Statement.executeUpdate
object of Connection.rollback
call sequence defined ByC! FC?2.

is dependent on the receiver
through the function-

evant code samples, CAR-Miner mines exception-handling
rules. We show the usefulness of mined exception-handling
rules by applying these rules on five applications to detect
violations. CAR-Miner tries to address problems related to

the quality of code samples gathered from a CSE by captur-

sequence association rule applies to Scenario 1iN9 the most frequent patterns through mining.
¢ This paper makes the following main contributions:

e A general mining algorithm to mine sequence asso-
ciation rules of the form “CC!..FC™) A FC, =
(FCL...FC™)". Our new mining algorithm takes a
step forward in the direction of developing new min-
ing algorithms to address unique requirements in min-
ing software engineering data, beyond being limited by

existing off-the-shelf mining algorithms.
An approach that incorporates the general mining al-

Our sequence association rules are a super set of sim-
ple association rules. For example, sequence association
rules are the same as simple association rules when the se-
quenceFCL..FC" is empty. To the best of our knowl-
edge, existing association rule mining techniques [2] can-
not be directly applied to mine these sequence association
rules. Therefore, to bridge the gap, we develop a hew min-
ing algorithm by adapting the frequent closed subsequence
mining technique [19].

We further develop a novel approach, called CAR-Miner,
that incorporates our new mining algorithm for the prob-
lem of detecting exception-handling rules in the form of se-
guence association rules by analyzing source code. Apart
from mining sequence association rules, CAR-Miner ad-
dresses another challenge that is often faced by existing ap
proaches [3, 11, 22], which mine rules from a limited data

gorithm to mine exception-handling rules that describe
expected behavior when exceptions occur during pro-

gram execution.
A technique for constructing a precise Exception-Flow

Graph (EFG), which is an extended form of a Control-
Flow Graph (CFG), that includes only those exception
paths that can potentially occur during program execu-

tion.
An implementation for expanding the data scope to

open source projects that help detect new related
exception-handling rules that do not have enough
supporting samples in an application under analysis.
These rules can help detect new defects in the applica-

tion under analysis. _
Two evaluations to show the effectiveness of our ap-

proach. (1) CAR-Miner detect394 real exception-
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handling rules in five different applications including
285 KLOC. (2) The top50 exception-handling rules
(top 10 real rules of each application) are used to de-
tect atotal ofi60 real defects in these five applications,
where87 defects are new, not being detected by a pre-
vious related approach [22].

The rest of the paper is organized as follows._ S_ectlon 2 (a) Constructed EFG
presents a formal definition of sequence association rules @

and describes our new mining algorithm. Section 3 de-
scribes key aspects of the CAR-Miner approach. Section 4
presents evaluation results. Section 5 discusses thieats t
validity. Section 6 presents related work. Finally, Secflo = General Algorithm

concludes. To the best of our knowledge, there are no existing min-
L ing techniques that can mine from sets of sequences such as

2 Problem Definition S DB, andSD B, with resulting association rules a6 =

We next present a formal definition of general associ- Y, whereX C S; € SDB, andY C S; € SDB,. We com-
ation rules and then describe sequence association rulebine both sequence databases in a novel way using annota-
required for characterizing exception-handling rules- Al tions to build a single sequence database. These annatation
though we present our algorithm from the point-of-view of help in deriving association rules in later stages. For exam
mining exception-handling rules, the algorithm is general ple, consider two sequence databases shown in Figure 2a.
and can be applied to other practical problems that fall into Figure 2b shows a single sequence database using annota-

(c) Post processing of trace

o] 5.

(d) Filtered trace

Figure 3. lllustrative examples of CAR-Miner
approach.

our problem domain. tions combined from the two sequence databases. We next
mine frequent subsequences from the combined database,
Problem Domain denoted as$ D B, 2, using the frequent closed subsequence

mining technique [19].

The frequent subsequence mining technique accepts a
database of sequences suclyasB; » and a minimum sup-
Port thresholdmin.sup and returns subsequences that ap-
pear at leastnin_suptimes in the sequence database. Given
a sequencs, it is considered as frequent if its suppsup(s)
> minsup In our context, we are interested in frequent

items belonging td. In essence$; andS; belong to two .

closed subsequences. A sequesiea frequent closed se-
sequence databases, 8 B; and SD B-, denoted as; .

guence, ifsis frequent and no proper super sequence of

€ SDB; andS; € SDB,, respectively, and there iscae- . X
. is frequent. Figure 2c shows an example closed frequent
to-one mapping between the two sequence databases. We ;
. e Subsequence from the combined sequence database. As se-
define an association rule between sets of sequenc&s as

_ Y, where bothX andY’ are subsequences8f SDB, guence mining preserves temporal order among items, we
. - scan each closed frequent subsequence and transform the
andS; € SDBs, respectively. A sequenee= (a;as...ap)

(where eachu, is an item) is defined as a subsequence of Eubszquence mto_an aSSOCIﬁtIOH r_ule (.)f the f?jm Y
another sequenge= (b1b,...b,), denoted as C g, if there ased on annotations (as shown in Figure 2d). We com-

L . ; ) _ pute confidence values for each association rule using the
< =0
eXIEt integers Eg J1 < Jj2 < ...<jp < gsuchthat; =b;;, formula as shown below:
ag — bjg,...,ap - qu.

