
Relationship-Aware Code Search for JavaScript
Frameworks

Xuan Li1, Zerui Wang1, Qianxiang Wang1, Shoumeng Yan2, Tao Xie3, Hong Mei1
1Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

Institute of Software, School of Electronics Engineering and Computer Science, Peking University, Beijing, China
2Intel China Research Center, Beijing, China

3Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA

{lixuan12, wangzr13, wqx, meih}@sei.pku.edu.cn, shoumeng.yan@intel.com
 taoxie@illinois.edu

ABSTRACT

JavaScript frameworks, such as jQuery, are widely used for

developing web applications. To facilitate using these JavaScript

frameworks to implement a feature (e.g., functionality), a large

number of programmers often search for code snippets that

implement the same or similar feature. However, existing code

search approaches tend to be ineffective, without taking into

account the fact that JavaScript code snippets often implement a

feature based on various relationships (e.g., sequencing, condition,

and callback relationships) among the invoked framework API

methods. To address this issue, we present a novel Relationship-

Aware Code Search (RACS) approach for finding code snippets

that use JavaScript frameworks to implement a specific feature. In

advance, RACS collects a large number of code snippets that use

some JavaScript frameworks, mines API usage patterns from the

collected code snippets, and represents the mined patterns with

method call relationship (MCR) graphs, which capture framework

API methods’ signatures and their relationships. Given a natural

language (NL) search query issued by a programmer, RACS

conducts NL processing to automatically extract an action

relationship (AR) graph, which consists of actions and their

relationships inferred from the query. In this way, RACS reduces

code search to the problem of graph search: finding similar MCR

graphs for a given AR graph. We conduct evaluations against

representative real-world jQuery questions posted on Stack

Overflow, based on 308,294 code snippets collected from over

81,540 files on the Internet. The evaluation results show the

effectiveness of RACS: the top 1 snippet produced by RACS

matches the target code snippet for 46% questions, compared to

only 4% achieved by a relationship-oblivious approach.

CCS Concepts

• Software and its engineering ➝ Software creation and

management; • Information system ➝ Information retrieval;

Keywords

Code search; JavaScript code mining; natural language processing

1. INTRODUCTION
JavaScript frameworks are widely used for developing web

applications. A recent survey [16] has shown that 72.5% of the top

10 million websites use JavaScript frameworks, such as jQuery,

MooTools, Prototype, YUI, and ExtJS. Meanwhile, among all these

frameworks, jQuery has a share of 95.9%. When using these

JavaScript frameworks, a large number of programmers are often in

great need of help. For example, 9.5% of 11,245,425 questions in

Stack Overflow (the most well-known programming Q&A website)

are tagged with “JavaScript”, which is the top 1 tag.

When using these JavaScript frameworks to implement a feature

(e.g., functionality), programmers can benefit from existing code

snippets that implement the same or similar feature [1]. To search

for such code snippets, the programmers can read Application

Programming Interface (API) documentation or tutorials, post

questions on Q&A websites [2], use code search engines and so on.

However, these existing approaches of code search face various

limitations for JavaScript frameworks. For example, API

documentation contains only a very limited number of hand-crafted

code snippets. Existing code search engines, such as Ohloh Code

(https://code.openhub.net/) and Krugle (http://www.krugle.com/),

mainly use text similarity to find code snippets in open source code

repositories (e.g., GitHub, SourceForge), and tend to be inaccurate.

Recent research contributes new approaches that leverage code

analysis and code mining, e.g., PARSEWeb [5], MAPO [6], SNIFF

[7]; they take into account code characteristics, such as API usage

patterns [6] and encoded code patterns [8]. However, none of these

approaches considers the characteristics of JavaScript code snippets

or search queries related to using a JavaScript framework API.

Searching for code snippets using JavaScript frameworks has three

main unique characteristics. First, in JavaScript, relationships

between method calls are complex, beyond sequencing relationships

(e.g., open() should be invoked before read()) among method

calls, as commonly captured by existing approaches [5][6][22][24].

For example, many API methods in JavaScript frameworks are

asynchronous: although the call sites of these asynchronous

methods are sequentially listed in a code snippet, there can be a

large number of concurrent executions of these methods at runtime.

In addition, callback is often used in JavaScript code to enforce

strict execution order of some method calls. For example, Lines 4-7

in the lower part of Figure 1 define an anonymous function, in

which API methods $(‘#loader_img’) (jQuery uses "$" as a

shortcut for "jQuery") and hide() are called (Line 6). This

anonymous function is passed as a callback parameter of the

method load() (Line 4). The code’s runtime behavior is that these

two API methods are called only after the method load() has

completed.

Second, JavaScript is mainly used for client-side scripting in web

browsers. Many typical search queries for JavaScript framework

API usage describe user interaction, browser control, asynchronous

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

FSE'16, November 13-19, 2016, Seattle, WA, USA

© 2016 ACM. ISBN 978-1-4503-4218-6/16/11$15.00

DOI: http://dx.doi.org/10.1145/2950290.2950341

communication, and altering of a displayed document content. Thus

these queries usually consist of simple actions, conjuncted with

relationship-describing words (e.g., “when” and “after”). For

example, the underlined sentence in the upper part of Figure 1

illustrates such a query, which includes multiple actions: “show a

busy image”, “image is downloaded”, and “busy image is removed”.

Table 2 in Section 4.1 provides more query examples from Stack

Overflow. Many short descriptions for a simple action can be

mapped to the corresponding action-implementing methods in

JavaScript frameworks, by leveraging their API documentation. In

addition, the conjunction words between short descriptions (e.g.,

“when” as shown in Figure 1) reflect the relationships of these

actions. These relationship-describing words may also be mapped to

aforementioned relationships among API method calls, “sequencing”

and “callback”, respectively.

Third, JavaScript frameworks such as jQuery are usually used to

select and manipulate Document Object Model (DOM) elements.

The types (e.g., “img”, “div”) and attributes of DOM elements (e.g.,

“class”, “id”) are usually defined in HTML code. API methods in

JavaScript code use CSS selectors (e.g. “.child”, “#option”) to select

DOM elements and are generally applicable to manipulate various

types of DOM elements without directly referring to these elements’

types. Therefore, it is undesirable to directly use elements’ types

that appear in an NL search query (e.g., “div” in the “hide div”

query) to search code snippets for the target code snippet. Special

care needs to be taken to process these elements’ types in a search

query before being used in code search.

Based on the observations of these unique characteristics, we

propose a Relationship-Aware Code Search (RACS) approach for

finding code snippets that use JavaScript frameworks to implement

a specific feature, being described in the given search query. RACS

emphasizes the utility of semantic information, especially the

relationships between API method calls in code snippets and

relationships between actions in search queries. RACS abstracts a

code snippet as an API method call relationship (MCR) graph,

which consists of the signatures of the API methods invoked in the

code snippet along with the relationships among these methods.

Given a natural language (NL) search query, RACS conducts NL

processing to automatically abstract the query to an action

relationship (AR) graph. In this way, RACS reduces code search to

the problem of graph search: finding similar MCR graphs for a

given AR graph.

This paper makes the following main contributions:

 The first approach for finding relevant JavaScript-framework-

based code snippets given a search query in NL.

