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Abstract

Software refactoring is the process of reorganizing the

internal structure of code while preserving the external

behavior. Aspect-Oriented Programming (AOP) provides

new modularization of software systems by encapsulating

crosscutting concerns. Based on these two techniques,

aspect-oriented (AO) refactoring restructures crosscutting

elements in code. AO refactoring includes two steps: aspect

mining (identification of aspect candidates in code) and as-

pect refactoring (semantic-preserving transformation to mi-

grate the aspect-candidate code to AO code). Aspect refac-

toring clusters similar join points together for the aspect

candidates and encapsulates each cluster with an effective

pointcut definition.

With the increase in size of the code and crosscutting

concerns, it is tedious to manually identify aspects and their

corresponding join points, cluster the join points, and infer

pointcut expressions. Therefore, there is a need to auto-

mate the process of AO refactoring. This paper proposes

an automated approach that identifies aspect candidates in

code and infers pointcut expressions for these aspects. Our

approach mines for aspect candidates, identifies the join

points for the aspect candidates, clusters the join points,

and infers an effective pointcut expression for each clus-

ter of join points. The approach also provides an addi-

tional testing mechanism to ensure that the inferred pointcut

expressions are of correct strength. The empirical results

show that our approach helps achieve a significant reduc-

tion in the total number of pointcut expressions to be used

in the refactored code.

1. Introduction

Aspect-oriented programming (AOP) [15] provides con-

structs for modularizing crosscutting concerns, i.e., those

functionalities that are scattered among many modules in a

system. AspectJ [16, 12, 19], an aspect-oriented program-

ming language, is an extension to Java. AspectJ provides

new constructs like pointcuts, join points, advice, and as-

pects to help modularize crosscutting concerns. Join points

are well defined locations in the execution of a program.

Pointcuts are those constructs that help identify these join

points in code. A pointcut consists of pointcut expressions

combined with logical operators. Advice contains the set

of actions to be taken once the pointcut matches the join

points. The encapsulation of join points, pointcuts, and ad-

vice is called as an aspect.

Software applications often contain many instances of

crosscutting concerns. Refactoring such applications to-

ward AOP (also known as aspect-oriented refactoring [17])

helps modularize these crosscutting functionalities. Aspect-

oriented refactoring consists of identifying the crosscutting

concerns in an application and representing them using ap-

propriate AOP language mechanisms. Representing identi-

fied crosscutting concerns (also known as aspect refactor-

ing) using AspectJ constructs like join points and pointcuts

requires identifying the join points for each crosscutting

concern and representing them with pointcut expressions.

Pointcuts provide the usage of logical operators that com-

bine the individual pointcut expressions. The pointcut ex-

pressions combined together form a pointcut that represents

an aspect.

In real-world applications, the source code would span

to thousands of lines and it would be tedious to manually

identify aspects and their corresponding join points, cluster

similar join points together, and infer pointcut expression

for join-point clusters. With the increase in the size of the

source code and concerns, if we represent the concerns by

simply combining the pointcut expressions for join points

using logical operators, the resulting pointcuts would be in-

efficient when being written, compiled, and executed, and

would be difficult to maintain. In this paper, we make the

following main contributions:

• We propose an automated approach for mining as-

pects, identifying their corresponding join points in

source code, clustering the join points based on a com-

mon characteristic, and inferring an effective pointcut

expression to represent each cluster of join points.

• We implement a tool to support our approach. The tool

consists of four main components: the aspect mining

module, join point identifier, clustering module, and

inference module. The tool also provides an additional

testing mechanism to ensure that the inferred pointcuts



are of correct strength, i.e., the pointcuts match only

the intended set of join points.

• We evaluate our approach on six applications taken

from a variety of sources like AspectJ benchmark

suites1 and SourceForge2. The empirical results show

around 34% to 81% reduction in the number of point-

cut expressions required to refactor crosscutting con-

cerns to aspect-oriented code. The empirical results

also show that our approach could suggest possible

refactoring of method names (related to join points)

for achieving further reduction.

The rest of the paper is organized as follows. Section 2

presents our illustrative example. Section 3 illustrates our

approach. Section 4 describes the implementation of the

approach. Section 5 provides the results of applying the ap-

proach on selected applications. Section 6 discusses related

work, and Section 7 concludes.

2. Example

Our approach complements the existing aspect-mining

tools and techniques [14] used for aspect-oriented refactor-

ing [17], serving as a post-processor of the results produced

by these aspect-mining techniques. The implementation of

our approach is built around AspectJ [16, 12, 19], an AOP

language. We next use an example to illustrate AspectJ, its

various features, and aspect-oriented refactoring to AspectJ

code with the support of our approach.