Let F = {FC4, FC,y, ..., FCy} be the set of all possi-
ble distinct items. Let = {FC;y, FCia, ..., FC;p} and
J={FCji, FCj, ..., FC},} be two sets of items, where
| C F andJ C F. Consider a sequence database as a se
of tuples 6id, S;, S;), wheresid is a sequence idS; is a
sequence of items belonging kpand S; is a sequence of



Confidence X = Y) = Support K Y) / Support K) argument types of function calls in code samples. More
Although we explain our algorithm using two sequence details of our partial-program analysis are available in ou
databases' D B, and.SD B,, our algorithm can be applied previous paper [17]. As we collect relevant code samples
to multiple sequence databases as well. These multiple sefrom other open source projects that already reuse a func-
guence databases can also be combined into a single sdion, our approach has an advantage of being able to detect
guence database using the similar mechanism illustrated iradditional rules that do not have enough supporting samples

Figure 2. in the application under analysis.
Sequence Association Rules

] ] . 3.3 Exception-Flow-Graph Construction
In our current approach, our target is to mine exception-

handling rules in the form of association rules. Therefore, ~We next analyze the collected code samples and the ap-
we collect two sequence databases for each function callplication to generate traces in the form of sequence of func-
FC,: a normal function-call-sequence (NFCS) databasetion calls. Initially, we construct Exception-Flow Graphs
and an exception function-call-sequence (EFCS) database(EFG), which are an extended form of Control-Flow Graphs
We apply our mining algorithm to generate sequence associ{CFG). An EFG provides a graphical representation of all
ation rules of the fornf’C!...FC" = FC!..FC™, where  paths that might be traversed during the execution of a pro-
FCl..FC"C S, e NFCSandFC!..FC™ C S; € EFCS. gram, including exception paths. Construction of an EFG
Such an association rule describes that, should be fol- is non-trivial due to the existence of additional paths that
lowed by the function-call-sequené&C!...FC™ in excep- transfer control to exception-handling blocks defined i th
tion paths, when preceded by the function-call-sequenceform of catch or finally ~ in Java. We develop an algo-
FC!...FC?. As this association rule is specific to the func- rithm inspired by Sinha and Harrold [16] for constructing
tion call FC,,, we append”C, to the rule as{C}...FC?) EFGs with additional paths that describe exception condi-

AN FC, = (FCL...FC™). tions. Figure 3a shows the constructed EFG for Scenario
h 2, where each node is denoted with the corresponding line
3 Approac number of Scenario 2 in Figure 1.

Our CAR-Miner approach accepts an application under Initially, we build a CFG that represents flow of con-
analysis and mines exception-handling rules for all fuorcti  trol during normal execution and augment the constructed
calls in the application. CAR-Miner detects violations of CFG with additional edges that represent flow of control af-
the mined exception-handling rules. We next present theter exceptions occur. We refer to these additional edges as

details of each phase in our approach. exceptionedges and all other edges rasrmal edges. In
the figure,normal and exceptionedges are shown in solid
3.1 Input Application Analysis and dotted lines, respectively. For example, an exception

CAR-Miner accepts an application under analysis and €d9¢€ is added from Node 5 to Node 13 as the program can
parses the application to collect each function call, say follow this path whenlOException  occurs while creat-
FC,, in the application from the call sites in the applica- INg @Bufferedwriter  object. As code inside eatch or

tion. For example, CAR-Miner collects the function call 2finally  block gets executed after exceptions occur, we
Statement.executeUpdate as anFC, from Line 1.9 consider edges between the statements withioh and

in Scenario 1. We denote the set of all function calls as finally  blocks also as exception edges. We show nodes

FCS. CAR-Miner mines exception-handling rules for all related to function calls in normal paths such as those in
these function calls. atry block in white and function calls in exception paths

such as those in@atch block in grey. Although function
3.2 Code-Sample Collection calls in afinally  block belong to both normal and excep-
To mine exception-handling rules for the function call tion paths, we consider these paths as exception paths and
FC,, we need code samples that already reuse the func-show the associated nodes in grey. For simplicity, we ignore
tion. To collect such relevant code samples, we interactthe control flow inside exception blocks.
with a code search engine (CSE) such as Google code In the constructed EFG, there is an exception edge from
search [9] and download code samples returned by theNode 5 to Node 13, but there is no exception edge from

CSE. For example, we construct the quetyny:java Node 6 to Node 13. The reason is that Node 13 han-
java.sgl.Statement executeUpdate " to collect code dles a checked exceptid®Exception , which is never
samples of thé'C,, Statement.executeUpdate . Often raised by function calbriverManager.getConnection

code samples gathered from a CSE are partial as the CSBf Node 6. Therefore, we prevent such infeasible con-
returns individual source files instead of complete prgject trol flow through a sound static analysis tool, called
We use partial-program analysis developed in our previousJex [14]. Jex analyzes source code statically and
approach [17] to resolve object types such as receiver orprovides possible exceptions raised by each function



call. For example, Jex provides th@Exception can var dependency of a variable and function association of a

be raised byBufferedWriter.Constructor but not function call. The var dependency of a variable represents
DriverManager.getConnection . While addingexcep- the set of variables on which a given variable is dependent
tion edges, we add only those edges from a function call toupon. Similarly, a function association of a function call

acatch block where the exception handled by tech represents the set of variables on which a function call is

block belongs to the set of possible exceptions thrown by associated with.