 A technique for mining framework API usage patterns expressed

formally as MCR graphs from large-scale JavaScript code

snippets.

 A technique for abstracting an NL search query to an AR graph.

 A technique for reducing the code search problem as a graph

search problem.

 Evaluations conducted against representative real-world jQuery

questions (posted on Stack Overflow), based on 308,294 code

snippets collected from over 81,540 files on the Internet. The

evaluation results show the effectiveness of RACS: the top 1

snippet produced by RACS matches the target code snippet for 46%

questions, compared to only 4% achieved by a relationship-

oblivious approach (existing state-of-the-art code search

approaches [7][31] are relationship-oblivious approaches).

The rest of the paper is organized as follows. Section 2 explains our

RACS approach through an example. Section 3 elaborates RACS.

Section 4 discusses evaluation results. Section 5 discusses the

applicability and limitations of RACS. Section 6 presents related

work. Finally, Section 7 concludes this paper.

2. MOTIVATING EXAMPLE
In this section, using an example, we elaborate characteristics of

both JavaScript code snippets and search queries related to using a

JavaScript framework API. Figure 1 shows a real-world question

(the upper part) and one accepted answer (the lower part) from

Stack Overflow. This question describes a typical scenario in

developing web applications. The underlined sentence is an NL

description for a feature implemented in JavaScript or jQuery. The

accepted answer contains a code snippet implementing the feature

with jQuery.

From an earlier version of http://stackoverflow.com/questions/4635388
1

Figure 1. Example from Stack Overflow

The code snippet in the accepted answer shows a callback

relationship in JavaScript code (Lines 4-7). An anonymous callback

function is defined and passed as a parameter of the jQuery API

method call load(). Two other jQuery API methods,

$(‘#loader_img’) and hide() (Line 6), are called inside the

anonymous function. Existing approaches [5][6][22][24] mainly

extract method-call sequences as the abstract representation of the

code snippet and apply mining algorithms on the sequences. In this

code snippet, Line 4 with the callback not only represents the

occurrence order in the code snippet, but also reflects the strict

execution order for asynchronous methods (as explained by the

comments in Lines 3 and 5). RACS analyzes the JavaScript code

snippet, extracts method signatures for the API methods invoked in

the code snippet, and identifies different relationships between the

method calls (see Section 3.1 for details). In this example, show()

and load() have a sequencing relationship, while load() and

hide() have a callback relationship, enforcing a strict order. We

represent the signatures of the invoked methods and their

relationships as an API method call relationship (MCR) graph, the

abstract representation of the code snippet.

In the upper part of Figure 1, the underlined sentence is an NL

description of a feature. The feature consists of multiple actions in

each clause (“show a busy image”, “image is downloaded”, and

“busy image is removed”), and there are structural relationships

between clauses (implied by relationship-describing words “when”

and “after”). No existing approach considers such structural

information. In some existing code search tools, the users need to

manually extract query terms based on the NL description. For

example, in Keivanloo et al.’s approach [8], the users manually

select candidate terms from Koder’s query log dataset. Then the

users manually map the description “successfully login and logout”

1 The latest version of the accepted answer includes the updated code

being compatible with a more recent version of jQuery.

Stack Overflow Question and Description

How to display loading image while actual image is downloading

Some time images take some time to render in the browser. I want
show a busy image while the actual image is downloading, and when
image is downloaded, the busy image is removed and actual image is be
shown there. How can I do this with JQuery or any javascript?

Accepted Answer

You can do something like this:
1| // show loading image
2| $('#loader_img').show();
3| // main image loaded ?
4| $('#main_img').load(function(){
5| // hide/remove the loading image
6| $('#loader_img').hide();
7| });

You assign load event to the image which fires when image has
finished loading. Before that, you can show your loader image.

to query term “FtpClient”. Programmers with little knowledge of

the names of the target framework API methods can hardly write a

query as specific terms. Some other approaches, such as SNIFF [7],

directly take short descriptions as the query after preliminary

preprocessing, e.g., stop-word removal and stemming. Our RACS

approach uses NL processing to extract semantic descriptions for

actions in each clause. RACS analyzes the sentence structure and

identifies different relationships between actions (see Section 3.2 for

details). In addition, RACS constructs a mapping between a method

signature and its API documentation description, and uses this

mapping to connect a given action description to its corresponding

API method. For a given action description, RACS seeks to find a

matching API documentation description and then the method

signature. The matching between an action description and API

documentation description is based on text semantic similarity,

instead of keyword matching, to address NL complications.

3. APPROACH
Given an NL search query for snippets using a JavaScript

framework API, RACS returns multiple highly relevant code

snippets. As shown in Figure 2, RACS is composed of three major

components that conduct three steps:

(1) Mining API usage patterns. This component mines JavaScript

code snippets for framework API usage patterns, and represents the

patterns as Method Call Relationship (MCR) graphs. This process is

offline.

(2) Abstracting NL query. This component analyzes the given NL

query’s description and generates an Action Relationship (AR)

graph to reflect the user’s search intention.

(3) Searching snippets. This component searches all the MCR

graphs for the top ones that match the AR graph (produced by Step

2). This component leverages the API documentation description to

bridge the NL query and the API methods invoked in code snippets.

The component then presents to the user the ranked code snippets

associated with the top matched MCR graphs.

Large Scale JS

Code Snippets

Mining API

Usage Patterns

JS API Usage

Patterns with

MCR Graphs

Searching

Snippets

Code

Snippets

NL Search

Query

Abstracting

NL Query

AR Graph

for Query

(1)

(3)

(2)

API

Documentation

Figure 2. Overview of RACS

RACS emphasizes both relationships between statements in

programs and relationships between sentences in an NL query.

Based on the observations of the JavaScript language and search

queries for JavaScript frameworks, RACS focuses on three main

relationships: sequencing, callback, and condition.

Before presenting RACS in detail, we give major definitions of

important concepts used in the rest of this paper.

Definition 1. Method Call Relationship (MCR) Graph for a code

snippet

A method call relationship (MCR) graph for a code snippet is a

Directed Acyclic Graph (DAG) as a tuple < 𝑀, 𝑅 >, where

 M is a non-empty vertex set represented as {𝑚1, 𝑚2, … , 𝑚𝑥}.

Every element in M is a method signature including its name and

parameter type list.

 R is an edge set represented as {𝑟1, 𝑟2, … , 𝑟𝑦}. Every element in

R is a triple < 𝑚𝑖 , 𝑚𝑗 , 𝑡 > , indcating that relationship 𝑡 exists

from vertex 𝑚𝑖 to vertex 𝑚𝑗; 𝑡 is one of the three relationships:

sequencing, callback, and condition. In particular, the detailed

meanings of< 𝑚𝑖 , 𝑚𝑗 , 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔 > , < 𝑚𝑖 , 𝑚𝑗 , 𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘 >, <

𝑚𝑖 , 𝑚𝑗 , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 > for JavaScript are further elaborated in

Section 3.1.1.

An MCR graph is an abstract representation of a code snippet

including one or more framework API method calls, focusing on

essential behaviors involving these framework API method calls.

Definition 2. Action Relationship (AR) Graph for a query

An action relationship (AR) graph for a query is a DAG as a tuple

<A,R>, where

 A is a non-empty vertex set represented as {𝑎1, 𝑎2, … , 𝑎𝑛}. Every

element in A is an action that implements a feature reflected by

the query.