AspectJ [16, 12, 19] is a simple and practical aspect-

oriented extension to Java. With just a few new constructs

like join points, pointcuts, advice, and aspects, AspectJ pro-

vides support for modular implementation of a range of

crosscutting concerns. Join points are well-defined loca-

tions within the primary code where a concern crosscuts the

application. The join points in AspectJ include method or

constructor calls, method or constructor execution, the ini-

tialization of a class or object, field reads, field writes, ex-

ception handler executions, class initializations, and object

initializations.

Pointcuts are predicates that match events (join points)

in the execution of a program, i.e., they specify where the

crosscutting behavior applies. Pointcuts are modelled using

expressions that identify the type, scope, or context of the

events. AspectJ pointcuts provide the features of abstraction

and composition, which include various designators, wild-

cards, and their combination with logical operators. Advice

contains its own set of rules as to when it is to be invoked

in relation to the join point that has been triggered. Advice

specifies what the crosscutting behavior does. For example,

before advice is executed before the join point is executed,

1http://www.sable.mcgill.ca/benchmarks/
2http://sourceforge.net/

aspect beforeDrawApplication {
private pointcut invokeTool():

(execution(public void DrawApplication.prompt*()) ||

public void DrawApplication.*Selection(..))

before(): invokeTool() {
DrawingView.toolDone();

}
}

aspect afterDrawApplication {
private pointcut changeSelection():

(execution(public void DrawApplication.*Selection(..));

after(): changeSelection() {
DrawingView.fireSelectionChanged();

}
}

aspect newDrawApplication {
private pointcut markText():

(execution(public void DrawApplication.read*(..)) &&

set(boolean DrawApplication.isTextDirty));

after(): markText() {
DrawingView.markTextDirty();

}
}

Figure 1. Sample aspects for the

DrawApplication class

and after advice is executed after the join point is executed.

Aspects are modular units of crosscutting implementation.

The encapsulation of join point, pointcut, and advice is pro-

vided by an aspect.

Figure 1 shows three sample aspects for a

DrawApplication class, which is a class refactored

from the class shown in Figure 2. For example, the

first aspect beforeDrawApplication includes a piece

of before advice, which is to be invoked before a

method whose name is matched with public void

DrawApplication.prompt*() or public void

DrawApplication.*Selection(..) is executed,

where “..” denotes any number of arguments.

However, in practice, a large amount of legacy code with

substantial crosscutting concerns was not written in AOP

languages and therefore cannot enjoy the benefits provided

by AOP languages such as AspectJ. Then aspect-oriented

(AO) refactoring [17] can be used to organize a crosscut-

ting concern into aspects, i.e., moving all code responsible

for implementing a particular crosscutting concern into an

aspect. In AO refactoring, an important step is to identify

what elements are to be refactored and what aspect solu-

tions can replace them. At the aspect mechanism level,

these elements to be refactored are the crosscutting con-

cerns and the solutions that replace them are aspects. To au-

tomate the process of aspect-oriented refactoring, we need

to identify the join points (the locations of the crosscut-

ting concerns), and represent them using pointcut expres-

sions. We next illustrate how our approach automatically

supports aspect-oriented refactoring through the example

DrawApplication class shown in Figure 2.



public class DrawApplication extends ... {
public void promptNew() {

DrawingView.toolDone();

...

}
public void promptOpen() {

DrawingView.toolDone();

...

}
public void clearSelection() {

DrawingView.toolDone();

...

DrawingView.fireSelectionChanged();

}
public void toggleSelection(Figure figure) {

DrawingView.toolDone();

...

DrawingView.fireSelectionChanged();

}
public void read(StorableInput dr) {

...

isTextDirty=true;

DrawingView.markTextDirty();

...

}
public void readObject(ObjectInputStream s) {

...

isTextDirty=false;

DrawingView.markTextDirty();

...

}
...

}

Figure 2. The DrawApplication class before
being refactored

In this DrawApplication class, our approach

can automatically identify three aspects3(crosscutting

concerns) being spread across multiple meth-

ods of the class. These three aspects are static

method calls to DrawingView.toolDone(),

DrawingView.fireSelectionChanged(), and

DrawingView.markTextDirty(), respectively. In

order to refactor these functionalities, we need to identify

the locations in the code where these aspects occur, i.e.,

we need to capture all the join points that include the call

sites of toolDone(), fireSelectionChanged(), and

markTextDirty(). In practice, the aspects might occur

at the beginning or end of a method or in the middle of a

method with statements before or after the aspects. For

example, the aspect related to markTextDirty() involves

write access to a field DrawApplication.isTextDirty

before markTextDirty()’s execution. Hence the

write access to DrawApplication.isTextDirty is

also captured as a join point for the aspect related to

markTextDirty(). Our approach can automatically

identify the captured join points for these three aspects as

below:

Join points for DrawingView.toolDone(): before

1.public void DrawApplication.promptNew()

2.public void DrawApplication.promptOpen()

3.public void DrawApplication.clearSelection()

4.public void DrawApplication.toggleSelection(Figure)

3In this paper, we use the term of aspects in a broad sense to mean

crosscutting concerns beyond the aspect constructs in AspectJ.