the function call. This additional check helps reduce poten  First, we compute the var-dependency relationship infor-
tial false positives by preventing infeasible exceptiothpa  mation from assignment statements. For example, in Sce-
If the catch block handlesException (the super class nario 2, we identify that the variables is dependent on

of all exception types), we add exception edges from eachthe variablestmt from Line 2.8 and is transitively depen-

function call to thecatch block. We consider é&nally dent onconn asstmt is dependent obonn from Line 2.7.
block as similar to @atch block that handleException We compute the function-association relationship based on
and add exception edges from each function call to thethe var-dependency relationship. In particular, we idgnti
finally  block. that a function call is associated with all its variables in-

As gathered code samples are partial, we use intra-cluding the receiver, arguments, and the return variabie, a
procedural analysis for constructing EFGs. Furthermore, their transitively dependent variables. For example, appl
before constructing an EFG for a code sample, we alsoing the preceding analysis to the function call of Node 7, we

check whether the code sample includes &idy, € F'C'S. identify that the associated variables avan andstmt .

If the code sample does not include afig’',, we skip the We use variables associated with each function call
EFG construction for that code sample. to identify function calls in the normal function-call se-

3.4 Static Trace Generation quenceF'C!...FCT or the exception function-call sequence

FCL..FC™ that are not related té&'C,. Starting from
FC,, we perform a backward traversal of the trace to fil-
ter out function calls iF"C...FC" and a forward traversal
to filter out function calls iF"C!...FC™. Assume that vari-

We next capture static traces that include actions that
should be taken when exceptions occur while executing
function calls such a8'C, € FCS. For example, consider
the F'C, “Connection.createStatement " and its cor- . ) 125 <
responding Node 7 in the EFG. A trace generated for this ables a_ssomated W't.ﬁc‘l arg{Va Va o Vit Asiur_ne

that variables associated with a function call, in

node is shown in Figure 3b. The trace includes three sec-th | tion funct I Ce{/@x
tions: normal function-call sequendg’C}...FC?), FC,, Vze nor‘r’r;? or exception function-call sequence f¥..
exception function-call sequentEC!...FFC™). cer s Veel-

The FCL...FC" sequence starts from the beginning of ¢ I(r; eaghb':ravetrsg;, Owe cgpggteh?;m_tetrsectl?n 0{/?3300"
the body of the enclosing function (i.e., caller) of the¢’, atedvariable Sets a an ce’ € intersectio{ V, ,

2 s 1 2 t k
function call to the call site oF'C,. The FC!...FC"" se- Vi o Vil 0 {Vee, View . Vie} # ¢, we keep the'Cg,

guence includes the longest exception path that starts fron{unctmn call (either in the normal or exception function-

the call site of F'C, and terminates either at the end of the ?a” stgquenlffe) In tthhe t:ace; o_:_r;]erm?e, Wle fltl)tef:.ozt [ ji@ |
enclosing function body or at a node in EFG whose out- unction call from the trace. The rationalé benind our anal-

going edges are all normal edges. We generate such trace%SiS is that if the intersection is a non-empty set, it indi-
from code samples and input application for eddfi, € cates that the"'C, is directly or indirectly related to the
a

FC* function call. For example, the intersection of associ-
FCS. ce .
ated variables for Nodes 6 and 7 is non-empty. In contrast,
the intersection of associated variables for Nodes 5 and 7
is empty. Therefore, we keep Node 6 in the trace and fil-
ter out Node 5 during backward traversal. Similarly, during

1 m
5 Ce"'g ¢ that dare not relat?]d ftd?qa throwghf data- hforward traversal, we ignore Node 17 since the intersection
ependency, and remove suc unction ca S Trom eachis 5 empty set. The resulting trace of “4,5,6,7,15,16,87" i
trace. Failing to remove such unrelated function calls can«g 7 15 16" where

result in many false positives due to frequent occurrentes o
unrelated function calls as shown in the evaluation of PR- 6 : DriverManager.getConnection

3.5 Trace Post-Processing
We next identify function calls inFCL..FC? or

Miner [11]. For example, in the trace shown in Figure 3b, 7 : Connection.createStatement
function calls in the normal function-call sequence radate 15 : Statement.close

to Nodes 4 and 5 are unrelated to thée’, of Node 7. Sim- 16 : Connection.close

ilarly, Node 17 in the exception function-call sequence is

also unrelated td'C,. 3.6 Static Trace Mining

Figure 3c shows an example of our data-dependency We apply our new mining algorithm described in Sec-
analysis. Initially, we generate two kinds of relationghip tion 2 on the set of static traces collected for edafi,.



