
Educational Software Engineering: Where Software

Engineering, Education, and Gaming Meet

Tao Xie

Department of Computer Science

North Carolina State University

Raleigh, NC, USA

xie@csc.ncsu.edu

Nikolai Tillmann

Microsoft Research

One Microsoft Way

Redmond, WA, USA

nikolait@microsoft.com

Jonathan de Halleux

Microsoft Research

One Microsoft Way

Redmond, WA, USA

jhalleux@microsoft.com

Abstract—We define and advocate the subfield of educational
software engineering (i.e., software engineering for education),
which develops software engineering technologies (e.g., software
testing and analysis, software analytics) for general educational
tasks, going beyond educational tasks for software engineering.
In this subfield, gaming technologies often play an important
role together with software engineering technologies. We expect
that researchers in educational software engineering would be
among key players in the education domain and in the coming
age of Massive Open Online Courses (MOOCs). Educational
software engineering can and will contribute significant solutions
to address various critical challenges in education especially
MOOCs such as automatic grading, intelligent tutoring, problem
generation, and plagiarism detection. In this position paper,
we define educational software engineering and illustrate Pex
for Fun (in short as Pex4Fun), one of our recent examples
on leveraging software engineering and gaming technologies to
address educational tasks on teaching and learning programming
and software engineering skills.

I. INTRODUCTION

Among various subfields of software engineering, software

engineering education [14] has been an important one, focus-

ing on education topics for software engineering (e.g., how

to better teach and train software engineering skills). Typi-

cally research work on software engineering education does

not appear in research tracks of major software engineering

conferences but appear in their education tracks or conferences

with focus on software engineering education. For example,

the International Conference on Software Engineering (ICSE)1

typically has a track on Software Engineering Education.

The ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA)

has also recently included a co-located Educator’s Sympo-

sium2. The Conference on Software Engineering Education

and Training (CSEE&T)3 has focused on software engineering

education and training since 1987. Indeed, research work on

software engineering education sometimes also appears in

venues in computer science education such as the SIGCSE

Technical Symposium (SIGCSE)4 and the Annual Conference

1http//www.icse-conferences.org/
2http://www.splashcon.org/history/
3http://conferences.computer.org/cseet/
4http://www.sigcse.org/events/symposia

on Innovation and Technology in Computer Science Education

(ITiCSE)5.

In this position paper, we define and advocate the subfield

of educational software engineering (i.e., software engineering

for education) within software engineering research. This

subfield develops software engineering technologies (e.g., soft-

ware testing and analysis [7], software analytics [23], [24]) for

general educational tasks, going beyond educational tasks for

software engineering. For example, general educational tasks

can even be on teaching maths [1], [6], [15]. As an analogy,

data mining for software engineering [21] (also called mining

software repositories [8]) leverages data mining technologies

(which typically come from the data mining community) to

address tasks in software engineering, whereas educational

software engineering leverages software engineering technolo-

gies (which typically come from the software engineering

community) to address tasks in education. In addition, in the

solution space, gaming technologies often play an important

role together with software engineering technologies.

We expect that researchers in educational software engi-

neering would be among key players in the education domain

and in the coming age of Massive Open Online Courses

(MOOCs) [3], [11], which have recently gained high popu-

larity among various universities and even in global societies.

Educational software engineering can and will contribute

significant solutions to address various critical challenges in

education especially MOOCs such as automatic grading [16],

[19], intelligent tutoring [12], problem generation [1], [6], [15],

and plagiarism detection [10], [13].

To provide a concrete example of educational software

engineering, in this position paper, we illustrate Pex for

Fun [19] (in short as Pex4Fun), one of our recent examples

on leveraging software engineering and gaming technologies

to address educational tasks on teaching and learning pro-

gramming and software engineering skills. In particular, our

illustration of Pex4Fun focuses on the gaming (Section II),

social dynamics (Section III), educational usage (Section IV),

and software engineering technologies (Section V), being four

common aspects of a typical project on educational software

engineering.