Join points for DrawingView.fireSelectionChanged():

after

5.public void DrawApplication.clearSelection()

6.public void DrawApplication.toggleSelection(Figure)

Join points for DrawingView.markTextDirty(): after

set boolean DrawApplication.isTextDirty) in

7.public void DrawApplication.read(StorableInputStream)

8.public void DrawApplication.readObject(ObjectInputStream)

where before and after denote the points before and after

executing or calling an affected method or setting a field

(denoted as set), respectively.

To minimize unwanted effects, a straightforward refac-

toring would generate pointcuts that simply enumerate each

of the affected methods, i.e., the pointcut expressions (each

being the name and signature of the affected method) for

each join point are combined with the OR logical operator

“||”. But aspects are usually spread across multiple classes

and methods. With a large number of concerns, it is not effi-

cient to combine the pointcut expressions for the join points

of an individual concern with a logical operator.

Our approach automatically clusters join points based

on common characteristics in the method names in these

join points. For example, among the join points for the as-

pect related to DrawingView.toolDone(), our approach

clusters join points 1 and 2 together because the method

names there share the same prefix “prompt”, and clusters

join points 3 and 4 together because the method names there

share the same postfix “Selection”.

Then for each cluster of join points, our approach

automatically infers an effective pointcut expression

that could represent each set of join points. For

example, from the preceding two clusters, our ap-

proach infers two pointcut expressions: public void

DrawApplication.prompt*() and public void

DrawApplication.*Selection(..). Then we can use

“||” to combine these two inferred pointcut expressions

to form an effective pointcut (like the manually written

one shown in Figure 1), rather than using “||” to combine

four pointcut expressions derived directly from the method

names and signatures in the four join points. In addition,

our approach uses our pointcut testing framework [3] to

verify and ensure that the inferred expression matches only

the intended set of join points and not any unintended join

points because of generalization.

3. Approach

The overview of our approach is shown in Figure 3.

Our approach consists of four main components: the as-

pect mining module (Section 3.1), the join point identifier

(Section 3.2), the clustering module (Section 3.3), and the

inference module (Section 3.4). The aspect mining module

identifies aspects (crosscutting concerns) and the join point

identifier identifies the join points for each aspect. Along

with the join points, the before and after code preced-



Figure 3. Overview of our approach

ing or following the join points are collected to form the

before or after advice. The clustering module groups

join points into clusters based on their common character-

istics. The inference module operates on each of these join

point clusters to infer a pointcut expression to represent the

cluster of join points.

3.1. Aspect mining module

The aspect mining module uses existing aspect mining

tools to identify aspects in given source code. Existing as-

pect mining tools have been developed for mining aspects as

well as hidden concerns in general. These tools help iden-

tify tangled code. Repeated usage of a specific type (such

as a method and variable) in interwoven code is a possi-

ble indication of tangled code. From source code, the tools

extract aspects (crosscutting concerns), which are to be pro-

cessed by the join point identifier.

3.2. Join point identifier

The join point identifier operates on the list of aspects

output by the aspect mining module and identifies their cor-

responding locations in the source code. At the AspectJ

mechanism level, locations are join points, which include

a method or constructor call (a method or constructor of a

class is called), method or constructor execution (an indi-

vidual method or constructor is executed), the initialization

of a class or object, field get (a field of an object, class or

interface is read), field set (a field of an object, class or in-

terface is set), exception handler execution (an exception

handler is executed), and class initialization (static or dy-

namic).

