
Understanding Software Application Interfaces
via String Analysis

Evan Martin
∗

Department of Computer Science
North Carolina State University

Raleigh, NC 27695

eemartin@csc.ncsu.edu

Tao Xie
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

xie@csc.ncsu.edu

ABSTRACT
In software systems, different software applications often inter-
act with each other through specific interfaces by exchanging data
in string format. For example, web services interact with each
other through XML strings. Database applications interact with
a database through strings of SQL statements. Sometimes these in-
terfaces between different software applications are complex and
distributed. For example, a table in a database can be accessed by
multiple methods in a database application and a single method can
access multiple tables. In this paper, we propose an approach to un-
derstanding software application interfaces through string analysis.
The approach first performs a static analysis of source code to iden-
tify interaction points (in the form of interface-method-call sites).
We then leverage existing string analysis tools to collect all possi-
ble string data that can be sent through these different interaction
points. Then we manipulate collected string data by grouping sim-
ilar data together. For example, we group together all collected
SQL statements that access the same table. Then we associate
various parts of aggregated data with interaction points in order
to show the connections between entities from interacting applica-
tions. Our preliminary results show that the approach can help us
understand the characteristics of interactions between database ap-
plications and databases. We also identify some challenges in this
approach for our future work.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques —
modules and interfaces

General Terms
Design, Experimentation, Verification

Keywords
program understanding, database-driven applications

1. INTRODUCTION
Today’s applications often interact with a variety of independent

external components such as various pieces of hardware, both local
and remote software applications, as well as ubiquitous databases.

∗Supported in part by an IBM Ph.D. Fellowship.

Copyright is held by the author/owner.
ICSE’06, May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

In a services-oriented architecture (SOA) [6], such as web services,
independent remote software applications cooperate and communi-
cate with one another via some standardized protocol in the form of
XML string data. There is also a rapid increase in the digitization
of information being accompanied by exponential increases in net-
working, storage, and computing capacities [1]. Database systems,
as the de facto standard for the management and efficient access of
persistent data, have also become increasingly popular. As such,
database systems have become the foundation for applications that
require access to persistent data. Although different, each of these
application domains shares a common thread, namely they inter-
face with an external component in some standardized way. Fur-
thermore, these interfaces primarily pass character streams such as
XML for web-services and SQL for database-driven applications.

Along with the growing popularity of these types of systems, the
interfaces between interacting software applications in these sys-
tems have become increasingly complicated and distributed. There-
fore, developers are faced with the challenge of understanding and
maintaining these interfaces. To address this challenge, we pro-
pose a new approach that leverages the existing static string analy-
sis tools [4,8] and further analyzes their generated results to provide
valuable information that may be used not only to verify commu-
nication protocol compliance but also to increase our understand-
ing of software application interfaces. This increased understand-
ing can serve several functions such as test case generation, de-
velopment and debugging tasks, as well as development of design
choices that lead to performance gains.

In our new approach, we first perform a static analysis of the
source code to identify all possible interaction points. For exam-
ple, we can search for JDBC-method-call sites since they have a
specific method signature whose arguments are SQL statements.
Subsequently we use the existing static string analysis tools [4, 8]
to collect all possible string data (in the form of automata) that
can be produced at these interaction points. Then we group to-
gether collected string data that interact with the same entities in
the interacting software application. For example, we group to-
gether collected SQL statement strings that access the same table
in a database. We then construct associations between parts of the
aggregated string data and the corresponding interaction points in
the source code so that the connections between external entities,
such as a database table, and specific internal entities, such as meth-
ods in the source code, can be understood. We have implemented
a tool for the approach and applied the tool on several database
applications. The preliminary results show that our approach can
help understand application interfaces with an aggregated-interface
view between database applications and databases. This aggregated
SQL statements with method-call annotations provide guidance on



understanding the connections of interacting applications. At the
same time, we also identify several challenges for our future work
in extending this approach.

The rest of the paper is organized as follows. Section 2 presents
related work. Section 3 describes our approach. Section 4 shows
our preliminary results of applying our approach. Section 5 con-
cludes the paper with future directions.