 R is an edge set represented as {𝑟1, 𝑟2, … , 𝑟𝑚}. Every element in

R is a triple < 𝑎𝑖 , 𝑎𝑗 , 𝑡 >, indicating that relationship 𝑡 exists from

vertex 𝑎𝑖 and vertex 𝑎𝑗 ; 𝑡 is one of the three relationships:

sequencing, callback, and condition. In particular, the detailed

meanings of < 𝑎𝑖 , 𝑎𝑗 , 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔 > , < 𝑎𝑖 , 𝑎𝑗 , 𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘 > , <

𝑎𝑖 , 𝑎𝑗 , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 > for JavaScript are further elaborated in

Section 3.2.3.

An AR graph is an abstract representation of an NL search query

including one or more actions, focusing on essential behaviors

involving these actions.

3.1 Mining API Usage Patterns
The component of mining API usage patterns consists of two sub-

processes. First, it analyzes large-scale JavaScript code snippets,

and extracts an MCR graph as an abstract representation of each

snippet. Second, it analyzes each MCR graph, and groups the code

snippets with the same MCR graph as one API usage pattern.

3.1.1 Abstracting Code Snippets

RACS constructs a snippet base from an initial JavaScript code base.

In particular, from the JavaScript and HTML files collected in the

initial JavaScript code base, RACS first extracts sequences of

framework API methods being invoked in each JavaScript function

in the files. Then each contiguous subsequence of such sequence

forms a code snippet. For a function consisting of 𝑛 API method

calls, we obtain 𝑛 ∗ (𝑛 + 1)/2 snippets: 𝑛 snippets each include 1

API method call, 𝑛 − 1 snippets each include 2 API method

calls, …, and 1 snippet includes 𝑛 API method calls.

For each code snippet (in the snippet base), RACS analyzes its

Abstract Syntax Tree (AST) and constructs an MCR graph. In our

implementation, we use the Rhino JavaScript engine

(https://www.mozilla.org/rhino/) for JavaScript code analysis. When

visiting the AST nodes, RACS identifies framework API method calls

(e.g., according to the list of API methods documented in the jQuery

API documentation). Meanwhile, RACS identifies relationships

among these API method calls according to relationships among AST

nodes. Currently, RACS considers three common relationships in

JavaScript: sequencing, callback, and condition. Figure 3a shows a

code snippet involving all three kinds of relationships. Figure 3b

shows the correspondent AST (simplified with leaf nodes and part of

other non-critical nodes such as block statement being removed) of

the code snippet listed in Figure 3a.

Sequencing relationship. If method B is called immediately after

method A is called, there is a sequencing relationship from A to B,

formally represented as a triple <A, B, sequencing>. In the AST,

parent-child method call nodes are method chains, having a

sequencing relationship. For example, in Figure 3b, there is a

sequencing relationship from method call $(‘#loader_img’)

(Node 1) to method call show() (Node 2) in one statement, and

there is a sequencing relationship from show() (Node 2) to

$(‘#main_img’) in two statements.

Callback relationship. If method A is called via an anonymous

function as its parameter and method B is a method called inside the

anonymous function, there is a callback relationship from A to B,

formally represented as a triple <A, B, callback>. In Figure 3b,

there is a callback relationship from method call load() (Node 4) to

method call hide()(Node 6).

Condition relationship. If method A appears in a predicate of a

conditional statement, such as IfStatement, and method B is the first

method called in one of the branches, then there is a condition

relationship from A to B, formally represented as a triple <A, B,

condition>. For a method C being called after B in the same

conditional block, we do not record a condition relationship between

A and C, but we do record a sequencing relationship between B and C.

In Figure 3b, there is a condition relationship from method call

width() (Node 8) to method call show() (Node 10).

Figure 3a. Code snippet extended from code in Figure 1.

Program

ExpressionStatement IfStatementExpressionStatement

CallExpression

$('#loader_img').show()

CallExpression

$('#loader_img')

CallExpression
--
$('#main_img').load(function(){
$('#loader_img').hide()
})

CallExpression

$('#main_img')

arguments

CallExpression

$('#loader_img').hide()

BinaryExpression(<)

CallExpression

$(window)

CallExpression

$(window).width()

CallExpression

$('#warning_img').show()

CallExpression

$('#warning_img')

Function()

CallExpression

$('#loader_img')

1

2

3

4

5

6

7

8

9

10

sequencing

callback

condition

Figure 3b. Simplified AST for code snippet in Figure 3a.

In jQuery, method “$” (in nodes 1, 3, 5, and 7) is used for selecting

elements by string selectors. All method calls with signature

“$(STRING)” are considered to be semantically equivalent.

“$(STRING)” often appears in code and provides limited semantics.

Therefore, RACS ignores all method “$” calls to simplify the MCR

graph. This process removes method calls with low degree of

differentiation, sharing similar ideas with stop-word removal and TF-

IDF. The MCR graph for the snippet in Figure 3a is shown in Figure 4.

3.1.2 Clustering Code Snippets
Many MCR graphs from different snippets are equivalent. To avoid

unnecessary duplicated graph matching in the next section, and thus

improve the querying speed, RACS clusters code snippets in its

base according to their MCR graphs. To capture precise semantics

of code snippets falling into the same cluster, we use a relatively

conservative way of clustering: if two code snippets are abstracted

to the same MCR graph, they fall into one cluster represented by the

MCR graph.

After this step, we attain a large number of clusters represented as

MCR graphs, reflecting different usage patterns of a JavaScript

framework API. Each MCR graph (i.e., each cluster) is associated

with one or more code snippets.

Figure 4. MCR graph for the example in Figure 3.

3.2 Abstracting NL Query
This section presents the techniques for extracting an AR graph that

accurately captures essential semantics of the given NL query.

3.2.1 Preprocessing
The step of preprocessing accepts the given NL query’s sentences

and processes these sentences to get a more accurate result of NL

analysis. In particular, this step performs two major tasks.

First, the step transforms some special identifiers to plain English

text. Identifiers in an NL query may pose complication in NL

analysis. For example, the character period (‘.’) in identifiers (e.g.,

“jQuery.Ajax”) may be recognized as the end of a sentence,

leading to wrong parsing (see Section 3.2.2 for detail). In addition,

some identifiers are the combination of multiple English words (e.g.,

“toggleClass”), negatively influencing the calculation of sentence-

semantic similarity in a later process (See Section 3.3.1 for detail).

To deal with these complications, we replace the period (“.”)

character with a space, split identifiers concatenated with hyphen (“-

”) or underscore (“_”), and split “camelCase” style identifiers

following the JavaScript naming convention.

Second, the step transforms abbreviations into full terms (e.g., “attr”

to “attribute”) based on a domain-specific dictionary. The domain-

specific dictionary contains the top 20 most frequent expansions in

programs found in Hill's et al.'s research [30]. Besides a short list of

abbreviations, we automatically extract terms from

DOM/JavaScript documentation using Python scripts. The domain-

specific dictionary includes a word list of DOM elements (e.g., “div”,

marked by <td title=“Name”> in https://www.w3.org/TR/1999/REC-

html401-19991224/index/elements.html) and JavaScript events (e.g.,

“mouseenter”, marked by in https://www.w3.org

/TR/DOM-Level-3-Events/#event-types).