To effectively represent an aspect (crosscutting concern)

with a pointcut expression, we need to identify exactly the

join points for that aspect, i.e., apart from identifying the lo-

cation of the statement that has the aspect, we need to ana-

aspect beforeDrawApplication {
private pointcut invokeTool() :

(execution(public void DrawApplication.promptNew()) ||

execution(public void DrawApplication.promptOpen() ||

execution(public void DrawApplication.clearSelection()) ||

execution(

public void DrawApplication.toggleSelection(Figure));

before(): invokeTool() {
DrawingView.toolDone();

}
}

Figure 4. beforeDrawApplication Aspect

aspect afterDrawApplication {
private pointcut changeSelection() :

(execution(public void DrawApplication.clearSelection()) ||

execution(

public void DrawApplication.toggleSelection(Figure)));

after(): changeSelection() {
DrawingView.fireSelectionChanged();

}
}

Figure 5. afterDrawApplication aspect

aspect newDrawApplication {
private pointcut markText() :

(execution(

public void DrawApplication.read(StorableInput)) ||

execution(

protected void DrawApplication.readObject(

ObjectInputStream))) &&

set(boolean DrawApplication.isTextDirty));

after(): markText() {
DrawingView.markTextDirty();

}
}

Figure 6. newDrawApplication aspect

lyze the statements before and after the aspect. The location

of an aspect can be one of the three cases:

1. The crosscutting concern to be moved to the aspect is

at the beginning of a method with no statements before

the concern but has statements after the concern.

2. The crosscutting concern is at the end of a method with

statements before the concern but no statements after

the concern.

3. The crosscutting concern is in the middle of a method,

with statements before and after the concern.

The crosscutting concern DrawingView.toolDone()

shown in Figure 2 is an example for Case 1, where the

concern is at the beginning of four methods. The pointcut

for this type of concern would be the complete signature

of each method with the designator as execution. The

method call DrawingView.toolDone() can be placed in

the before advice of the aspect that has the pointcut ex-

pression shown in Figure 4.

In the DrawApplication class (Figure 2), the method

call to DrawingView.fireSelectionChanged() is

found at the end of two methods. This example falls

into Case 2, where the crosscutting concern is at the

end of a method with no statements after the concern.

In this case, the method to be refactored is placed in

the after advice of the aspect, as shown in the aspect

afterDrawApplication in Figure 5.



In the DrawApplication class (Figure 2), the method

call to DrawingView.markTextDirty() is found in the

middle of two methods. This example falls into Case 3,

where the crosscutting concern is in the middle of a method,

with statements before and after the concern. We need to in-

clude the statement before or after the concern in the point-

cut expression in order to identify the location of the con-

cern precisely.

In this case, the method to be refactored is placed in

the after advice of the aspect, as shown in Figure 6.

The pointcut definition includes the write access to the

field DrawApplication.isTextDirty since this state-

ment commonly precedes the concern. Our implementation

identifies the module (class or method) to which the join

point belongs and then collects the before and after code

depending on the case under which the join points fall into.

The before or after code is then analyzed to determine the

type of join point they belong to (like execution or call to

a method, and read or write access to a field). In our cur-

rent implementation, the join points are formed based on

static analysis of the code and we currently do not support

forming join points for dynamic context such as cflow.

It is possible that the statement before or after the con-

cern may be repeated more than once in the same method

body and other occurrences of the statement are not asso-

ciated with the concern. This type of join points cannot

be easily captured by AspectJ’s existing pointcut language,

and it is not handled in our current implementation either.

When this case occurs, aspect-oriented refactoring cannot

be conducted on the locations of the join points unless de-

velopers refactor these locations to allow the join points to

be captured with pointcuts.

3.3. Clustering module

The clustering module receives the aspect candidates and

their join points as input. The core functionality of this com-

ponent is to identify the common characteristic among the

join points and group them into clusters. In order to per-

form clustering, the attribute identifier in the module pro-

cesses the join points to identify their attributes. Then the

clustering engine in the module performs clustering based

on the attributes and outputs the join points along with their

cluster number. Then the join points under each cluster are

grouped together to form the input to the inference module.

In particular, we perform clustering based on attributes

such as different naming parts of a join point for an as-

pect. For example, if a join point is that of a method

execution, then the attributes would be naming parts of

the method, i.e., its modifiers, return type, class name,

method name, and arguments. By default, our approach au-

tomatically chooses the prime factors based on which the

grouping of join points is performed. Our current imple-

mentation chooses the method-name field of a join point

as the prime factor. The method-name field of a join

point is split into different parts. Splitting the method-

name field gives a higher probability of detecting a com-

mon pattern among the method-name fields of different

join points. For example, consider the method names of

the join points public void clearSelection() and

public void toggleSelection(Figure figure) in

Figure 2. The names are split into “clear”, “Selection”,

and “toggle”, “Selection”. After the names are split,

we find that there is a common pattern “Selection” and

the method names are grouped into one cluster. The same

procedure of splitting name fields is repeated for all join

points. We form input to the clustering engine by including

the split name fields and the individual join points.