5http://www.sigcse.org/events/iticse



Fig. 1. The user interface of the Pex4Fun website

II. GAMING IN PEX4FUN

Pex4Fun [19] (http://www.pexforfun.com/) is an interactive-

gaming-based teaching and learning platform for .NET pro-

gramming languages such as C#, Visual Basic, and F#. Fig-

ure 1 shows a screen snapshot of the user interface of the

Pex4Fun website, which shows an example coding duel under

solving by a player. It is a browser-based teaching and learning

environment with target users as teachers, students, and even

software practitioners, etc.

The core type of Pex4Fun games is a coding duel where

the player has to solve a particular programming problem. A

coding duel created by a game creator (who could be any

user of Pex4Fun) consists of two methods with the same

method signature and return type6. One of these two methods

is the secret (golden) implementation, which is not visible

to the player. The other is the player implementation, which

is visible to the player and can be an empty implementation

or a faulty implementation of the secret implementation. The

player implementation can include optional comments to give

the player some hints in order to reduce the difficulty level of

gaming.

After a player selects a coding-duel game to play, the

player’s winning goal is to modify the player implementation

(visible to the player, shown in the upper part of Figure 1) to

make its behavior (in terms of the method inputs and results)

to be the same as the secret implementation (not visible to the

player). Apparently, without any feedback or help, the player

has no way to guess how the secret implementation would

behave. The player can get some feedback by clicking the

button “Ask Pex” (shown in the middle-left part of Figure 1)

to request the following two types of feedback: (1) under what

sample method input(s) the player implementation and the

secret implementation have the same method result and (2)

under what sample method input(s) the player implementation

and the secret implementation have different method results.

Example feedback is shown in the table near the bottom of

Figure 1. In the table, the first line prefixed with a green circle

indicates the first type of feedback, and the second and third

6The method signature of a coding duel must have at least one input
parameter. The return type of a coding duel must not be void.

lines prefixed with a red circle indicate the second type of

feedback.

As described in Section V, Pex4Fun leverages the underly-

ing test-generation engine called Pex [18], [22] to generate

such feedback and determine whether the player wins the

game: the player wins the game if the test-generation engine

cannot generate any method input to cause the player im-

plementation and the secret implementation to have different

method results.

The design of coding-duel games and the gaming platform

follows a number of design principles [19]. For example, the

games need to be interactive and the interactions need to be

iterative and involve multiple rounds. The feedback given to

the player should be adaptive and personalized to the mod-

ifications made by the player on the player implementation.

The games should have a clear winning criterion. There should

be no or few opportunities for the player to cheat the games

(e.g., by adding very complicated code portions in the player

implementation to pose difficulties for the underlying test-

generation engine).

III. SOCIAL DYNAMICS IN PEX4FUN

To add more fun to Pex4Fun, we have developed a number

of features related to social dynamics, making games in

Pex4Fun a type of social games. For example, Pex4Fun allows

a player to learn what coding duels other people were already

able to win (or not). For a given coding duel opened by a

player, the description text box above the working area shows

some statistic such as “Can you write code that matches a

secret implementation? Other people have already won this

Duel 322 times!”, as shown in Figure 1.

Ranking of players and coding duels. Initially, when only

a relatively small number of coding duels were provided by us

in Pex4Fun, we provided a mechanism of earning medals to

encourage users to play coding duels. After signing in, a user

could earn virtual medals for winning coding duels. The user

got the first medal for winning any five of the coding duels

that were built into Pex4Fun. The user got the second medal

for winning another 20 of the built-in coding duels.

Furthermore, a user can click the “Community” link on the

Pex4Fun main page to see how the user’s coding duel skills

compare to other users. In the community area (http://www.

pexforfun.com/Community.aspx), there are two ranked lists of

all users (one based on the number of points earned by a

user and the other one based on the number of coding duels

won by a user), as well as coding duels that other users have

published. A user can earn points by winning a coding duel,

rating a coding duel that the user won, registering in a course,

creating a coding duel that somebody else attempts to win,

creating a coding duel that somebody else wins, etc. Note

that a user can rate any coding duel that the user wins as

“Fun”, “Boring”, or “Fishy”. All ratings are shared with the

community.