3.2.2 Action Identification
The step of action identification uses NL processing techniques,

such as POS (Parts Of Speech) tagging and parsing, to attain the

structure of a given NL query sentence, and identifies the actions in

the sentence.

POS tagging determines the part of speech (e.g., a singular or mass

noun’s POS tag is NN) for each word in the given sentence. Parsing

determines the parse tree of the given sentence. Each word in the

sentence is represented as a leaf node in the parse tree, and each

grammatical unit (e.g., verb phrase) corresponds to a sub-tree. We

use the Stanford Parser [19] to generate the POS tags and parse tree.

RACS traverses the parse tree and identifies the actions in the given

NL query. In the language structure, the description of an action

consists of Verb Phrase (VP), Noun Phrase (NP), and optional

Prepositional Phrase (PP). A sub-tree with this structure can be

identified as one action. Figure 5 shows the parse tree of the NL

query in Figure 1. RACS identifies five actions in this example (see

the rectangle in Figure 5). Note that these actions are not the final

elements of the action set; they may be modified or even discarded

by the post-processing step described in Section 3.2.4.

3.2.3 Relationship Identification
The step of relationship identification identifies potential

relationships among the actions, by mapping relationship-describing

$('#loader_img').show();
$('#main_img').load(function(){
 $('#loader_img').hide();
});
if($(window).width() < 960){
 $('#warning_img').show();
}

show()

load(function)

width()

hide()

show()

sequencing

callback

condition

words to the three aforementioned relationships. These relationship-

describing words are the most commonly used in a lot of Stack

Overflow questions’ descriptions. For each adjacent action pair

found in the given NL query’s description, we check whether it

corresponds to one of the following three relationships.

Figure 5. Parse Tree of NL query in Figure 1

Sequencing relationship. A sequencing relationship from action

𝑎𝑖 to action 𝑎𝑗 exists when two actions’ descriptions are connected

by a connecting word being a preposition (“before” and “after”), a

conjunction (“and” and “then”), or a punctuation (comma,

semicolon, and period). Note that the direction of the sequencing

relationship is properly determined based on the semantics of the

connecting word. Only the action after connecting word “after” is

the starting point of the sequencing relationship. In other cases, the

later action is the end point. An example of such relationship is in

sentence “add class ‘checked’ to element and fade in the element.”

Condition relationship. A condition relationship from action 𝑎𝑖 to

action 𝑎𝑗 exists when two actions’ descriptions are connected by a

connecting word being a preposition (“if”) indicating that whether

action 𝑎𝑗 will happen or not depends on the result of action 𝑎𝑖. The

action after the connecting word is the starting point of the condition

relationship. An example of such relationship is in sentence “show a

warning image if screen width is less than 960px.”

Callback relationship. A callback relationship from action 𝑎𝑖 to

action 𝑎𝑗 exists when not only (1) two actions’ descriptions are

connected by a connecting word being a conjunction or a

preposition indicating point-in-time (“when”, “after”, and “if”), but

also (2) the action happening first, i.e., action 𝑎𝑖, should imply an

event or describe a completion status; in other words, the

description is supposed to contain a word from the word list for

JavaScript events in the domain-specific dictionary (described in

Section 3.2.1), or the POS of a verb in the description should be a

gerund/present participle (VBG) or a past participle (VBN). The

action after the connecting word is the starting point of the callback

relationship. An example of such relationship is in sentence “when

image is downloaded, the busy image is removed.”

The arrowed lines in Figure 5 show three relationships between

actions (two being sequencing and one being callback).

3.2.4 Post-processing
The step of post-processing further processes the identified actions,

and forms an AR graph for the given NL query. RACS adds an

inferred notional verb “get” to a description containing only the link

verb “be”. Consider an example description “screen width is less than

960px”. This description does not contain a notional verb. Adding

“get” as “get the screen width” makes the description more precise.

This process is similar to Hill et al.’s technique [21] for inferring an

action for a method name that does not begin with a verb.
show

element

element is

downloaded

element is

be shown

element is

removed
sequencing

callback

condition

Figure 6. AR graph for NL query in Figure 1

Elements selected by the jQuery selector are usually defined in

HTML code, and too little detailed information about the elements

could be found only in the JavaScript code. For example, consider

three code snippets where $(“.child”).hide() and

$(“#option”).hide()2 are used to hide a selected “div” element3 ,

respectively, in two JavaScript code snippets; $(“div”).show() is

used to show the “div” element in the third code snippet. If the

given user query is “hide div”, although the three code snippets

would have the equal number of terms matched by the query, the

first two snippets should be returned but not the last one. The reason

is that in NL queries, terms for describing the detailed types (e.g.,

“div”) of DOM elements are not as important as other terms (e.g.,

“hide”, “show”) for jQuery-API identification. In addition, code

snippets with the same usage pattern but with different element

types as the target code snippet are still often useful to the

developers. For example, in Figure 1, if we change all the “img”

element type in the accepted answer to the “div” element type, the

code snippet still gives valuable hints to complete the target task.

Based on this insight, our step of post-processing replaces some

specific nouns (e.g., “image”, “div” indicating element types) with

more general ones (e.g., “element”) based on the word list for DOM

elements in the domain-specific dictionary (described in Section

3.2.1), and removes determiners and adjectives. For example,

RACS transforms “the busy image” to “element”. At the same time,

RACS stores these changed words as keywords, which are used for

later ranking code snippets (as described in Section 3.3.3). The AR

graph for the NL query in Figure 5 is shown in Figure 6.

3.3 Searching Snippets
Given an AR graph generated from the NL query, this step first

derives multiple AR-derived MCR (A-MCR) graphs for the AR

graph based on text semantic similarity. Then it uses the A-MCR

graphs as the graph query to search the set of MCR graphs

(produced by the technique described in Section 3.1) for the most

relevant MCR graphs. Finally, it selects top code snippets

associated with the most relevant MCR graphs as the snippets

returned to the user.

3.3.1 Deriving A-MCR graphs from the AR graph
The names of actions (NL by nature) in an AR graph are often quite

different from the names of framework API methods (programming

languages by nature) in an MCR graph. Such differences pose

barriers for searching MCR graphs with an AR graph as the graph

query. To address such challenge, we refine the AR graph to

2 In CSS, “.child” selects all elements with class=“child”, and

“#option” selects all elements with id=“option”. An element’s

class and id attributes and their values are described in HTML

code, e.g., <div class=”child” id=”option”>.

3 The “div” element indicated by a <div> tag defines a division or

a section in an HTML document.

(ROOT
 (S
 (VP (VB show)
 (NP (DT a) (JJ busy) (NN image))
 (SBAR (IN while)
 (S
 (S
 (S
 (NP (DT the) (JJ actual) (NN image))
 (VP (VBZ is)
 (VP (VBG downloading))))
 (, ,)
 (CC and)
 (S
 (SBAR
 (WHADVP (WRB when))
 (S
 (NP (NN image))
 (VP (VBZ is)
 (VP (VBN downloaded)))))
 (, ,)
 (NP (DT the) (JJ busy) (NN image))
 (VP (VBZ is)
 (VP (VBN removed)))))
 (CC and)
 (S
 (NP (JJ actual) (NN image))
 (VP (VBZ is)
 (VP (VB be)
 (VP (VBN shown)
 (ADVP (RB there))))))))))

sequencing

sequencing

callback

multiple AR-derived MCR (A-MCR) graphs by replacing the

actions in the AR graph with the actions’ corresponding framework

API methods, determined by our technique of text semantic

similarity. Given an action, RACS searches for API methods whose

descriptions in the API documentation share high text semantic

similarity with the description of the action (i.e., the text description

of the action in the NL query).