In the case of join points for the aspect

DrawingView.toolDone(), two clusters are pro-

duced because the methods public void promptNew()

and public void promptOpen() have a common

pattern “prompt” in their names, and the methods

public void clearSelection() and public void

toggleSelection(Figure figure) have a common

pattern “Selection”. The cluster assignment is shown

in Figure 8, where each join point is assigned a cluster

number. The clustering module further processes the

cluster assignment to group the join points belonging to a

cluster together. The clustered join points are then fed as

input to the inference module.

3.4. Inference module

Figure 7 shows an overview of the inference module.

The inference module generates pointcut expressions given

a set of clustered join points. The designator identifier

in the module identifies the type of designators (such as

execution and call) for the join points. The inference

module identifies the naming parts of the clustered join

points, forms a regular expression for each set of naming

parts, and finally outputs the pointcut expression by com-

bining the individual expressions with the pointcut desig-

nator generated by the designator identifier. The inference

module also provides an additional testing mechanism to

verify the strength of the inferred pointcuts.

In the clustered join points given to the module as in-

put, the naming parts of join points are separated by com-

mas. The field separator in the module parses each item in

the input and identifies the naming parts. The output from

the field separator is fed as input to the string aligner. The

string aligner infers expressions for each naming part and

then combines them with the identified designator to form a

complete pointcut expression.

The string aligner is based on a string alignment algo-

rithm. Given a set of strings, the aligner performs alignment



Figure 7. The Inference module

Sample result:

Class : DrawApplication (Figure 2)

Join points for aspect toolDone():

public void promptNew() (cluster1)

public void promptOpen() (cluster1)

public void clearSelection() (cluster2)

public void toggleSelection(Figure) (cluster2)

Pointcut expression:

execution(public void DrawApplication.prompt*())

execution(public void DrawApplication.*Selection(..))

Join points for fireSelectionChanged():

public void clearSelection() (cluster3)

public void toggleSelection(Figure) (cluster3)

Pointcut expression:

execution(public void DrawApplication.*Selection(..))

Join points for markTextDirty():

public void read(StorableInput) (cluster 4)

public void readObject(ObjectInputStream)(cluster 4)

Pointcut expression:

execution(public void DrawApplication.read*(..))

Figure 8. Sample clustering and inference re-

sults

of the strings with each other and infers an expression. If

more than one expression can be inferred, an optimal one

is selected. The optimality is determined as the expression

that suits best for all strings in the cluster as well as having

the maximal similarity measure with the strings based on a

string similarity measure. The inferred expression is com-

bined together with the designator corresponding to the join

points.

Figure 8 shows the inference results for the example.

Figure 1 shows the aspects from Figures 4, 5, and 6 with

pointcuts replaced by the pointcut expressions inferred by

our approach.

The inferred pointcut expression and the Java bytecode

of the system under refactoring are analyzed using our

pointcut testing framework [3]. The framework outputs the

set of join points that are actually matched by the inferred

pointcut expression. The set of actually matched join points

(output by the framework) and the original set of intended

join points (from which the pointcut expression is inferred)

are fed as input to the strength checker, which compares

the two sets of join points. If the sets are equal, then the

inferred pointcut expression is of correct strength. If the

sets are not equal (i.e., the actually matched join point set is

a proper superset of the original intended join point set4),

then there are two main options to address the incorrect

strength. First, with the information and tool support pro-

vided by our approach, developers can easily refactor both

the inferred pointcut expression and its intended join points

to make them more specific (e.g., adding specific keywords

to their names) so that the new pointcut expression matches

only the intended join points. Second, the pointcut expres-

sion of incorrect strength can be appended with expressions

like “&& (!jp)”, where jp is an unintended but matched

join point, to exclude jp from being matched by the new

pointcut expression. Note that we can additionally infer an

effective expression to match these unintended but matched

join points to reduce the complexity of the appended expres-

sions. But if the appended expressions induce a more com-

plex pointcut expression, we can fall back to the straight-

forward way of simply combining intended join points (in

the cluster for the pointcut expression) using the OR logical

operator.

4. Implementation

We have implemented our approach for AspectJ and

Java code using the Aspect Mining Tool (AMT) [13], Byte

Code Engineering Library (BCEL) [10], Java reflection

APIs [21], WEKA [2], and Monge-Elkan Similarity mea-

sure [1]. The current implementation of our approach sup-

ports an AspectJ compiler called ajc [11] Version 1.5 and

Java 2 SDK v1.3 [22]. We next present the implementation

details of the main components of our approach.