Live feeds. A player can click the “Live Feed” link on the

Pex4Fun main page to see what coding duels other players

are winning (or not) right now (http://www.pexforfun.com/



Livefeed.aspx). Maybe someone else is trying to win a coding

duel that the player has created or the player is also trying to

win.

Social dynamics in Pex4Fun share similar motivations as

other recent gamification examples in software engineering.

For example, Stack Overflow badges7 have been used to

provide incentives for Stack Overflow users to ask or answer

questions there. Through asking or answering questions, a user

earns reputation points. For example, 10 reputation points are

given to a user when the user’s answer to a question receives

an “up” vote. In addition, a user can earn three ranks of badge:

bronze, silver, and gold badges. Bronze badges are given to

users who often help teach users on how to use the system.

Silver badges are given to users who post very insightful

questions and answers, and show dedication to moderate and

improve the Stack Overflow contents. Gold badges are given to

users who demonstrate outstanding dedication or achievement.

Such badges earned by a user appear on the user’s profile and

in the user’s user card. Along a similar spirit, early 2012,

Microsoft added a new plug-in to the Microsoft Visual Studio

to allow software developers to unlock achievements8, receive

badges, and increase their ranking on a leaderboard based on

the program code that they have written.

IV. EDUCATIONAL USAGE OF PEX4FUN

The game type of coding duels within Pex4Fun is flexible

enough to allow game creators to create various games to

target a range of skills such as skills of programming, program

understanding, induction, debugging, problem solving, testing,

and specification writing, with different difficulty levels of

gaming. In addition, Pex4Fun is an open platform: any one

around the world can create coding duels for others to play

besides playing existing coding duels themselves. Teachers

can create virtual classrooms in the form of courses by cus-

tomizing existing learning materials and games or creating new

materials and games. Teachers can also enjoy the benefits of

automated grading of exercises assigned to students. Pex4Fun

has provided a number of open virtual courses including

learning materials along with games used to reinforce students’

learning (http://www.pexforfun.com/Page.aspx#learn/courses).

Pex4Fun was adopted as a major platform for assignments

in a graduate software engineering course. A coding-duel

contest was held at a major software engineering conference

(ICSE 2011) for engaging conference attendees to solve cod-

ing duels in a dynamic social contest. Pex4Fun has been gain-

ing high popularity in the community: since it was released

to the public in June 2010, the number of clicks of the “Ask

Pex!” button (indicating the attempts made by users to solve

games at Pex4Fun) has reached over one million (1,135,931)

as of March 3, 2013.

Various Pex4Fun users posted their comments on the Inter-

net to express their enthusiasm and interest (even addiction)

to Pex4Fun. Here we included some examples. “PEX4fun

7http://stackoverflow.com/badges
8http://channel9.msdn.com/achievements/visualstudio

could become a better FizzBuzz than FizzBuzz.”, “it really got

me *excited*. The part that got me most is about spreading

interest in/teaching CS: I do think that it’s REALLY great

for teaching | learning!” “Frankly this is my favorite game.

I used to love the first person shooters and the satisfaction

of blowing away a whole team of Noobies playing Rainbow

Six, but this is far more fun.”, “Teaching, learning - isn’t this

really the same, in the end? In fact, for me personally, it’s

really about leveraging curiosity, be it mine or someone else’s

- at best both! And PexForFun (+ all the stuff behind) is a

great, promising platform for this: you got riddles, you got

competition, you get feedback that makes you think ahead...”.

“I’m afraid I’ll have to constrain myself to spend just an hour

or so a day on this really exciting stuff, as I’m really stuffed

with work”.“PexForFun improves greatly over projecteuler

w.r.t. how proposed solutions are verified; in fact what it

adds is that you don’t just get a ‘nope’ but something more

articulate, something you can build on. That’s what I think is

really great and exciting - let’s push it even further now!”