To match actions and API methods, matching based on text

semantic similarity [13] in RACS has advantages over keyword

(lexical) matching, which has been widely used in existing

approaches such as SNIFF [7]. Keyword matching is fast and strict,

while ignoring semantic similarity, but may miss to match many

cases, e.g., “I own a dog” and “I have an animal”. On the other hand,

matching based on text semantic similarity is based on word-to-

word similarity metrics, addressing such issue and achieving a

higher recall. In particular, matching based on text semantic

similarity computes the similarity between two texts (T1 and T2)

using the following equation:

𝑠𝑖𝑚(𝑇1, 𝑇2) =
1

2
(

∑ (𝑚𝑎𝑥𝑆𝑖𝑚(𝑤,𝑇2)∗𝑖𝑑𝑓(𝑤))𝑤∈{𝑇1}

∑ 𝑖𝑑𝑓(𝑤)𝑤∈{𝑇1}
+

∑ (𝑚𝑎𝑥𝑆𝑖𝑚(𝑤,𝑇1)∗𝑖𝑑𝑓(𝑤))𝑤∈{𝑇2}

∑ 𝑖𝑑𝑓(𝑤)𝑤∈{𝑇2}
)

where 𝑚𝑎𝑥𝑆𝑖𝑚(𝑤, 𝑇) computes the maximum word-to-word

similarity between word 𝑤 and any word with the same POS in text

T; 𝑖𝑑𝑓(𝑤) denotes the inverse document frequency of word 𝑤. The

word-to-word similarity metrics can be either knowledge-based

(e.g., WordNet similarity: https://wordnet.princeton.edu/) or corpus-

based (e.g., latent semantic analysis: http://lsa.colorado.edu/). In our

implementation, we use the knowledge-based MCS technique

implemented by the SEMILAR toolkit [10].

For each action, RACS chooses the top K framework API methods

as the candidate methods corresponding to the action. Thus, for a

given AR graph with n actions, RACS replaces each action of AR

graph with multiple corresponding candidate methods, and attain

𝐾𝑛 A-MCR graphs.

3.3.2 Searching MCR graphs with A-MCR graphs
This step uses the A-MCR graphs as the graph query to search for

the most relevant MCR graphs, based on graph similarity.

We first define “matched relationships” (i.e., edges) between two

graphs. Given two graphs 𝐺1(an A-MCR graph) and 𝐺2 (an MCR

graph), relationship < 𝑚𝑖 , 𝑚𝑗 , 𝑡 > from 𝐺1 and relationship <

𝑚′𝑘, 𝑚′𝑙 , 𝑡′ > from 𝐺2 are matched when (𝑚𝑖 == 𝑚′𝑘) &&

(𝑚𝑗 == 𝑚′𝑙) && (𝑡 == 𝑡′) . Two method signatures are equal

when they have the same method name and parameter type list.

Then we define the “graph similarity score” between A-MCR graph

𝐺1 and MCR graph 𝐺2 as

𝑠𝑖𝑚(𝐺1, 𝐺2) =
𝑚𝑟𝑛(𝐺1,𝐺2)

𝑟𝑛(𝐺1)+𝑟𝑛(𝐺2)−𝑚𝑟𝑛(𝐺1,𝐺2)

where 𝑚𝑟𝑛(𝐺1, 𝐺2) denotes the number of matched relationships

between 𝐺1 and 𝐺2 ; 𝑟𝑛(𝐺𝑖) denotes the total number of

relationships (i.e., edges) in 𝐺𝑖 . This graph similarity score has a

value between 0 and 1, with the score of 1 indicating that two MCR

graphs are identical, and the score of 0 indicating no matched

relationship between the graphs. RACS selects the top K' MCR

graphs ranked based on the graph similarity scores for further

selection of snippets (as described in the subsequent subsection).

3.3.3 Selecting Code Snippets
Each MCR graph (indicating a usage pattern) may be associated with

more than one code snippet, and not all the associated code snippets

are of the same importance to the user. To help the user locate the

desired code snippets more efficiently, this step selects one code

snippet for each of top K' ranked MCR graphs based on two metrics:

the number of the keywords in the NL query matched by a code

snippet, and the length of the code snippet.

Recall that the keywords in the NL query are those words changed by

the technique described in Section 3.2.4. RACS gives higher ranks to

code snippets matching more keywords in the NL query. This ranking

heuristic gives preference to those code snippets more similar to the NL

query. If two code snippets have the same number of matched

keywords, RACS ranks the shorter code snippet higher. This ranking

heuristic has been widely used in previous approaches, such as

Prospector [3] and PARSEWeb [5], making the returned code

snippets concise. After applying the two ranking heuristics, RACS

finally returns the ranked code snippets as the final search results for

the given NL query.

4. EVALUATIONS
We conducted evaluations to assess the effectiveness of RACS. In

our evaluations, we implemented RACS and addressed two main

research questions:

RQ1: How effectively can RACS search JavaScript code snippets

for a given NL search query?

RQ2: How much can RACS outperform a relationship-oblivious

code search approach?

4.1 Evaluation Setup
We constructed a JavaScript snippet base consisting of snippets using

the popular jQuery framework. The snippet base was constructed

from Ohloh (currently OpenHub https://www.openhub.net/) and

Amazon.com. Ohloh is a popular public directory of open source

software projects. We attained the code locations of 620 jQuery-

tagged projects from Ohloh and downloaded the source code of these

open source projects. Amazon.com is one of the world’s top ten web

sites [28], which uses jQuery heavily. We ran a web crawler on

Amazon to download jQuery-related files. We constructed the code

base in this way to ensure the diversity and quality of our snippet base.

The snippet base consists of 81,540 JavaScript files, from which we

obtained 308,294 code snippets. Table 1 shows the details of the

snippet base. We mined 9,905 API usage patterns from the snippet

base, according to jQuery core API documentation (which contains

over 700 method signatures) within 115s.

Table 1. JavaScript snippet base
Source #Project Date of #files #snippets

Ohloh 620 06/28/2014 51,949 226,099

Amazon.com 1 08/16/2014 29,591 82,195

Total 621 -- 81,540 308,294

We also constructed a benchmark, which contains 50 real-world

representative jQuery related queries from Stack Overflow. We

manually checked the list of highest voted jQuery-tagged questions

sequentially, and unless a question satisfies any of the following

exclusion conditions, it was added to the benchmark.

(1) The accepted answer of the question does not contain a JavaScript

code snippet. (2) The code snippet in the accepted answer contains

only JavaScript built-in method(s), without using jQuery or other

JavaScript frameworks. (3) The code snippet in the accepted answer is

implemented by using only a jQuery plugin or a non-jQuery JavaScript

library. (4) The question is only about the setting of parameters, such

as the writing of selectors. (5) The description of the question is vague.