Aspect mining module. We have implemented the

aspect mining module based on the Aspect Mining Tool

(AMT) [13], an existing analysis framework developed for

mining aspects as well as hidden concerns. The framework

identifies aspects based on static analysis of programs and

assumes that the programs pass type checking. AMT con-

sists of two parts: the analyzer and the visualizer. The ana-

lyzer extracts aspects (crosscutting concerns) with the help

of the ajc AspectJ compiler [11]. Our implementation uses

only the analyzer to identify aspects from the source code

given as input.

Join point identifier. The aspects output by the aspect

mining module are fed as input to the join point identi-

fier that we implemented. The join point identifier uses

BCEL [10] and Java reflection APIs [21] to analyze the

Java bytecode of the system under refactoring to identify

the locations of aspects (i.e., the classes or methods that

they belong to) and their types. The join point identifier

also analyzes the instruction set of a method body to obtain

4The string aligner guarantees that the inferred pointcut expression

matches the whole original set of intended join points.



the before and after code of a join point, in order to de-

termine whether the refactored code would be realized as

before, after, or around advice. The join points identi-

fied by the join point identifier are then fed as input to the

clustering module.

Clustering module. The attribute identifier in the clus-

tering module identifies the naming parts of a method as the

modifier, return type, class name, method name, and argu-

ments, being adopted from the Java language syntax. Based

on the Java types, the module identifies the values of the

naming parts and form the data set, being given as input to

the WEKA clustering engine [2]. Then WEKA performs

the clustering and outputs the clustered data set. The clus-

tered data set is similar to the data set except that each item

in the data section includes a cluster number that the item

belongs to.

Inference module. The string alignment algorithm used

by the string aligner is based on the similarity measure algo-

rithms in Simmetrics [1], an open source similarity measure

library. If the string aligner infers more than one inferred

expression, the optimal one is selected based on the Monge-

Elkan similarity measure [1]. This measure is the average

of similarity measures of the pointcut expression with all

join points. The pointcut testing framework in the module

is based on APTE [3], an automated framework for testing

pointcuts developed in our previous work. APTE is based

on AJTE [25], an existing unit-testing framework without

weaving. APTE outputs the set of join points matched by

the inferred pointcut expression.

Our current implementation outputs aspects and their in-

ferred pointcut expressions, which developers can use to

form the refactored aspect code. In future work, we plan

to extend the implementation to automatically synthesize

aspects and pointcut expressions to produce aspect code.

5. Evaluation

This section presents the empirical results produced by

applying our approach on selected subjects. We describe

the objective, the subjects, and the process of the evaluation.

We then present and discuss the empirical results.

5.1 Objective

The objective of the evaluation is to investigate the fol-

lowing questions:

1. Does clustering of join points and inference of pointcut

expressions have a significant impact on the number of

pointcut expressions to be used in the final refactored

code?

2. Does the tool generate meaningful pointcut expres-

sions?

3. Is there a real necessity for the usage of our tool?

5.2. Subjects

We have applied our tool on six applications from

AspectJ benchmark suites (which can be obtained from

http://www.sable.mcgill.ca/benchmarks/) and

open source applications from SourceForge. Applications

Tetris, DCM, and StarJPool have been selected from

AspectJ benchmark suites. Applications JARP, JHotDraw,

and Tomcat have been selected from SourceForge.

Tetris, DCM, and StarJPool are a few of the benchmark

programs collected from various sources on the world

wide web in order to study the relative impact of several

AspectJ language constructs on performance. Although

these programs are AspectJ benchmarks, their sources

provide equivalent Java versions. Hence the Java versions

of Tetris, DCM, and StarJPool have been selected for

our empirical study.

Tomcat is a servlet container used for Java Servlet and

Java Server Pages technologies. Tomcat supports various

large-scale and diverse range of applications. JHotDraw is

a Java GUI framework for technical and structured Graph-

ics. It has been developed as a design exercise but is already

quite powerful. Its design relies heavily on some well-

known design patterns. JARP is an auxiliary tool for Petri

analysis that performs basic Petri net analysis and various

other functions. All these tools have been widely adopted

and are among the highly rated downloads in SourceForge.

Hence these subjects have been selected to evaluate our ap-

proach.

5.3 Process

The source code from the applications is compiled and

the lines of code, and the number of classes in each appli-

cation are recorded in Column 2 of Table 1. Given the Java

files of the application, the aspect mining module outputs

the identified aspects, whose number is shown in Column 3.

Then our approach identifies the join points for each aspect.

The number of join points is recorded as the original num-

ber of pointcut expressions (Column 4). Since no clustering

is performed at this stage, each join point has an expression

associated with it and this expression is the original pointcut

expression.