2. RELATED WORK
Our current implementation focuses on interfaces that primarily

transport character streams and leverages the Java String Analysis
(JSA) library [4] to collect string data at specific call sites. JSA de-
velops a mechanism for generating models of Java strings. In par-
ticular, JSA statically performs a conservative string analysis of an
application and creates automata that express all the possible values
a specific string can have at a given point in the application. Sev-
eral other subsequent tools have been built based on JSA. Based on
JSA, Gould et al. [7] developed the JDBC-Checker tool that stat-
ically checks the type correctness of dynamically-generated SQL
queries. Halfond and Orso [8] developed the Amnesia tool that
statically constructs a model of the legitimate queries that could
be generated by the application, and dynamically checks runtime-
generated queries against the model. The tool is used for detecting
and preventing SQL injection attacks at run-time. All these existing
approaches based on JSA focus on analysis of individual call sites,
whereas our approach focuses on collective information gleaned
from multiple call sites.

There exist a number of approaches for extracting sequencing
constraints among method calls in a component interface. Ammons
et al. [2] developed the mining specification approach for extract-
ing a probabilistic finite state automaton from C program traces.
Whaley et al. [16] developed approaches to extract Java compo-
nent interfaces in the form of multiple finite state automata based
on static analysis and dynamic analysis. Xie and Notkin [19, 20]
developed two techniques for extracting abstract-object-state ma-
chines from the execution of unit tests for a component interface. In
finite state automata extracted by these existing approaches, states
are object states and transitions are method calls in the component
interface, whereas in our new approach, transitions in string au-
tomata are string values. In addition, these existing approaches are
often dynamic analysis techniques that work on a single compo-
nent interface such as public methods of a class, whereas our new
approach is a static analysis technique that focuses on interfaces of
software applications.

There exist several approaches for testing database applications.
Zhang et al. [21] developed a tool that generates database instances
as inputs for testing database applications. Chays et al. [3] de-
veloped a set of tools called AGENDA to test relational database
applications. Kapfhammer and Soffa [9] defined a family of test
adequacy criteria for database-driven applications. The criteria use
dataflow information associated with entities in a database. Suarez-
Cabal and Tuya [15] also defined an SQL coverage measurement
for testing database applications. These existing approaches focus
on testing database applications whereas our new approach focuses
on understanding software application interfaces such as database
application interfaces.

3. APPROACH
Leveraging existing tools such as the Byte Code Engineering Li-

brary (BCEL) [5], JSA [4], and Amnesia [8], we have developed
a tool that statically scans Java byte code to derive a mapping that
associates entities from two interacting applications, such as a map-

public ResultSet executeQuery(String sql) {...}
public int executeUpdate(String sql) {...}
public boolean execute(String sql) {...}

Figure 1: JDBC method calls used as hotspots.

Figure 2: An example SQL-query model.

ping between specific sections of application code with specific
database objects. In doing so, one may identify various sections
of code that may not only implement different functionalities but
reside in different parts of the code base yet still use another appli-
cation such as a database in similar ways. In short, our technique
allows us to find similarities between sections of code not based on
call or type hierarchies but on how they interact with another ap-
plication such as a database. The remainder of this section outlines
the steps necessary to derive these mappings.

3.1 Interaction-Point Identification
Two interacting applications interact with each other through

the interface between them. Our approach first identifies interac-
tion points between two interacting applications called hotspots.
When we focus on interactions of a database application and a
database, hotspots are specific method calls in the code that issue
SQL queries to the database. In Java, the methods that allow the
application to query the database are specific method calls in the
JDBC1 API shown in Figure 1. Our tool uses BCEL [5] to scan
the byte code to identify all JDBC method calls in the applica-
tion as hotspots. However, queries constructed at different pro-
gram locations are sometimes passed as the argument of an ap-
plication method (e.g., Database.query(String queryStr)),
which then invokes JDBC method calls. To handle this situation,
we construct call chains [13] for each hotspot so that the tool user
can specify n-level callers of hotspots as the interaction points (n
is 0 by default), which are inputs to the JSA [4] library for string
automaton generation described below.

