
Automatic Extraction of Abstract-Object-State Machines
from Unit-Test Executions

Tao Xie, Evan Martin, and Hai Yuan
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

xie@csc.ncsu.edu, {eemartin,hyuan3}@ncsu.edu

ABSTRACT
An automatic test-generation tool can produce a large number of
test inputs to exercise the class under test. However, without speci-
fications, developers cannot inspect the execution of each automat-
ically generated test input practically. To address the problem, we
have developed an automatic test abstraction tool, called Abstra,
to extract high level object-state-transition information from unit-
test executions, without requiring a priori specifications. Given a
class and a set of its generated test inputs, our tool extracts object
state machines (OSM): a state in an OSM represents an object state
of the class and a transition in an OSM represents method calls of
the class. When an object state in an OSM is concrete (being repre-
sented by the values of all fields reachable from the object), the size
of the OSM could be too large to be useful for inspection. To ad-
dress this issue, we have developed techniques in the tool to abstract
object states based on returns of observer methods, branch coverage
of methods, and individual object fields, respectively. The tool pro-
vides useful object-state-transition information for programmers to
inspect unit-test executions effectively. In particular, the tool helps
facilitate correctness inspection, program understanding, fault iso-
lation, and test characterization.

Categories and Subject Descriptors:D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms: Experimentation, Reliability, Verification.

Keywords: Software Testing, Program Understanding, Debugging.

1. INTRODUCTION
Given a class, automatic test-generation tools can generate a large

number of test inputs, including some valuable corner or special in-
puts that developers often forget to include in their manually writ-
ten tests. When developers write specifications for the class, some
specification-based test generation tools [3, 8] automatically check
the execution of generated tests against the written specifications.
Without specifications, developers rely on uncaught exceptions or
inspect the executions of generated test inputs in order to determine
whether the program behaves as expected. However, it is limited to
rely on only uncaught exceptions for exposing faulty behavior and
it is impractical to for developers to inspect the executions of a large
number of generated test inputs.

To help developers to inspect unit-test executions effectively, we
have developed a test abstraction tool, called Abstra, to help devel-
opers to inspect object-state-transition behavior. Given a class and
a set of existing tests (generated either automatically or manually),

Copyright is held by the author/owner.
ICSE’06,May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

Abstra extracts a set of object state machines (OSM): a state in an
OSM represents an object state of the class and a transition in an
OSM represents method calls of the class. A state in an OSM can
be concrete or abstract. A concrete state of an object is character-
ized by the values of the fields that are transitively reachable from
the object. A concrete OSM is an OSM with concrete states.

Because a concrete OSM is often too complicated to be useful
for inspection, we have developed three techniques in Abstra for
abstracting the concrete states in an OSM to abstract states. An
abstract OSM is an OSM with abstract states. These three tech-
niques complement with each other and each of them can be effec-
tive for helping inspect specific types of programs. Theobserver
abstractiontechnique [15] uses the return values of observers (pub-
lic methods with non-void returns) invoked on a concrete object
as an abstract state in an OSM. Thebranch-coverage abstraction
technique [19] uses the branch coverage of methods invoked on a
concrete object as an abstract state. Thestate-slicing abstraction
technique [16] uses the values of each member field of the concrete
object.

In this demo, we present the abstract OSMs extracted by Ab-
stra and show how developers can inspect these OSMs to improve
correctness inspection, program understanding, fault isolation, and
test characterization (e.g., identifying the weakness of a test suite).

2. RELATED WORK
Ernst et al. [5] developed the Daikon tool to dynamically infer

likely invariants from test executions. Invariants are in the form
of axiomatic specifications. These invariants describe the observed
relationships among the values of object fields, arguments, and re-
turns of a single method in a class interface, whereas OSMs de-
scribe the observed state-transition relationships among multiple
methods in a class interface and we have used three techniques to
abstract concrete object states; the state-representation techniques
except for the state-slicing abstraction technique do not explicitly
refer to object fields.

Henkel and Diwan [9] and our previous work [17] discover al-
gebraic specifications from the execution of automatically gener-
ated unit tests . These discovered algebraic specifications present
a local view of relationships between two methods, whereas OSMs
present a global view of relationships among multiple methods. In
addition, Henkel and Diwan’s approach cannot infer local proper-
ties that are related to indeterministic transitions in abstract OSMs
and these indeterministic transitions are often useful for inspection.
In summary, abstract OSMs are a useful form of behavior represen-
tation, complementing algebraic specifications or axiomatic speci-
fications inferred from unit-test executions.