The questioner and the respondent discussed the details later in the

comments. (6) The description of the question is at too high abstraction

level. For example, for the question “get all descendant text nodes of

an element”, the accepted answer mentions “jQuery does not have a

convenient function for this. You need to combine contents(), which

will give just child nodes but includes text nodes, with find(), which

gives all descendant elements but no text nodes”. (7) The question is

not related to code search, such as discussing programming experiences.

For example, a search query cannot be extracted from a question with

title “.prop() vs. attr()”. (8) The code snippet in the accepted answer

contains only one jQuery method (instead of two or more jQuery

methods as focused by the work in this paper).

We manually checked the selected questions and further filtered out

redundant questions: some questions have similar descriptions and

thus have the same or very similar code snippets in their accepted

answers. Table 2 shows these 50 search queries. We acquired a “NL

search query” directly from the corresponding question’s title and

description. All the questions corresponding to these search queries

have accepted answers with code snippets. For each question, we used

the code snippet in the accepted answer as the target snippet, and

checked whether a snippet returned by RACS hits the target snippet

(i.e., both snippets have the same jQuery API method calls with the

same relationships); if so, we consider such snippet as a hit snippet.

Instead of user studies, our evaluations use real-world snippets from

answers accepted by developers to validate our results. To good

extent, the "accept" reflects the real-world developers' feedback of

usefulness. Our validation is conservative: some “failed” cases could

actually be reasonable snippets that help users for their tasks at hand.

In our evaluations, parameters K and K' introduced in Section 3.3 are

set to 5 and 50, respectively, by default. In initial investigation of

sample cases (outside of the benchmark), we evaluated different

settings of K, and found that when K is set as 5, we could achieve a

good balance between acceptable query time and satisfactory recall.

Note that when K is set higher, the query time is longer and the recall

is higher. Setting K' to 50 is to limit the total number of results needed

to be checked. All of our evaluations were conducted on a Linux

machine with an Intel i7 3.0 GHz CPU and 4 GB of RAM. The

details of our evaluation subjects and results can be found on our

project website: https://sites.google.com/site/racsproject/.

Table 2. Selected Stack Overflow queries, search results of RACS, and characteristic of accepted answers

No.

Question

ID

NL Search Query

Query
AR Graph

Target
Snippet
 MCR
Graph

T1
(ms)

T2
(ms)

Top

Rank

#Meth #Rela #Meth #Rela

1 1854556 If a field is click into, check if input is empty, display a red background. 3 2 4 3 209 463 1
2 6677035 When the user clicks on that input subject, the page should scroll to the last element of the page with a nice

animation to scroll to bottom and not to top.
3 1 3 2 247 471 44

3 554273 When someone clicks on an image, change the image source. 2 1 2 1 188 78 3
4 986120 Get the value of the selected radio button when any of these three are clicked. 2 1 2 1 195 100 1
5 1423561 Hide the container if focus is lost. 2 1 2 1 181 80 1
6 699065 When I press Enter on the form, the form is submitted. 2 1 2 1 194 79 1
7 901712 If the age checkbox is checked, then I need to show a textbox to enter age, else hide the textbox. 3 2 2 1 214 356 1
8 152975 Show HTML menus completely when a user clicks on the head of these menus. Hide these elements when

the user clicks outside the menus' area.
4 3 3 2 287 2633 NF

9 169506 When I catch the submit form event with jQuery, get all the input fields of that form in an associative array. 2 1 2 1 211 101 1
10 1594952 When the text field is empty the submit button should be "disabled". When something is typed in the text field to

remove the "disabled" attribute. If the text field becomes empty again the submit button should be "disabled" again.
6 5 4 3 302 70155 NF

11 24816 Escaped an arbitrary string and display in an HTML page. 2 1 2 1 191 90 NF
12 303767 Grab the height of the window and the scrolling offset in jQuery. 2 1 2 1 200 88 NF
13 1216114 Make a div stick to the top of the screen once it's been scrolled enough to contact its top boundary 2 0 2 1 236 90 NF
14 253689 Change the background image of a div when it is clicked. 2 1 2 1 193 88 1
15 480735 Select all contents of textbox when it receives focus. 2 1 2 1 189 89 3
16 164085 Execute a callback when an IFRAME has finished loading. 2 1 2 1 196 91 NF
17 376081 Loop though the table, and get the value of the "Customer Id" column for each row. 2 1 2 1 192 83 NF
18 4551175 Before the AJAX request if the previous request is not completed I've to abort that request and make a new request. 2 1 2 1 224 85 NF
19 912711 Load javascript file only if the user clicks on a certain button. 2 1 2 1 202 99 1
20 47824 Remove all the options of a select box, then add one option. 3 2 3 2 288 498 NF
21 540349 Hide the rollover image when the onmouseout event happen 2 1 2 1 194 90 1
22 3709597 Wait for all Ajax requests to be done before I execute the next 2 1 2 1 167 85 NF
23 34830973 If a field is clicked, display a background image 2 1 2 1 209 463 1
24 3044573 Determine the size of the browser viewport, and to redetect this if the page is resized? 3 2 3 2 245 590 NF
25 8423217 An event to fire client side when a checkbox is checked 2 1 2 1 202 86 NF
26 5797539 When you click inside a textarea, its entire content gets selected 2 1 2 1 231 417 4
27 871063 Check radio option whether no default is set and then set a default. 2 1 2 1 211 376 1
28 4177159 When element clicked, toggle between checked and unchecked. 2 1 3 2 223 98 NF
29 1064089 When someone clicks a link, a word or two to be inserted where the cursor is. 2 1 2 1 320 1687 1
30 437958 When one of these links is clicked, hide the links that are not clicked. 2 1 2 1 230 79 1
31 1212500 Create a CSS class and add it to DOM at runtime with jQuery. 2 1 2 1 184 83 1
32 7717527 JQuery smooth scrolling when clicking an anchor link. 2 1 2 1 179 80 NF
33 9398870 Remove the top and left attribute from the inline style on the div when clicked. 2 1 2 1 199 345 3
34 946534 Insert text into a text area using jquery, upon the click of an anchor tag. 2 1 2 1 189 78 1
35 1925614 Get the value selected from a dropdown menu and change the form action 1 0 2 1 201 79 NF
36 360491 Strip white space when grabbing text with jQuery? 2 1 2 1 178 83 NF
37 2358205 Trigger an event after any other type of iterative callback has completed. 2 1 2 1 234 345 NF
38 4687579 I want just the new "blah" div to fade in after the content gets appended. 2 1 2 1 169 76 1
39 3024391 Get child elements and iterate through each of those elements. 2 1 2 1 197 85 NF
40 2380230 Get the selected option from a dropdown and populate another item with that text. 2 1 2 1 203 98 1
41 316278 Have an element fade in, then in 5000 ms fade back out again 2 1 2 1 187 80 NF
42 2330209 If the "Check Me" checkbox is checked, all the other 3 checkboxes should be enabled. 2 1 2 1 223 485 1
43 4613261 Get the position of layer1 and set the same position to layer2. 2 1 2 1 202 87 1
44 5176803 When the radio button is selected I enable an edit box. 2 1 2 1 198 89 NF
45 4996002 Get the index of the child li relative to it's parent, when clicking that li 2 1 2 1 188 104 1
46 13626517 Disable inputs at first and then enable them when click a link 3 2 3 2 174 84 NF
47 2230704 Get the value of the hidden field when the select is changed. 2 1 2 1 210 93 1
48 6658752 Generate a new tag with class name "test" in h2 by clicking the button 2 1 2 1 186 88 8
49 4076770 When the <select> dropdown is changed, get the value before change. 2 1 2 1 213 80 1
50 1314450 Capture the TAB keypress, cancel the default action. 2 1 2 1 204 479 1

4.2 Metrics
To assess the effectiveness of a code search approach with respect to

a single query, our evaluations used the metric of the best hit rank, i.e.,

the highest rank of the hit snippets for the query. A higher best hit

rank implies lower user effort for inspection to find the hit snippet.