We apply mining on the traces of eaétC, individually. 16

The reason is that if we apply mining on all traces together, v
rules related to &'C, with only a small number of traces 10 )
can be missed due to rules related to othiéf, with a large

Number

6 g &
number of traces. 2 e <
In the phase of static trace mining, we first transform s 1m0 alwmas w0 61w7s 7w 90w 105 1001112
traces suitable for our mining algorithm. More specifi- Rank Ranges
cally, as each trace includes a normal function-call segeien [—o—Rules —=— Usage Patterns —&— Faise Posives |

and an exception function-call sequence, we build two se-

guence databases with normal and exception function-call

sequences, respectively, from all the traces 6@, func-

tion call. of comparison with the data provided by the WN-miner de-
We next apply our mining algorithm that initially anno- veloper. We used five out of eight subjects used in WN-

tates corresponding normal and exception function-call se miner since related versions of the remaining three sub-

guences and combines the annotated sequences into a sifects are not currently available. In our evaluations, we tr

gle call sequence. The mining algorithm produces sequenceo address the following questions. (1) Do the exception-

association rules of the fordiC}...FC" = FC!...FC™. handling rules mined by CAR-Miner represent real rules?

As this sequence association rule is specifif' @,, we add (2) Do the detected rule violations represent real defects i

FC,totherule asfC!..FC") A FC, = (FCL..FC™). subject applications? (3) Does CAR-Miner perform better

The preceding sequence association rule describes that théhan the existing related WN-miner tool in terms of min-

function call FC,, should be followed byF'C!...FC™ in ing real rules and detecting real defects in an application

exception paths only when preceded®¢}...FC” in nor- under analysis? (4) Do the sequence association rules help

mal paths. In our approach, we use the frequent closed subeetect any new defects that cannot be detected with sim-

sequence mining tool, called BIDE, developed by Wang and ple association rules of the formf*C, = FC,"? The

Han [19]. We used thenin_supvalue as0.4, which is set  detailed results of our evaluation are availablentip:

based on our initial empirical experience. We repeat the //ase.csc.ncsu.edu/projects/carminer/

preceding process for eaétC', and rank all final sequence

association rules based on their support values assigned by 1 Subjects

the frequent subsequence miner.

Figure 4. Distribution of classification cate-
gories with ranks for the Axion application.

Table 1 shows subjects and their versions used in our
evaluations. Column “Internal Info” shows the number of
. . declared classes and functions of each application. Column

To show the usefulness of our mined exception-handling «exernal Info” shows the number of external classes and
rules, we apply these rules on the application under anal-yejr functions invoked by the application. Column “Code
ysis to detect violations. Initially, from each call site of Examples” shows the number of code examples gathered by
FC, in the application, we extract the normal function- caARr-Miner to mine exception-handling rules. For exam-
call sequence,.sagzclcf.. ..C%, from the begin_ning of the ple, CAR-Miner gathered7783 code examplesx 7 mil-
body of enclosing function of'C), to the call site ofF"C,. lion LOC) from a code search engine for mining exception-
If FC;...FCP T CLC...C¢, then we extract the excep- handling rules of the Axion application. Column “Time”
tion function-call sequence, say, C7. . .Ce, fromthe call  ghows the amount of time taken by CAR-Miner in seconds
site of F'C, to the end of the enclosing function body or ¢4 each application. The shown time includes the analysis
to a node (in the EFG) whose outgoing edges are all nor-gime of the application and gathered code examples, and the
mal edges. We do not report a violationAit”;...FC;" C time taken for detecting violations. The amount of process-

1 o 5. . e . ume
C.C2...Cc otherW|'se, we report a V|ol<’:1'EI0n_|n the appli- ing time depends on the number of samples gathered for an
cation under analysis. We rank all detected violationsdbase application. All experiments were conducted on a machine

on a similar criterion used for ranking exception-handling \;ith 3.0GHz Xeon processor and 4GB RAM.
rules.

3.7 Anomaly Detection

4 Evaluations 4.2 Mined Exception-Handling Rules

We next describe the evaluation results of CAR-Miner ~ We next address the first question on whether the mined
with five real-world open source applications as subjects. exception-handling rules represent real rules that cap hel
We use the same subjects (and same versions) used for evatietect defects in an application under analysis. Table 2
uating a related approach called WN-miner [22] for the easeshows the classification of exception-handling rules mined



Table 1. Characteristics of subjects used in evaluating CAR -Miner.

Subject Lines Internal Info External Info #Code | Time
of code#CIasse}#Function #Classe@fFunction 5 Examples |(in sec.
Axion 1.0M2 24k 219 2405 58 217 47783 (7TM)| 1381
HsqlDB 1.7.1 | 30k 98 1179 80 264 |78826 (26M) 2547
Hibernate 2.0 b4 39k | 452 4321 174 883 88153 (27M) 1125
SableCC 2.18.2 22k 183 1551 21 76 47594 (15M) 1220
Ptolemy 3.0.2 | 170k | 1505 9617 477 2595 |70977 (21M) 1126

Table 3. Classification of detected violations.