V. SOFTWARE ENGINEERING TECHNOLOGIES IN PEX4FUN

Behind the scenes on the server in the cloud, the Pex4Fun

website uses dynamic symbolic execution [5] implemented

by Pex [18], [22], in order to determine the game progress

of the player and to compute customized feedback [17]. Pex

is an automatic white-box test generation tool for .NET. It

has been integrated into Microsoft Visual Studio as an add-in.

Besides being used in industry, Pex was also used in classroom

teaching at different universities [20].

In particular, dynamic symbolic execution (DSE) [5] is a

variation of symbolic execution [2], [9] and leverages runtime

information from concrete executions. DSE is often conducted

in iterations to systematically increase code coverage such as

block or branch coverage. In each iteration, DSE executes

the program under test with a test input, which can be a

default or randomly generated input in the first iteration or an

input generated in one of the previous iterations. During the

execution of the program under test, DSE performs symbolic

execution in parallel to collecting symbolic constraints on

program inputs obtained from predicates in branch statements

along the execution. Then DSE flips a branching node in the

executed path to construct a new path that shares the prefix to

the node with the executed path, but then deviates and takes a

different branch. Finally, DSE relies on a constraint solver to

compute a satisfying assignment (if possible), which forms a

new test input whose execution will follow the flipped path.

VI. DISCUSSION

Educational software engineering is closely related to the

field of educational games [4] (i.e., games for education), with

example conferences such as the Games+Learning+Society

Conference9 and example initiatives such as the MacArthur

Digital Media and Learning initiative10. The field of educa-

tional games typically focuses on gaming technologies for

9http://www.gameslearningsociety.org/conference/
10http://www.macfound.org/programs/learning/



supporting educational purposes, whereas educational software

engineering typically focuses on software engineering tech-

nologies for supporting educational purposes. In the context

of Pex4Fun, the field of educational games would focus more

on the aspect of gaming (Section II) whereas the field of

educational software engineering would focus more on the

aspect of software engineering technologies (Section V). Note

that educational software engineering deals with not only

educational games but also other educational tools not being

games.

In addition, it is reasonable to consider that software

engineering for developing educational games or generally

educational tools (such as software quality assurance for

educational-game software) would be part of educational

software engineering. In other words, educational software

engineering is not limited to software engineering technologies

as infrastructure support for educational tools (as exemplified

by Pex4Fun), and can also include software engineering tools

or processes to assist the development of educational tools.

We advocate educational software engineering to be within

software engineering research, and to contribute to software

engineering research in three example ways. First, when tar-

geting at educational tasks, researchers may be able to leverage

or develop software engineering technologies (to be effective

for such tasks), which generally may not be effective or mature

enough to deal with tasks related to software industry. An

example case would be developing program-synthesis tech-

nologies for educational tasks [1], [6], [15]. Another example

case would be developing test-generation technologies for

Pex4Fun, since secret implementations created for coding

duels tend to be simpler than real-world code implementa-

tions. Second, targeting at educational tasks may pose unique

requirements for software engineering technologies. For ex-

ample, test generation for software engineering tasks such

as achieving code coverage aims at generating and reporting

test inputs that can achieve new code coverage. However, test

generation for Pex4Fun aims at generating and reporting test

inputs that can serve as feedback to achieve effective learning

purposes. Third, some educational tasks (such as intelligent

tutoring [12] and problem generation [1], [6], [15]) call for

creation of new software engineering technologies, which may

not exist in traditional software engineering (because there are

no counterparts in the software engineering domain for such

tasks in the education domain).

VII. CONCLUSION

In this position paper, we have defined and advocated

educational software engineering as an emerging subfield of

software engineering. Educational software engineering devel-

ops software engineering technologies for general educational

tasks. In this subfield, gaming technologies often play an im-

portant role together with software engineering technologies.