3.2 String-Automaton Generation
The next step constructs automata for each caller of the JDBC

methods. This set of automata represents all possible SQL queries
the application may perform on the database. The JSA [4] li-
brary provides character level automata for any method that ac-
cepts a String argument. More specifically their technique cre-
ates a flow graph that represents the control flow of the program
and subsequently creates a Non-Deterministic Finite Automaton
(NDFA) from the control flow graph that expresses all possible val-
ues the String argument can take. Amnesia [8] further refines
the results by transforming this character level automaton into a
token level automaton. Amnesia performs a depth first traversal
of the character level automaton identifying SQL keywords, op-
erations, or literal values as tokens and creates a new automaton
that uses these tokens as the transitions. For example, a charac-
ter level sequence of transitions with the characters ‘F’, ‘R’, ‘O’,
and ‘M’ is recognized as the SQL FROM keyword and replaces this
set of transitions with a single transition labeled FROM. The re-
sult is an NDFA whose transitions are SQL keywords, operations,
or database object identifiers. Additionally the flag VAR is used
to indicate user input that can not be resolved via static analysis.
For example, the SQL-query model shown in Figure 2 is produced

1http://java.sun.com/products/jdbc/



for the following method call: executeQuery("SELECT Level

FROM CustomerPriority")

3.3 String-Automaton Grouping
By performing a depth first traversal of the SQL-query model

produced by Amnesia [8], we can group the automata for each
hotspot according to any number of desired characteristics. For
example they may be grouped based on SQL keywords or opera-
tions, by what database objects are accessed such as specific tables
or columns, by what sections of the code the automata generated
from, or some combination of each. In our current implementation
we group the automata for each hotspot according to what tables
they access in the database. This grouping in conjunction with the
call chains constructed in Section 3.1 provides the desired associ-
ations between application code and database objects. For exam-
ple, given a query SELECT * FROM Table1, Table2, we visit
the nodes of the automaton and extract the set of tables that the
query is performed on. In this example, the set includes Table1

and Table2. We only group those queries in which the set of ta-
bles are equivalent. Once the desired grouping is performed we
perform a union operation followed by a minimization operation
to reduce the grouped automaton into a single automata. Subse-
quently we traverse all paths of the reduced automata to label each
state with a set of interaction points constructed in Section 3.1.

4. PRELIMINARY RESULTS
In this section we present preliminary results of the proposed

approach to analyzing Java database-driven applications to reveal
associations between the application code and the database objects
by analyzing all possible SQL queries that may be issued to the
database.

4.1 Subjects
Our initial studies were conducted on four publicly avail-

able database-driven applications. Three of these are web
applications that accept user inputs through a web form
and use the inputs to build queries issued to an underly-
ing database. These applications include Employee Direc-
tory, Bookstore, and Classifieds and are available at GotoCode
(http://www.gotocode.com). The fourth application, Re-
BaTe, is an open source project available from SourceForge
(http://sourceforge.net/projects/rebate/). ReBaTe is
not a web application but a stand-alone Java application that uses a
Swing interface to accept user inputs and build queries issued to an
underlying database.

Table 1 provides some basic information about each of the sub-
jects. Specifically for each subject the table indicates the name
(Subject), a brief description (Description), code size in units of
lines of code (LOC), and number of identified hotspots (Hotspots).

4.2 Results
Figure 3 shows the union and subsequent minimization of four

automata for the ReBaTe application, corresponding to four differ-
ent hotspots that access the same table, namely the Defect table.
The transitions are labeled with tokens corresponding to SQL key-
words, operators, or database object identifiers such as table names
or attribute names. The transitions labeled with the keyword VAR
signify a variable and most often correspond with user inputs. The
initial states are marked with an empty arrow and all terminating
states are indicated by double-circles. Finally, each state contains
a set of numbers. This set of numbers corresponds to each hotspot
that traverses this state. Recall that Figure 3 is the union of four
automata each corresponding to a different hotspot. In this ex-