Whaley et al. [13] developed a tool to extract multiple finite
state machines as component interfaces from system-test execu-



tions. From system-test executions, Yang and Evans [18] devel-
oped the Terracotta tool to dynamically infer a program’s tempo-
ral properties, which are extensions of the response property pat-
tern [4]. Ammons et al. [1] developed a tool to mine protocol
specifications in the form of a finite state machine from system-
test executions. These three existing tools infer sequencing con-
straints from system-test executions without taking into account the
actual state information whereas the states in abstract OSMs are ab-
stracted from concrete states exercised by unit-test executions.

3. OBJECT STATE MACHINE
To characterize program behavior related to object-state transi-

tion, we have defined an object state machine for a class [15]:

DEFINITION 1. An object state machine(OSM)M of a class
c is a sextupleM = (I, O, S, δ, λ, INIT ) whereI, O, and S
are nonempty sets of method calls inc’s interface, returns of these
method calls, and states ofc’s objects, respectively.INIT ∈ S is
the initial state that the machine is in before calling any constructor
method ofc. δ : S × I → P (S) is the state transition function and
λ : S × I → P (O) is the output function whereP (S) andP (O)
are the power sets of S and O, respectively. When the machine is
in a current states and receives a method calli fromI, it moves to
one of the next states specified byδ(s, i) and produces one of the
method returns given byλ(s, i).

When a method call in a class interface is executed, an uncaught
exception might be thrown. To represent the state where an object
is in after an exception-throwing method call, we introduce a spe-
cial type of states in an OSM:exception states. After a method call
on an object throws an uncaught exception, the object is in an ex-
ception state represented by the type name of the exception. The
exception-throwing method call transits the object from the object
state before the method call to the exception state.

An OSM can be deterministic or nondeterministic. The object
states in an OSM can be concrete or abstract. In a concrete OSM,
states of an object are represented by its concrete-state representa-
tion. An object’s concrete-state representation is characterized by
the values of all the field transitively reachable from the object [14].
Because some object fields may be reference types and their values
point to memory addresses (which can be different in different runs
of the same test), we use a linearization algorithm [14] to collect
the values of these reference-type fields so that comparing state
representations takes into account comparing object-graph shapes
but without directly comparing memory addresses. Two states are
equivalentif their state representations are the same, and arenon-
equivalentotherwise.

For example, we can use a test generation tool called Rostra (de-
veloped in our previous work [14]) to generate tests for aUBStack
class, which implements a bounded stack that stores unique ele-
ments of integer type [11]. Figure 1 shows a concrete OSM exer-
cised by generated tests, containing 41 states and 142 transitions
and Figure 2 shows a detailed view of the highlighted area in Fig-
ure 1. States in the OSM are shown as circles in Figure 2 and the
labels inside these circles are the state representations, which in-
clude field names followed by “:” and corresponding field values
(array-element values are separated by “;”). The three states in Fig-
ure 2 represent three full stacks. Although they have the same set
of stack elements, these elements are stored in three stacks in dif-
ferent orders. Transitions in the OSM are shown as directed edges
that connect circles (states). These edges are labelled with method
names and arguments.

We have observed that the concrete OSM is too complex to be
useful in practice. Although we can zoom in to view details of

Figure 1: An overview of UBStack concrete OSM (containing
41 states and 142 transitions) exercised by generated tests

Figure 2: A detailed view of the selected area inUBStack con-
crete OSM

object states and transitions such as in the highlighted area in Fig-
ure 1, these details in such a large OSM are often not very useful
for inspection.

4. TEST ABSTRACTION
Because concrete OSMs are often too complicated to be useful

for inspection, we developed the Abstra tool to abstract concrete
states and construct abstract OSMs. Anabstract stateof an object
is defined by anabstraction function[10]; the abstraction function
maps each concrete state to an abstract state. We developed three
techniques for constructing abstraction functions based on observer
methods invoked on concrete states, branch coverage of methods
invoked on concrete states, and individual fields of concrete states.

4.1 Observer Abstraction
The observer abstraction technique constructs an abstraction

function by using return values of methods invoked on concrete
states.

A methodm is characterized by its defining classc, method
name, and method signature. A method callmc of a methodm
is a pair〈m, a〉 wherea is a vector of method-argument values.

We first define an observer method following previous work on
specifying algebraic specifications for a class [9]:

DEFINITION 2. Anobserver methodof a classc is a methodob
in c’s interface such that the return type ofob is not void.



Given a classc and a set of observer-method callsOB =
{ob1, ob2, ..., obn} of c, the observer abstraction technique con-
structs an abstraction ofc with respect toOB. In particular, a con-
crete statecs is mapped to an abstract stateas defined byn values
OBR = {obr1, obr2, ..., obrn}, where each valueobri represents
the return value of method callobi invoked oncs.