To assess the effectiveness of a code search approach with respect to a

set of queries, our evaluations used the metric of success percentage

at k, i.e., the success percentage among the set of queries considering

only the top k results returned by a search approach. In particular, the

success percentage at k (𝑃𝑘) in our evaluations is calculated using the

following formula:

𝑃𝑘 =
𝑏𝑒𝑠𝑡 ℎ𝑖𝑡 𝑟𝑎𝑛𝑘𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑘

𝑡𝑜𝑡𝑎𝑙 # 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

We investigated 𝑃𝑘 with k’s respective values as 1, 5, and 10

returned snippets, reflecting the typical sizes of snippets that various

users would invest to inspect. Such metric has been popularly used

to assess the effectiveness of a code search approach [8][27]. Note

that we do not use MRR (Mean Reciprocal Rank), which is popular

for assessing navigational search and question answering but is not

appropriate for assessing code search.

4.3 Effectiveness of RACS (RQ1)
We first evaluated the effectiveness of RACS. Table 2 also shows the

results of RACS and some characteristics of a question’s accepted

answer (including its sample code snippet). Columns “#Meth” and

“#Rela” under “Target Snippet MCR Graph” show the number of the

jQuery API method calls and relationships in the accepted answer,

respectively. Columns “#Act” and “#Rela” under “Query AR Graph”

show, for each NL search query, the total number of actions and

relationships that are identified, respectively. Columns “T1” and “T2”

represent the time (in millisecond) for deriving A-MCR graphs (Section

3.3.1) and searching MCR graphs (Section 3.3.2), respectively. The last

column shows the best hit rank, i.e., the highest rank of hit snippets that

answered the question. “NF” denotes “Not Found”.

For 23 of the queries (46% of 50), top 1 of the snippet list returned by

RACS is a hit snippet, i.e., one that matches the target code snippet.

For 28 queries (56% of 50), top 10 of the snippet list returned by

RACS include at least one hit snippet. Once RACS constructed a very

precise MCR graph, which is the same as the MCR graph of the

accepted answer’s code, RACS returns the right snippet in the top 1

rank. As shown in Figure 6, RACS accurately returned code snippets

for queries 6 and 7 in Table 2. The jQuery API method calls (marked

with a rectangle box) meet the semantics of each action, and the code

structures meet the relationships implied in the NL query.

RACS did not return good results for some queries as shown in

Table 2. There are three main reasons. First, our current snippet

base is not sufficiently large to contain their required sample

snippets (queries 8, 10, 16, 18, 20, 24, 39, 41, and 46). When we

added (to our current snippet base) the code snippet from the

accepted answer for each query, all of these queries got the target

snippet in top 10 results. Second, the AR graph generated from a

query may not exactly reflect the semantics (queries 2, 13, and 35).

Queries 2 and 35 miss one relationship, and query 13 includes an

incorrectly identified callback relationship. Third, an NL search

query is not similar to the required method’s API documentation

description (queries 11, 12, 17, 22, 25, 28, 36, 37, and 44). Thus,

given limited API documentation description, relying on semantic-

similarity-based method searching, RACS cannot identify the

candidate methods for these nine queries unless these queries are

rewritten.

We also investigated the influence of replacing some specific nouns

with more general ones as done in post-processing (in Section 3.2.4).

The detailed results can be found on our project website:

https://sites.google.com/site/racsproject/.

Query 6: “When I press Enter on the form, the form is submitted”

Query 7: “If the age checkbox is checked, then I need to show a textbox to enter

age, else hide the textbox.”

Figure 6. Top 1 ranked code snippet for queries 6 and 7.

4.4 Comparison with Relationship-oblivious

Approach (RQ2)
We next present the evaluation results of comparing RACS with a

relationship-oblivious approach. We implemented a relationship-

oblivious code search approach (ROCS) that uses keyword

matching between the given query text and the API documentation

text related with a particular code snippet. This implemented

relationship-oblivious approach shares key ideas with two existing

state-of-the-art code search approaches (SNIFF [7] and Exemplar

[31]). Similar to SNIFF, this relationship-oblivious approach applies

stop-word removal and stemming to a user query, and retrieves

usage patterns (in the form of MCR graphs for direct comparison

with RACS) from the snippet base based on keyword matching

(while taking no account of the order of keywords). The existing

relationship-oblivious approaches typically use support for ranking

each usage pattern (along with a sample code snippet that matches

the pattern) based on the number of code snippets that match the

pattern. Such ranking is based on the premise that more-popularly

implemented patterns tend to be more relevant for a query among

all the patterns that match the query (i.e., matching the keywords in

the query).

By contrast, RACS uses two different search techniques as

presented in Section 3.3. In particular, RACS uses semantic

similarity (instead of keyword matching) for matching a query text

against text in API documentation (see Section 3.3.1 for detail).

RACS uses relationship-aware ranking (instead of pattern support),

which ranks the MCR graphs by the graph similarity of A-MCR

graphs (derived from the query) and MCR graphs (see Section 3.3.2

for detail). To evaluate how these two key techniques in RACS

contribute to the overall effectiveness of RACS, we also

implemented two variant approaches that each replace one

technique in RACS with the corresponding technique in the baseline

approach ROCS. Then we compared the effectiveness of the four

approaches:

RACS: semantic similarity + relationship-aware ranking

ROCS: keyword matching + relationship-oblivious (i.e., support-

based) ranking

ROCS
+: semantic similarity + relationship-oblivious ranking

RACS
−: keyword matching + relationship-aware ranking

We investigated the success percentage at k with k’s respective values

as 1, 5, and 10 snippets. The results are shown in Table 3. The table

shows that RACS could answer more questions with higher rank than

ROCS. RACS could hit the target code snippet with the top 1 snippet

for 46% queries, compared to only 4% achieved by ROCS. ROCS

found the desired code snippet for only query 30 and query 38 in top 1

$("[id^='relExInput']").keypress(function(A) {
 if (A.which == 13)
 {
 $("#i").val(this.value);
 $("#calculate").submit();

}
});

$('.hide-postbox-tog').bind('click.postboxes', function() {
 var box = $(this).val();
 if ($(this).prop('checked'))
 {
 $('#' + box).show();
 if ($.isFunction(postboxes.pbshow))
 self.pbshow(box);
 } else {
 $('#' + box).hide();
 if ($.isFunction(postboxes.pbhide))
 self.pbhide(box);
 }
 self.save_state(page);
 self._mark_area();
});

snippet. In top 5 snippets, the success percentage of RACS is 54%,

while the success percentage of ROCS is only 10%. With top 10

snippets, RACS could answer 28 questions for the entire 50 questions,

while ROCS could answer only 8 questions. We did t-test on the

value of the best hit rank. RACS significantly outperformed the other

three approaches. The detailed results can be found on our project

website: https://sites.google.com/site/racsproject/.