Table 1: Experimental subjects

Subject Description LOC Hotspots

Bookstore Online bookstore 16959 71
Classifieds Online classifieds system 10949 34
EmployeeDir Online employee directory 5658 23
ReBaTe Requirements-based testing tool 6036 27

ample, each of the four hotspots is located in the singleton class
edu.ncsu.port.db.Database in various locations as indicated
in Figure 4. The methods in Figure 4 each issue an SQL query to
the database via a JDBC method but more importantly each of these
methods shares a similarity that is not immediately obvious from
the source code, namely they each only access the Defect table.
The numbers 1, 2, 3, and 4 in Figure 3 correspond to the methods
at Lines 150, 252, 325, and 773, respectively (shown in Figure 4).
This labeling illustrates what parts of the automata are contributed
by each hotspot and exactly what similarities these hotspots share
in terms of possible string data that they produce.

By inspecting the automaton shown in Figure 4, we found that
the queries generated at Locations 3 and 4 are in fact semantically
equivalent: the only syntactic difference is that “TestCaseId” is
preceded by “Defect.” in Location 3 but is not in Location 4.
The observation indicates that the two methods corresponding to
Locations 3 and 4 are redundant and they should be merged into a
single method. We also observed that Locations 1 and 2 construct
similar queries for ProductId and Id, respectively. The preceding
useful information about the interface cannot be easily attained by
looking at the source code without using our tool.

We can view database accesses as concerns [10] that crosscut
the whole database application. Furthermore, database accesses re-
lated to the same table represent a finer-granularity of concerns. In
a high-level view, we can consider our aggregated automata shown
in Figure 3 as a type of concern graphs proposed by Robillard and
Murphy [12]. But note that our approach does not require extra
user inputs for constructing this type of concern graphs. Although
a database application could be large, the total number of tables ac-
cessed by a database application could be relatively small. There-
fore, it could be feasible to first use the grouped automata produced
by our approach to understand a database application.

For other hotspots in ReBaTe or in other subjects, we often found
that grouped automata were useful for understanding the database
application interfaces. But on the other hand, we also encountered
two contrary situations: we could not find a substantial number of
groupings or a grouped automaton was too complicated for under-
standing.

5. CONCLUSION
We have developed a new approach that helps understand soft-

ware application interfaces such as database application interfaces.
In this approach, we leverage the existing static string analyz-
ers [4, 8] to collect possible string data of SQL statements at spec-
ified call sites. Then we group together the SQL statements that
access the same table. We produce an aggregated view of SQL
statements where corresponding call sites are annotated. We have
developed a tool to support the approach and applied the tool on
several database applications. The preliminary results show that
the extracted views can often help understand database application
interfaces.

We plan to pursue several future directions for our new approach.
First, we plan to explore advanced techniques (such as data min-
ing [18], visualization [14], and concept analysis [17]) to make in-



Figure 3: The union of four automata accessing the Defect table with a Select statement.

1 public class Database {
...
150 public static Collection getDefTab(int prodId) {

...
rs = Database.query(sql);
...

}
...
252 public static DefectDataModel getDef(int defId) {

...
rs = Database.query(sql);
...

}
...
325 public static Collection getDefForTC(String tcId) {

...
rs = Database.query(sql);
...

}
...
773 public static Collection getDefTabByTC(String tcId) {

...
rs = Database.query(sql);
...

}

Figure 4: The call hierarchy corresponding to the automaton
in Figure 3.

formation in grouped automata more understandable, because our
straightforward grouping sometimes produces a complicated com-
bined automata. In addition, we plan to explore different strate-
gies of grouping other than the simple approach currently taken,
because sometimes we do not have a substantial number of group-
ings. Second, we plan to combine our approach with dynamic anal-
ysis to help testing, debugging, and performance problem diagnosis
of database applications. Third, we plan to apply the approach to
other types of software application interfaces that involve charac-
ter streams in Java, such as reflection, Remote Method Invocation
(RMI), XML, Java resource bundles, and web services. Finally, we
plan to apply our approach in system performance optimization.
For example, given a set of queries and a database, view selection
returns definitions of views that, when materialized in the database,
would reduce the evaluation costs of the queries. Optimizing the
layout of stored data using view selection has significant perfor-
mance implications on the entire database system. Unfortunately
the optimization problem is intractable. Li et al. [11] use an integer-
programming model to obtain optimal solutions to the problem of
view selection for aggregate queries on databases. This model in
conjunction with our approach can provide an automated technique
to realize performance gains for database-driven applications sim-
ply by defining the necessary views and instrumenting the code to
execute queries on those views rather than the underlying tables.