Table 2. Classification of exception-handling

rules Subject #Total |#Violations of#Defects#tHints#FR
Subjeét #Tota|Real RulegJsage Patterr]iéalse Positives . Violation first 10 rules
#[ % #[ % [#[ % Axion 1.0M2 257 19 13 1 5

Axion 112 [70 625 |3 268 |39 3482 ﬂ_st?'DB 1-72-1 o ig"' g; i; 0 io

HsqiDB | 127 [89 70.08[3 236 |35 27.56 ibernate 2.0 36 0 |10

Hibernate | 121 [86 71.07[1] 0.82 |34 28.00 Sablecc 2.18.2] 168 66 45 | 7 |14

SableCC 20 12 30 2 5 26 65 Ptolemy 3.0.2 665 95 39 1 |55

Ptolemy 94 |37 39.36 |5 5.32 52/ 55.32

AVERAGE 54.6 3.24 42.16 Table 4. Status of detected defects in new ver-

sions of subject applications.

by CAR-Miner. Column “Total” shows the total number | [# DefectiNew Versiof#Fixed#Deleted#Oper)
of rules in each application. We classify these rules into |Axion 1.0M2 13 1.0m3 4 8 1
three categories: real rules, usage patterns, and false pos|HsqibB 1.7.1 o1 18.09 | 2 9 40
tives. Real rules describe the behavior that must be satis{Hibernate 2.0 b 12 3.2.6 0 8 4
fied while using function calls such &C,, whereas usage ~ |>ablecc2.18.2| 45 | 4-alpha.3| 0 43 2
patterns suggest common ways of usifig,. The viola- Ptolemy 3.0.2 | 39 3.0.2 0 0 39

tions of real rules and usage patterns can be defects and . . L _
hints, respectively. A hint, which was originally proposed handling rules exist in applications such as Axion, HsqIDB,
by Wasylkowski et al. [20], helps increase readability and and Hibernate that deal with resources (such as databases or

maintainability of source code of an application. We used f1l€S) compared to other applications.

the available on-line documentations, JML specificatipns 4.3 Detected Violations
or the source code of the application for classifying mined
exception-handling rules into these three categories. Our We next address the question on whether the detected vi-
results show that real rules are 54.61% and false positivesolations represent real defects. Table 3 shows the vialgtio
are 42.16%, averagely. detected in each application. Column “Total Violations”
Although false positives are 42.16% on average amongshows the total number of violations detected in each ap-
the total number of mined rules, our mining heuristics for plication. The HsqlDB and Hibernate applications include
ranking exception-handling rules help give higher priorit test code as part of their source code. As test code is often
to real rules than false positives. Figure 4 shows a detailednot written according to specifications, we excluded the vi-
distribution of all extracted rules for the Axion appliaaii olations detected in the test code of those applicatioma fro
In Figure 4, x-axis shows distribution of mined rules in dif- the results. Given a high number of violations in each ap-
ferent ranges (each range is of size 15) with respect to asplication, we inspected the violations detected by the top
signed ranks and y-axis shows the number of rules that arelO exception-handling rules and classified them into three
classified into the three categories for each range. The pri-categories: Defects, Hints, and False Positives.
mary reason for selecting the Axion application is that the ~ Column “Violations of first 10 rules” shows the num-
application is a medium-scale application that is amenableber of violations detected by the top ten exception-haidlin
to a detailed analysis with reasonable effort. As shown in rules mined for each application. Column “Defects” shows
the figure, the number of false positives is quite low among the total number of violations that are identified as defects
the exception-handling rules ranked between 1 to 60. Thesén each application. As we used the same versions (an ear-
results show the significance of our mining and ranking cri- lier version than the latest version) used by the WN-miner
teria. Our results in Table 2 also show that more exception-approach for the ease of comparison, we verified whether
the defects found by our approach are fixed, deleted, or
Lhitp://www.eecs.ucf.edu/ ~ leavens/IML/ still open in the latest version of each application. Column




“New Version” of Table 4 shows the latest version used for
our verification. The defect's sub-categories “Fixed” and  Table 5. Defects detected or missed by CAR-
“Open” indicate that the defects found by our approach in ~ Miner.

the earlier version are fixed or still open in the new version, Subject # Defects i
respectively. We reported those open defects to respective # Total#Commot¥ Only# Missed
developers for their confirmation. Sometimes, we find that Axion 13 0 13 1
the defective code such as function body with detected de- HsqlDB | 51 35 16 | 13
fects does not exist in the latest version. One reason could Hibernate 12 0 12 7

be the refactoring of such code, which can be considered i?otl)(laer(r:l(;/ gg 138 415 101
as an indirect fix. We classified such defects as “Deleted TOTAL 1160 =3 57 35