Our approach performs clustering on the identified join

points and infers pointcut expressions. In the evaluation,

we adopted the first option (described in Section 3.4) to

deal with pointcut expressions of incorrect strength if any

being detected. Since clustering is performed, the original

number of pointcut expressions would be reduced. The re-

duced number of inferred pointcut expressions is shown in

Column 5. The percentage reduction (Column 6) is calcu-

lated as the ratio of the difference in the numbers of pointcut

expressions before and after applying our approach, to the



Table 1. Evaluation subjects and results

Applications #Classes # Original Reduced Percentage #Clusters Avg #pointcut Avg #pointcut

/LOC Aspects #pointcut #pointcut reduction % expressions per expressions per

expressions expressions aspect/pointcut aspect/pointcut

(original) (reduced)

Tetris 17 / 1474 24 41 27 34.14 6 1.70 1.13

DCM 29 / 3384 62 351 196 44.15 46 5.66 3.16

StarJPool 191 / 16847 321 4860 2554 47.44 930 15.14 7.90

JARP 214 / 26790 513 12134 4375 63.94 1419 23.00 8.50

JHotDraw 398 / 28087 456 32661 9091 72.17 3096 71.62 19.93

Tomcat 455 / 45400 684 51108 9633 81.15 6608 74.72 14.08

original number of pointcut expressions. Column 7 shows

the number of clusters that has more than one join point.

The original and reduced average number of pointcut ex-

pressions per aspect (Columns 8 and 9) is calculated as the

ratio of original and reduced number of pointcut expres-

sions (Columns 4 and 5) to the number of aspects (Column

3).

5.4. Results

Table 1 shows the empirical results produced by apply-

ing our tool on the evaluation subjects described in Sec-

tion 5.2 . Columns 1-3 show the applications used for eval-

uation, the number of class files and total lines of the Java

source code in each application, and the number of aspects

identified by AMT. Columns 4 and 5 show the number of

pointcut expressions before and after using our tool. Col-

umn 6 shows the percentage reduction in the number of

pointcut expressions achieved using our tool. Column 7

shows the number of clusters observed after using our tool.

Columns 8 and 9 show the average number of pointcut ex-

pressions per aspect or pointcut, before and after using our

tool, respectively.

From the table, we observe that with increase in the size

of the source code, the size of the pointcut expressions also

increases substantially. Combining the individual pointcut

expressions with logical operators would be an inefficient

solution. The result has shown efficient reduction ranging

from 34% to 81% reduction in the total number of pointcut

expressions. The larger an application is, the more substan-

tial reduction our approach can achieve. Hence the proba-

bility of clustering many join points to a group is high. In

the case of large applications, join points are concentrated

in a larger number of locations in the source code. Further-

more, it is likely that a large number of join points share

some common patterns in their naming conventions. Such

naming patterns would allow effective clustering and infer-

ence of pointcut expressions.

As expected, we observe that the effectiveness of our ap-

proach is high when the join points for an aspect have a

pattern in their naming convention suitable for inference.

For example, the aspect FigureAttributeConstant in

the JHotDraw application had 110 join points such as

getImage(), getPolygon(), getConstant(String),

and getColor(). All the join points had a common pat-

tern get. The inference engine generated the expression

get*(..) to match all methods that started with get and

had any number of arguments. In this example, we find

that the aspect FigureAttributeConstantwas found in

methods that had a functionality of reading some kind of

attribute. Since all the methods shared a common function-

ality, they also shared a pattern in their names, i.e., all the

names start with get. Such naming conventions would al-

low our approach to generate effective results: a large num-

ber of join points can be grouped and a single expression is

sufficient to represent all the join points.

Our approach performs clustering by determining com-

mon patterns in the name fields of join points. If a cross-

cutting concern consists of many join points, then it is

likely that such a concern is concentrated in methods or

classes that perform a similar kind of functionality. When

the methods resemble in functionality, then it is likely that

their naming conventions would resemble too. For exam-

ple, consider the crosscutting concern JComboBox identi-

fied in the JHotdraw application. This concern had 13

join points such as createIconkit(), createColor(),

createTools(), and createTool(). The names indi-

cate that all the methods have a functionality of creating

some kind of attribute. From this example, we found that

all the join points had the common pattern create in their

name fields. Our approach performed clustering of all the

join points of this aspect that had the pattern create in their

name fields. In this case, the expressions for 13 join points

were replaced by a single expression. Thus the clustering

has been effective in grouping join points.

When the methods resemble in functionality, it is

likely that their naming conventions would resemble

too. But this might not always be the case, and it is

possible for two methods to be similar in functionality but

have different naming conventions. Consider the aspect



InstructionHandle from the JHotDraw application.