Acknowledgments
We would like to thank Alex Orso and William G.J. Halfond for
providing their AMNESIA tool and sharing their experimental sub-
jects for our use in the work described in this paper.

6. REFERENCES
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In Proc.

28th International Conference on Very Large Databases, 2002.
[2] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In Proc. 29th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 4–16, 2002.

[3] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J. Weyuker. An
AGENDA for testing relational database applications. Softw. Test., Verif.
Reliab., 14(1):17–44, 2004.

[4] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of
string expressions. In Proc. 10th International Static Analysis Symposium,
volume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003. Available
from http://www.brics.dk/JSA/.

[5] M. Dahm and J. van Zyl. Byte Code Engineering Library, April 2003.
http://jakarta.apache.org/bcel/.

[6] T. Erl. Service-Oriented Architecture : A Field Guide to Integrating XML and
Web Services. Prentice Hall PTR, 2004.

[7] C. Gould, Z. Su, and P. T. Devanbu. Static checking of dynamically generated
queries in database applications. In Proc. 26th International Conference on
Software Engineering, pages 645–654, May 2004.

[8] W. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for
NEutralizing SQL-Injection Attacks. In Proc. IEEE/ACM International
Conference on Automated Software Engineering, pages 174–183, November
2005.

[9] G. M. Kapfhammer and M. L. Soffa. A family of test adequacy criteria for
database-driven applications. In Proc. 9th European Software Engineering
Conference held jointly with 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 98–107, 2003.

[10] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In Proc. 11th European
Conference on Object-Oriented Programming, pages 220–242, 1997.

[11] J. Li, Z. A. Talebi, R. Chirkova, and Y. Fathi. A formal model for the problem
of view selection for aggregate queries. In Proc. 9th East European
Conference on Advances in Databases and Information Systems, pages
125–138, September 2005.

[12] M. P. Robillard and G. C. Murphy. Concern graphs: finding and describing
concerns using structural program dependencies. In Proc. 24th International
Conference on Software Engineering, pages 406–416, 2002.

[13] A. Rountev, S. Kagan, and M. Gibas. Static and dynamic analysis of call
chains in Java. In Proc. 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 1–11, 2004.

[14] J. T. Stasko, J. B. Domingue, M. H. Brown, and B. A. Price. Software
Visualization. MIT Press, 1998.

[15] M. J. Suarez-Cabal and J. Tuya. Using an SQL coverage measurement for
testing database applications. In Proc. ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 253–262, 2004.

[16] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of
object-oriented component interfaces. In Proc. International Symposium on
Software Testing and Analysis, pages 218–228, 2002.

[17] R. Wille. Restructuring lattice theory: An approach based on hierarchies of
concepts. Ordered Sets, Ivan Rival Ed., NATO Advanced Study Institute,
83:445–470, September 1981.

[18] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, 2005.

[19] T. Xie and D. Notkin. Automatic extraction of object-oriented observer
abstractions from unit-test executions. In Proc. 6th International Conference
on Formal Engineering Methods, pages 290–305, Nov. 2004.

[20] T. Xie and D. Notkin. Automatic extraction of sliced object state machines for
component interfaces. In Proc. 3rd Workshop on Specification and Verification
of Component-Based Systems, pages 39–46, October 2004.

[21] J. Zhang, C. Xu, and S. C. Cheung. Automatic generation of database
instances for white-box testing. In Proc. 25th International Computer
Software and Applications Conference., pages 161–165, 2001.