(shown in Table 4).
The results show that our CAR-Miner approach can de- ) ) ]
tect real defects in the applications. The number of de-4-4-1 Comparison of exception-handling rules

fects sh_own in Columns “Fixed” and “Deleted” provide fu_r- We next present the comparison results of exception-
ther ewdepce that these defects.detec.ted by CARTM'nerhandling rules mined by both approaches. Figure 5 shows
are real since these defects are fixed directly or indirectly i\, results for the classification category “real rules’ be-

in newer versions of the applications. The initial response tween WN-miner and CAR-Miner. For each subject and
from the developers of HsqlDB 1S quite encouraging. The approach, the figure shows the total number of rules mined
developers responded on the first ten defects that we reby each approach along with the number of common rules
ported, where seven defects aeceptedand only three  poyyeen the two approaches. For example, CAR-Miner de-
defects are rejected. The bug reports for these ten defect:fected a total ot 0 rules for the Axion application. Among

are available in the HsqlDB Bug T;facker systewith IDs 05070 ryles, 43 rules are newly detected by CAR-Miner
#1896449, #1896448, and #1896442\lthough the three and 27 rules are common between CAR-Miner and WN-

rejected defects are violations of real rules, developers d 1o cAR-Miner failed to detec? real rules that were
scribed that the violation-triggering conditions of thelee detected by WN-miner

fects cannot be satisfied in the context of the HsqlDB ap- The primary reason for these two real rules not detected

plication. F‘or example, a rejected_ defect is a violation by CAR-Miner and detected by WN-miner is due to the
of real rule Datab%seMetaData.get.P rimaryKeys = ranking criterion used by WN-miner. WN-miner extracts
ResultSet.close The preced_mg rule describes that rules “FC, — FC,” when FC, appears at least once in
theclose function call should be invoked dResultSet exception-handling blocks such astch and ranks those

when getPrimarykeys ~ throws any exceptions. The re- 1 1es with respect to the number of timE€, appears after
sponse from the developers (Bug report ID: #1896448) for FC, among normal paths. As shown in their results, such

tth |shde:‘§ct |ftﬁlthoug:1hl':_lcsanIfgré)wsex?ptfl%ns ;1” ?]ecr;eral, a criterion can result in a high number of false positives
It should not throw wi Q - S01LIS Tingwhich de- such as Trace.trace = Trace.printSystemOut "in

_sc_ribe_s that the violation-triggering condition cannoshe the HsqIDB application, wher@C, often appears after
isfied in the context of HsqlIDB. FC, innormal paths and is used once in saraeh  block.

CAR-Miner ignores such patterns due to their relatively low
4.4 Comparison with WN-miner support among exception pathsioe,,.

The results show that CAR-Miner is able to detect most
of the rules mined by WN-miner and also many new rules
that are not detected by WN-miner. CAR-Miner performed
d better than WN-miner due to two factors: sequence associ-

static traces of their tool. We developed Perl scripts to de- arflon.rul_?'s and m;:rEase ]|cn the data SfOp?f'. Lo Lurthea;shlow
tect violations of mined specifications in static traces as (he significance of these factors, we classified the reasrule

described by the WN-Miner developer [22]. We used the mined by CAR-Miner based on these two fac_tors. Figure 6
same criteria described in Sections 4.2 and 4.3 for classify shows the percentage of sequence association rules among
ing rules and violations detected by their approach, respec all real rules. The results show that sequence_assomatmn
tively. We compared both mined exception-handling rules rules are 20.37% of all real rules on average mined for all

and detected violations. appl'ications.
Figure 7 shows the percentage of real rules that cannot
2http://sourceforge.net/tracker/?group_id=

233168atid=378131 be mined by analyzing only the application under analysis.
3\We reported multiple defects in the same source file as a singje b FOr (_example, 44.28% of the real rules mined for the Axion
report. application occur only from gathered code samples. Our

We next address the third question on whether our CAR-
Miner approach performs better than the related WN-miner
tool. As the WN-miner tool is not currently available, the
WN-miner developer provided the mined specifications an
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Table 6. Defects detected by Sequence Asso-
ciation Rules.

| [# Rule$# Violationg# Defect$# Hintg# False Positivgs 20"

Axion 3 6 4 0 2

qu | D B 6 14 8 0 6 0% Axion Hibernate ~ HsqIDB Ptolemy SableCC

Hibernate 4 10 8 0 2 Subject

Sablecc | 0 0 0 0 0 Figure 7. % rules mined only from code ex-
Ptolemy 1 1 1 0 0 amples.

results show that increase in the data scope to open sourcg ¢ Significance of Sequence Association
repositories helps detect new exception-handling rulas th Rules

do not have sufficient supporting samples in the applica- .
tion. Furthermore, increase in the data scope also helps giv. e nextaddress the last research question on whether se-
higher priority to real rules than false positives. guence association rules mined by CAR-Miner are helpful

in detecting new defects that cannot be detected by simple
association rules. Table 6 shows the number of sequence
. association rules that are used to detect real defects in all
4.4.2. Comparison of detected defects applications. The results show that these rules help detect
21 real defects among all applications.
We next present the number of real defects that were We next describe a defect in the HsqlDB application to
detected by CAR-Miner but not detected by WN-miner. show the significance of sequence association rules, which
To show that CAR-Miner can find new defects that were cannot be mined by existing approaches such as WN-miner.
not detected by WN-miner, we identified the exception- The related code snippet from teaveChanges function
handling rules that are mined only by CAR-Miner and not Of ZaurusTableForm.java  is shown as below:
by WN-miner among top 10 shown in Table 3 and verified public boolean saveChanges()
the defects detected by those rules. The results are showr --
in Table 5. Column “Total” shows the number of violations 'Y {
detected by the top 10 exception-handling rules. Column  FreparedStatement ps = _
“Common” and “Only” show the number of defects com- < Cle‘;?gg:‘ézgfearf;zftatement(str),
monly detected by CAR-Miner and WN-miner, and defects bs. -~