This aspect had join points such as readFromStream(),

readHeader(), getMethodEntity(), and

getStaticCounter(). Our approach clusters

readFromStream(), readHeader() into one group,

and getMethodEntity(), getStaticCounter() into

another group. In this case, the join points under each group

have a common pattern read or get in their names. But

we found that both the patterns read and get reflect the

same functionality of gathering details of some attribute.

Although our results are effective, further reduction can

be obtained if all the four join points had a common

pattern in their names. For example, if the latter join points

getMethodEntity() and getStaticCounter()

have been named as readMethodEntity() and

readStaticCounter(), respectively, the clustering

would have generated a single expression rather than two,

achieving further reduction. This case suggests that the

output of our approach can suggest developers to refactor

their naming conventions for methods to achieve higher

reduction.

In summary, the results in Table 1 show that there is

a significant reduction in the total number of pointcut ex-

pressions. The reduction ranges from 34% to 81%. If

the straightforward approach is used, i.e., combining the

pointcut expressions of each join point with a logical op-

erator, then the average number of pointcut expressions is

quite high as indicated in Table 1. For applications like

JHotDraw and Tomcat, the average number of (original)

pointcut expressions is quite high. Such complex pointcuts

would be difficult to write, compile, and maintain.

Clustering join points based on a common characteris-

tic and inferring pointcut expressions for each cluster effec-

tively reduce the total number of pointcut expressions. Our

approach clusters join points based on a common pattern

in the split method-name parts (rather than individual char-

acters in method names) of join points. This mechanism

ensures that the inferred pointcut expressions are meaning-

ful similar to expressions that developers would form. From

the results, we observe that reducing the number of pointcut

expressions and effectively generalizing the pointcut defini-

tion is necessary, and the results show that usage of our ap-

proach would help achieve better formulation of pointcuts.

6. Related Work

A variety of aspect mining techniques [13, 6, 23, 18,

8, 9, 20, 14, 7] have been developed. Our approach com-

plements these existing aspect mining techniques used for

aspect-oriented refactoring [17], serving as a post-processor

of the results produced by these aspect-mining techniques.

Tonella and Ceccator [24] presented an assessment of

the effects of migrating to aspect-oriented code. They con-

ducted an empirical study on the object-oriented version

and on the aspect-oriented version of the same system. They

collected some metrics that quantify the maintenance and

understanding effort. But they did not propose or provide an

implementation of any techniques to perform refactoring.

Our approach provides an automated way of performing the

important phases of refactoring: mining aspects, identifying

join points, and inferring pointcut expressions.

Binkley et al. [5] developed an approach to determine

good and effective pointcuts in aspect-oriented refactoring.

In this approach, when there are multiple join points and

their corresponding multiple pointcut expressions, they de-

fine a new pointcut as the logical OR of the pointcut expres-

sions formed for each individual join point. They do not

cluster join points based on any common characteristic or

infer effective pointcut expressions. Our approach clusters

join points based on a common characteristic like their nam-

ing parts and infers pointcut expression from the clusters.

Binkley et al. [4] developed a semi-automated approach

to support the migration from object-oriented code to

aspect-oriented code. Their approach considers a source

program with identified aspectual fragments as input and

the approach produces a semantically equivalent aspect-

oriented program. Their approach aims at reducing the

overall cost associated with the refactoring activity. It re-

quires manual refinement to generalize the pointcut defini-

tions. It does not infer pointcut expressions from clustering

join points. Our approach automates the whole process of

refactoring including clustering join points to infer effective

pointcut expressions.

Zhang et al. [26] developed the aspect refactoring verifi-

cation tool that automatically verifies the refactored aspects

against the original sources by checking for inequalities be-

tween them. Our approach provides an additional testing

mechanism to test the strength of the pointcut expressions.

The presence of this additional testing mechanism elimi-

nates the need for a separate verification tool to test the in-

ferred pointcut expressions.

7. Conclusion

Aspect-oriented refactoring involves mining aspects,

identifying join points for the aspects, clustering join points,

and grouping them under a pointcut definition. Manually

performing this refactoring process is tedious due to in-

crease in the number of crosscutting concerns as well the

size of the source code. Our approach automatically identi-

fies aspects and their join points, performs clustering based

on the attributes of the identified join points, and infers a

pointcut expression for each cluster of join points. The ad-

ditional testing mechanism ensures that the inferred point-

cut expressions are of correct strength. The experimental

results show that a significant reduction (34% to 81%) in



the total number of pointcut expressions can be achieved

using our approach. Effective refactoring can be conducted

with this significant reduction in the number of pointcut ex-

pressions for aspects.
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