We have presented Pex4Fun, one of our recent examples on

leveraging software engineering and gaming technologies for

teaching and learning programming and software engineering

skills. Pex4Fun can be also used in the context of Massive

Open Online Courses (MOOCs) to address issues such as

automatic grading.

ACKNOWLEDGMENT

We thank reviewers for their valuable feedback. Tao Xie’s

work is supported in part by NSF grants CCF-0845272, CCF-

0915400, CNS-0958235, CNS-1160603, an NSA Science of

Security Lablet grant, a NIST grant, a Microsoft Research

Software Engineering Innovation Foundation Award, and NSF

of China No. 61228203.

REFERENCES

[1] E. Andersen, S. Gulwani, and Z. Popovic. A trace-based framework
for analyzing and synthesizing educational progressions. In Proc. CHI,
2013.

[2] L. A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Trans. Softw. Eng., 2(3):215–222, 1976.

[3] A. Fox and D. Patterson. Crossing the software education chasm.
Communications of the ACM, 55(5):44–49, 2012.

[4] J. P. Gee. What Video Games Have to Teach Us About Learning and

Literacy. Palgrave Macmillan, 2007.
[5] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated

random testing. In Proc. PLDI, pages 213–223, 2005.
[6] S. Gulwani, V. Korthikanti, and A. Tiwari. Synthesizing geometry

constructions. In Proc. PLDI, pages 50–61, 2011.
[7] M. J. Harrold. Testing: a roadmap. In Proc. FOSE, pages 61–72, 2000.
[8] A. E. Hassan. The road ahead for mining software repositories. In Proc.

FoSM, 2008.
[9] J. C. King. Symbolic execution and program testing. Commun. ACM,

19(7):385–394, 1976.
[10] C. Liu, C. Chen, J. Han, and P. S. Yu. GPLAG: detection of software

plagiarism by program dependence graph analysis. In Proc. KDD, pages
872–881, 2006.

[11] K. Masters. A brief guide to understanding MOOCs. The Internet

Journal of Medical Education, 1, 2011.
[12] T. Murray. Authoring intelligent tutoring systems: an analysis of the state

of the art. International Journal of Artificial Intelligence in Education,
1(10):98–129, 1999.

[13] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local
algorithms for document fingerprinting. In Proc. SIGMOD, pages 76–85,
2003.

[14] M. Shaw. Software engineering education: a roadmap. In Proc. FOSE,
pages 371–380, 2000.

[15] R. Singh, S. Gulwani, and S. Rajamani. Automatically generating
algebra problems. In Proc. AAAI, 2012.

[16] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback
generation for introductory programming assignments. In Proc. PLDI,
2013.

[17] K. Taneja and T. Xie. DiffGen: Automated regression unit-test genera-
tion. In Proc. ASE, pages 407–410, 2008.

[18] N. Tillmann and J. de Halleux. Pex-white box test generation for .NET.
In Proc. TAP, pages 134–153, 2008.

[19] N. Tillmann, J. D. Halleux, T. Xie, S. Gulwani, and J. Bishop. Teaching
and learning programming and software engineering via interactive
gaming. In Proc. ICSE, Software Engineering Education (SEE), 2013.

[20] T. Xie, J. de Halleux, N. Tillmann, and W. Schulte. Teaching and
training developer-testing techniques and tool support. In Proc. SPLASH,

Educators’ and Trainers’ Symposium, pages 175–182, 2010.
[21] T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data mining for software

engineering. IEEE Computer, 42(8):35–42, August 2009.
[22] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte. Fitness-guided

path exploration in dynamic symbolic execution. In Proc. DSN, pages
359–368, 2009.

[23] D. Zhang, Y. Dang, J.-G. Lou, S. Han, H. Zhang, and T. Xie. Software
analytics as a learning case in practice: Approaches and experiences. In
Proc. MALETS, 2011.

[24] D. Zhang and T. Xie. Software analytics in practice: Mini tutorial. In
Proc. ICSE, Software Engineering in Practice, Mini Tutorial, page 997,
2012.