. ) for (int j=0; j<primaryKeys.length; j++) {
that are detected by CAR-Miner only, respectively. Column ps.setObject(i + j + 1,
“Missed” shows the number of defects detected by WN- resultRowPKs[aktRowNTr][j]); }
miner only. The results show that CAR-Miner detectd ps.executeUpdate();
new defects (among all applications) that were not detected } catch (SQLException e) { ..
by WN-miner. When inspecting all violations detected by return false;

CAR-Miner, we expect that the preceding number of new } ..

defects detected by CAR-Miner can be much higher. CAR- }

Miner missed32 defects that were detected by WN-miner. CAR-Miner detected a defect in the preceding code exam-
These missed defects are due to the missing patterns as dgle as the code example violated the exception-handling
scribed in Section 4.4.1. rule FC! A FC, = FC!, where



FC*:Connection.prepareStatement rules such as application classes inheriting from a library
FC, :PreparedStatement.clearParameters class often create objects of another class. PR-Miner [11]
FC! :Connection.rollback uses frequent itemset mining to extract implicit program-
) , i ming rules in large C code bases and detects violations.
The precedlng_rule describes that when an exception OCpynaMine [12] uses association rule mining to extract sim-
curs after executing thelearParameters  function, the o 1 jes from version histories for Java code and detects
rolllback fgncﬂon should be invoked on tl@nnection rule violations. Engler et al. [5] proposed a general ap-
objecp Fa|I|rjg to |nvol_<eollback can make the database _proach for finding defects in C code by applying statisti-
state inconsistent. Thls result'shows that sequence associ | analysis to rank deviations from programmer beliefs in-
tion rules are helpful in detecting new defects. ferred from source code. Wasylkowski et al. [20] mines
5 Threats to Validity rules that include pairs of API calls and detect violations.
Perracotta [23] mines patterns such(as)* and includes
The threats to external validity primarily include the de- t€chniques for handling imperfect traces. &fen et al. [15]
gree to which the subject applications and CSE used areMne assoqatlon rules thatdescr!be usage changes_ m-frgme
representative of true practice. The current subjectserang WOrK evolution. All these preceding approaches mine sim-
from small-scale applications such as Axion to large-scale P/€ @ssociation rules that are often not sufficient to char-
applications such as Ptolemy. We used only one CSE, i.e, acterize complex real rules as shown in our approac_h. In
Google code search, which is a well-known CSE. These contrast, our approach can mine more complex rules in the
threats could be reduced by more experiments on widerform Of sequence association rules.
types of subjects and by using other CSEs in future work.  Our approach is also related to other approaches that an-
The threats to external validity also include the quality of alyze exception behavior of programs. Fu and Ryder [6]
code examples collected from a CSE. We tried to reduceproposed an exception-flow analysis that computes chains
this threat to some extent by capturing most frequent pat-of semantically related exception-flow links across proce-
terns among these code examples. The threats to interdures. Our approach uses intra-procedural analysis for con
nal validity are instrumentation effects that can bias our structing exception-flow graphs. The Jex [14] tool stati-
results. Faults in our CAR-Miner prototype might cause cally analyzes exception flow in Java code and provides a
such effects. There can be errors in our inspection of sourceprecise set of exceptions that can be raised by a function
code for confirming defects. To reduce these threats, wecall. We use Jex in our approach to prevent infeasible ex-
inspected available related specifications and call sites i ception edges in a constructed EFG. Fu et al. [7] present
source code. a def-usebased approach that helps gather error-recovery
code-coverage information. Our approach is different from
6 Related Work their approagh as our approach dzfects defects that violate
WN-miner by Weimer and Necula [22] extracts simple mined rules rather than focusing on coverage of exception-

association rules of the formt"C, = FC,”, when F'C, handling code.
is found at least once in exception-handling blocks (i.e., ~Chang et al. [3] applies frequent subgraph mining on C
catch or finally blocks). Their approach mines and code to mine implicit condition rules and detect neglected
ranks these rules based on the number of tifi€s ap- conditions. Their approach targets at different types ef de
pears afterF'C, in normal paths_ Due to their ranking fects called neglectEd conditions. Moreover, their apq;hloa
criteria, their approach cannot mine rules that include adoes not scale to large code bases as graph mining algo-
FC. function call such agonnection.rollback , Where rithms suffer from scalability issues. Finally, DeLine and
FC. can appeaonly in exception paths. Acharya and Fahndrich [4] proposed an approach that allows program-
Xie [1] later proposed a similar approach for detecting Mers to manually specify resource management protocols
API error-hand”ng defects in C code. Our approach Sig_ that can be Statica”y enforced byacompiler. Howeverrthei
nificantly differs and improves upon these previous ap- approach requires manual effort from programmers and also
proaches as we mine sequence association rules of the forrfequires the knowledge of théault specification language
“(FC!..FC") A FC, = (FC}...FC™)" that can charac- 0 specify domain-specific protocols. In contrast, our ap-
terize more exception-handling rules. Our approach alsoProach does not require any manual effort or the knowledge
addresses the problem of lacking enough supporting samof any specific specification languages.
ples for these rules in the application under analysis by ex- Javert [8] uses a pattern-based specification miner to
panding the data scope to open source repositories througimine smaller patterns such as)*, calledmicro patterns
a code search engine. and then compose these patterns into larger specifications.
CodeWeb [13] mines association rules from source codeTheir approach does not require the user to provide any tem-
as framework reuse patterns. CodeWeb mines associatioplates. Similar to their approach, our approach also does