DEFINITION 3. Given a classc and a set of observer-method
calls OB = {ob1, ob2, ..., obn} of c, an observer abstractionwith
respect toOB is an OSMM of c such that the states inM are
abstract states defined byOB.

Then we construct an abstract OSM where all states are abstract
states with respect toOB.

By default, each observer abstraction generated by our Abstra
tool is defined based on the calls of a single observer method. When
an observer method has different method calls (with different given
arguments), we invoke these method calls of the observer method
and use their return values to construct an observer abstraction.

4.2 Branch-Coverage Abstraction
The branch-coverage abstraction technique constructs an ab-

straction function by using branch coverage of methods invoked
on concrete states. We first define the branch coverage we shall use
in representing an abstract state of an object.

DEFINITION 4. Conditional setCS of a methodm are a set
of strings, including all the conditional strings (together with their
source-code-line numbers) that appear in the body ofm, m’s direct
and indirect callees.

DEFINITION 5. Given an objecto of classc and a method
call mc:〈m, a〉 of c, assumeCS is the conditional set of
m, branch coverageBC of mc on o is a map fromCS to
{true, false, both, n/a}, where the map is defined based on
whether a conditional’s false branch, true branch, both branches,
or neither branch is covered during the execution ofmc ono.

DEFINITION 6. Given an objecto of classc and a set ofc’s
method callsMC = {mc1, mc2, ..., mcn}, the abstract state of
o with respect toMC is represented by{BC1, BC2, ..., BCn},
whereBCi is branch coverage ofmci ono.

Then we construct an abstract OSM where all states are abstract
states with respect toMC.

By default, each abstract OSM generated by our Abstra tool is
defined based on all method calls whose methods have a non-empty
conditional set.

4.3 State-Slicing Abstraction
The state-slicing abstraction technique constructs an abstraction

function by using the values of specific member fields of concrete
states.

DEFINITION 7. Given an objecto of classc and a set ofc’s
member fieldsMF = {mf1, mf2, ...,mfn}, the abstract state of
o with respect toMF is represented by{fv1, fv2, ...,fvn}, where
fvi is value ofo’s mfi.

Then we construct an abstract OSM where all states are abstract
states with respect toMF .

Note that if the member field is of a reference type, the value of
the member field include the values of all fields transitively reach-
able from the member field. But a member field of a reference type
often points to a complex object graph; therefore, even if we use

the value of the member field to represent an abstract state, we may
still produce a complex abstract OSM. To address this issue, by
default our Abstra tool conductsstructural abstractionon a mem-
ber field of a reference type by keeping only structural information
among object fields but ignoring those primitive field values in a
sliced state. The underlying rationale for structural abstraction is
that object states sharing the same object graph structure often ex-
hibit certain common behavior.

By default, each abstract OSM generated by our Abstra tool is
defined based on a single member field.

5. DISCUSSION
The observer abstraction technique relies on the availability of

(good) observer methods. The complexity of an abstract OSM with
respect to observer methods depends on the characteristics of its
corresponding observer methods. Observer abstractions help in-
vestigate behavior related to the return values of observers. The ef-
fectiveness of the state-slicing abstraction technique depends on the
characteristics of member fields. The effectiveness of the branch-
coverage abstraction technique depends on the characteristics of
control flow graphs in method body.

In some cases, it might be difficult to construct a good abstrac-
tion function from the code with default configurations of these
three techniques. Then human inputs can be used to improve the
results. For example, developers can configure Abstra to use sev-
eral observer methods for constructing an abstract OSM, rather than
using a single observer method. Developers can write extra ob-
server methods for the class under test in order to get better abstract
OSMs. Developers can configure the branch-coverage abstraction
to use only the branches in a specified subset of public methods or
the branches that are related to specified object fields. Developers
can specify the state-slicing abstraction to use a group of member
fields rather than using a single observer method. Developers can
construct indistinguishability properties [8] or other forms of ab-
straction functions to group values of specific member fields when
applying the state-slicing abstraction technique.

We expect that this way of getting human inputs in Abstra shall
be better for many types of programs than requiring upfront hu-
man inputs in traditional formal methods. First, we expect that
programmers would be more willing to provide their inputs of ab-
straction functions after they have already seen OSMs extracted
without their upfront inputs (some OSMs could have already been
useful for them to understand parts of program behavior). Second,
we expect that it would be easier for programmers to formulate ab-
straction functions based on the crude OSMs extracted by Abstra.