not require the user to provide any templates. However, [3] R.-Y.Chang, A. Podgurski, and J. Yang. Finding what's not
their mined patterns cannot characterize exception-iandl there: a new approach to revealing neglected conditions in
rules mined by our approach_ software. InProc. ISSTApages 163-173, 2007.
Our previous approaches PARSEWeb [17] and [4] R.DeLine and M. Rhndrich. Enforcing high-level protocols
. . _ in low-level software. IrProc. PLDI, pages 59-69, 2001.
SPOtweb [18] also exploit code search engines for gath [5] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
ering related code samples. PARSEWeb accepts queries

f the f ' Destinatiorl and mi f Bugs as deviant behavior: a general approach to inferring
of the form “Source— Destinatior and mines frequent errors in systems code. RProc. SOSPpages 57-72, 2001.

function-call sequences that accepourceand produce [6] C.Fuand B. G. Ryder. Exception-chain analysis: Revealing
Destination SpotWeb accepts an input framework and exception handling architecture in Java server applications.
detects hotspot classes and functions of the framework. Our In Proc. ICSE pages 230-239, 2007.
new approach CAR-Miner significantly differs from these [7] C.Fu, B. G. Ryder, A. Milanova, and D. Wonnacott. Testing
previous approaches. CAR-Miner constructs EFGs and of Java web services for robustness.Pioc. ISSTApages
includes new techniques for collecting and post-processin 23-33, 2004. o
static traces related to exception handling. Furthermore, [8 M. Gabeland Z. Su. Javert: fully automatic mining of gen-
CAR-Miner incorporates our new minina algorithm for eral temporal properties from dynamic tracesPioc. FSE

p g alg

. . . o pages 339-349, 2008.
detecting exception-handling rules as sequence assotiati [9] Google Code Search Engine, 2006.http://www.

rules. google.com/codesearch
7 Conclusion [10] T. Lethbridge, J. Singer, and A. Forward. How software
. engineers use documentation: The state of the practice. In
We have developed an approach, called CAR-Miner, IEEE Softwarepages 35-39, 2003.

that mines exception-handling rules in the form of sequence [11] Z. Li and Y. Zhou. PR-Miner: Automatically extracting im-
association rules. Unlike simple association rules of the plicit programming rules and detecting violations in large
form “FC, = FC."”, these sequence association rules of software codes. IRroc. ESEC/FSEpages 306-315, 2005.
the form “(FC%---FCS) A FC, = (FC’;...FC’Q")” can [12] V. B. Livshits and T. Zimmermann. DynaMine: Finding
characterize more complex exception-handling rules. As ~ common error patterns by mining software revision histo-

existing mining algorithms cannot mine these sequence ries. InProc. ESEC/FSFpages 296-305, 2005.
[13] A. Michail. Data mining library reuse patterns using gen-

association rules, we proposed a novel r'nl.nlng algorlthm eralized association rules. Proc. ICSE pages 167-176,

based on frequent closed subsequence mining. CAR-Miner 2000.

also tries to address the problems of limited data SCOPES[14] M. P. Robillard and G. C. Murphy. Analyzing exception

faced by existing approaches by expanding the data scope  flow in Java programs. IRroc. ESEC/FSFpages 322—337,

to open source projects available on the web. We have 19909.

evaluated our approach with five real-world open source [15] T. Sctéfer, J. Jonas, and M. Mezini. Mining framework us-

applications and shown that CAR-Miner mine2b4 age changes from instantiation code.Froc. ICSE pages

real exception-handling rules. We have also shown that 471-480, 2008. _ _

CAR-Miner finds160 defects, wher&7 are new defects, [16] S: Sinha an_d M. Harrgld. Analysis and testing of programs

not being found by a previous related approach [22]. Our ‘é’:h Z)((sc(gg)-tglgig Enldl'zngogonsuuasjEEE Trans. Softw.

approach takes a step forward in the direction of developing [17] S. %hummélapenta and T. Xie. PARSEWeb: A programmer

new mining algorithms to address unique requirements in assistant for reusing open source code on the weBrdo.

mining software engineering data, beyond being limited by ASE pages 204-213, 2007.

existing off-the-shelf mining algorithms. [18] S. Thummalapenta and T. Xie. SpotWeb: Detecting frame-
work hotspots and coldspots via mining open source code
on the web. IrProc. ASE pages 327-336, 2008.
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