6. TOOL IMPLEMENTATION
The Abstra tool consists of four components: state collector, test

generator, OSM extractor, and OSM presenter.
State Collector. To collect concrete object states, Abstra uses

Java reflection mechanisms [2] to recursively collect all the fields
that are reachable from an object. Abstra also instruments test
classes to collect method call information that is used to reproduce
object states in test generation.

Test Generator.Recall that the observer abstraction and branch-
coverage abstraction techniques require invoking specific methods
on the concrete state to be abstracted. Because these method calls
may not occur in the existing test suite, our test generator generates
new tests to invoke methods on each concrete state exercised by
the existing test suite. In particular, we perform combinatorial test
generation on the two types of inputs: concrete states exercised by
the existing test suite and method calls exercised by the existing



Figure 3: isEmpty observer abstraction of HashMap (screen
snapshot)

test suite. Abstra uses Java reflection mechanisms [2] to generate
and execute new tests online. Abstra exports generated tests to a
JUnit [6] test class.

OSM Extractor. For observer abstraction, Abstra collects the
return values of observer methods invoked on each concrete ob-
ject state. For branch-coverage abstraction, Abstra collects covered
branches of methods invoked on each concrete object state. For
state-slicing abstraction, Abstra collects field values of each con-
crete object state. After collecting the information required to rep-
resent abstract states, Abstra construct transitions (method calls)
among them to construct abstract OSMs.

OSM Presenter. Abstra displays extracted abstract OSMs by
using the Grappa package, which is part of graphviz [7].

For example, Figure 3 shows a screen snapshot of an ab-
stract OSM generated based on an observer methodisEmpty of
HashMap, which is an implementation of a map in the Java Collec-
tions Framework, being a part of the standard Java libraries [12].
We configured Abstra to display on each edge only the method
name associated with the transition. When developers want to see
the details of a transition, they can move the mouse cursor over the
method name associated with the transition and then the details are
displayed (detail notations are described in [15]).

7. REFERENCES
[1] G. Ammons, R. Bodik, and J. R. Larus. Mining

specifications. InProc. 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
4–16, 2002.

[2] K. Arnold, J. Gosling, and D. Holmes.The Java
Programming Language. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on Java predicates. InProc. International
Symposium on Software Testing and Analysis, pages
123–133, 2002.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: extracting
finite-state models from java source code. InProc. 22nd
International Conference on Software Engineering, pages
439–448, 2000.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to

support program evolution.IEEE Trans. Softw. Eng.,
27(2):99–123, 2001.

[6] E. Gamma and K. Beck. JUnit, 2003.
http://www.junit.org.

[7] E. R. Gansner and S. C. North. An open graph visualization
system and its applications to software engineering.
Software: Practice and Experience, 30(11):1203–1233, Sept.
2000.

[8] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
Generating finite state machines from abstract state
machines. InProc. International Symposium on Software
Testing and Analysis, pages 112–122, 2002.

[9] J. Henkel and A. Diwan. Discovering algebraic specifications
from Java classes. InProc. 17th European Conference on
Object-Oriented Programming, pages 431–456, 2003.

[10] B. Liskov and J. Guttag.Program Development in Java:
Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley, 2000.

[11] D. Stotts, M. Lindsey, and A. Antley. An informal formal
method for systematic JUnit test case generation. InProc.
2002 XP/Agile Universe, pages 131–143, 2002.

[12] Sun Microsystems. Java 2 Platform, Standard Edition, v
1.4.2, API Specification. Online documentation, Nov. 2003.
http://java.sun.com/j2se/1.4.2/docs/api/.

[13] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces. InProc.
International Symposium on Software Testing and Analysis,
pages 218–228, 2002.

[14] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. InProc. 19th
IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

[15] T. Xie and D. Notkin. Automatic extraction of
object-oriented observer abstractions from unit-test
executions. InProc. 6th International Conference on Formal
Engineering Methods, Nov. 2004.

[16] T. Xie and D. Notkin. Automatic extraction of sliced object
state machines for component interfaces. InProc. 3rd
Workshop on Specification and Verification of
Component-Based Systems at ACM SIGSOFT 2004/FSE-12
(SAVCBS 2004), pages 39–46, October 2004.

[17] T. Xie and D. Notkin. Automatically identifying special and
common unit tests for object-oriented programs. InProc.
16th IEEE International Symposium on Software Reliability
Engineering (ISSRE 2005), pages 277–287, November 2005.

[18] J. Yang and D. Evans. Dynamically inferring temporal
properties. InProc. ACM-SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pages
23–28, 2004.

[19] H. Yuan and T. Xie. Automatic extraction of
abstract-object-state machines based on branch coverage. In
Proc. 1st International Workshop on Reverse Engineering To
Requirements at WCRE 2005 (RETR 2005), pages 5–11,
November 2005.