Table 3. Comparison results

Metrics

Pattern
Searching

Method
Searching

Relationship-

oblivious

Relationship-

Aware

Typeless

Relationship-Aware

𝑃1

Keyword

Matching

4% 16% 10%

𝑃5 10% 22% 20%

𝑃10 16% 26% 26%

𝑃1

Semantic

Similarity

14% 46% 36%

𝑃5 34% 54% 52%

𝑃10 48% 56% 56%

RACS: ROCS: ROCS+: RACS−:

In Table 3, the success percentage results in column “Relationship-

aware” are always higher than the results in column “Relationship-

oblivious”, indicating that relationship-aware ranking performs better

than relationship-oblivious (support-based) ranking. The results show

that relationship among API method calls is very valuable when

conducting code search for JavaScript frameworks. Sometimes, code

snippets with the highest support may not be the target snippets. For

example, for query 4 “Get the value of the selected radio button when

any of these three are clicked”, the best hit rank of RACS is 1. The top

1 code snippet contains a callback relationship of .click(FUNCTION)

and .val(). In contrast, the best hit rank of ROCS+ for query 4 is 10.

The ROCS+ approach ranks the sequencing of .children(STRING)

and .find(STRING) first, with the highest support. RACS’s awareness

of the method call relationship improves the effectiveness of searching.

Table 3 also shows that the approaches based on semantic similarity

achieve higher success percentage than the approaches based on

keyword matching. The approaches based on keyword matching are

effective only if the words in an NL search query exactly match the

words in API documentation. RACS uses text semantic similarity,

which can overcome such shortcomings. For example, for query 3,

“When someone clicks on an image, change the image source”,

RACS found a code snippet in top 1 similar to the accepted answer’s code

snippet, while RACS− failed to answer this query. RACS analyzed the

sentence in the NL search query and generated the MCR graph with

method signature set {.click(FUNCTION),.attr(STRING,STRING)} and

callback relationship between them. RACS− failed in searching for a

relevant method using keyword matching, because the query and API

documentation description use semantic similar words (“change” and

“set”), rather than exactly the same word.

We also investigated the significance of identifying different types of

relationships. In the processes of mining API usage patterns and

abstracting an NL query, we treated all the three kinds of relationships

as one type – sequencing relationship, leading to more AR graphs that

have the same similarity with the A-MCR graph. We used support to

re-rank patterns with the same similarity. As shown in the last column

of Table 3, not differentiating relationship types leads to reducing the

effectiveness, especially for 𝑃1. In addition, we found that the number

of the relationships does not affect the effectiveness of RACS when

the code corpus includes the target code snippet. For queries with 1 or

2 relationships, RACS gets better results than being relationship-

obvious. Actually, >2-relationship queries are rare in Stack Overflow,

and their target code snippets are also rare in the snippet base. After

we added in the snippet base the target code snippets from the

accepted answers for each query, all of these >2-relationship queries

got their target snippets in top 10 results.

We compared RACS with Ohloh Code (https://code.openhub.net/),

which is a publicly available industrial Internet-scale code search

engine. All our projects for building the snippet base except Amazon

are included in the underlying repositories used by Ohloh Code. We

removed the Amazon snippets from the snippet base of RACS, mined

6,778 usage patterns, and searched on the smaller snippet base. For

Ohloh Code, we added “jquery” to each benchmark query and filtered

out non-JavaScript code snippets. If there was no hit in top 10 search

results, we directly used the API names in the accepted answer as query

keywords in place of the NL query. For the top 10 search results, RACS

could hit the target code snippet for 48% queries, while Oholh Code

could hit for 16%: RACS substantially outperformed Ohloh Code.

4.5 Threats to Validity
The threats to external validity primarily include the degree to which

selected JavaScript frameworks and search queries are representative of

true practice. There are many kinds of JavaScript frameworks for

different purposes. In our evaluations, we selected only the most

commonly used web-application related framework – jQuery. There are

other frameworks with different qualities of documentation, which may

influence the results. The qualities of search queries also affect the query

results. To make queries used in our evaluations to reflect real-world

queries, we selected representative questions from Stack Overflow

based on the vote number, and directly used the question title and

description as search queries. Queries written by different users have

different qualities. These threats could be reduced by more experiments

on more frameworks and more search queries in the future. In addition,

the relationship-oblivious approach was implemented by us. To

alleviate this threat, we already took great care to accomplish fair

comparison and evaluation. For example, the only two modifications

from RACS to produce ROCS are (1) from semantic similarity to

keyword matching and (2) from relationship-aware ranking to support

ranking, where the keyword matching and support ranking are

common/typical techniques adopted by existing approaches. Moreover,

we implemented two variant approaches ROCS+ and RACS- to

represent broad comparison bases.

5. Discussion
In this section, we discuss the applicability and limitations of our current

implementation of the RACS approach.

Given free-form NL descriptions, RACS can effectively search snippets

(JavaScript framework client code) for relevant code snippets. RACS is

very useful for beginner programmers of using a framework. The

programmers do not need to know details about the framework, such as

the method name and type information in the target framework API

method. Our implemented tool can be integrated in programming Q&A

sites and development environments for the jQuery framework.

With some modifications, our RACS approach can be applied to a

wider scope. For example, when used for another JavaScript framework,

RACS needs to use only the framework’s corresponding API

documentation. RACS focuses on a JavaScript framework, and

introduces three common relationships in JavaScript code. Considering

only sequencing and condition relationships, RACS could be applied to

other languages. We can also define more relationships that best show

these languages’ features.

Our RACS approach attains the NL description for an API method

directly from the API documentation’s short description, which may not

comprehensively capture the API method’s semantics. The user may

use a high-level description where one action maps to multiple API

methods. Automatic techniques of comment generation [32] and NL

relation classification techniques based on model neural networks [4]

may alleviate this problem. We can also attain more knowledge by

crowdsourcing [33] beyond API documentation.

Automatically identifying actions and relationships from an NL search

query may not work well for some search queries due to the arbitrariness

of NL, especially for sentences with ambiguous meanings or grammatical

mistakes. Cooperation between the user and the tool [18] can be used to

address such issues. Another extension is to incorporate deep learning-

based approaches to automatically characterize code features [14][36].

6. Related Work
In this section, we discuss related work to our code search approach,
along with our approach’s technique of mining framework API usage
patterns and technique of abstracting the AR graph from an NL query.

6.1 Source Code Search
There have been various code search approaches for different forms of
queries. The most common form is an NL query, which is the same
form as the one in general search engines. Mica [29] augments Google
Web API’s search results to help programmers find the target API
classes and methods given a description of desired functionality. Mica
can return some web pages containing code snippets that show basic
usage of API methods. RACS directly searches code snippets in a large-
scale code base and can find complex usage of API methods. Keivanloo
et al. [8] use code-clone detection to spot out working code snippets,
with a time complexity as low as the complexity of existing code search
engines. Portfolio [27] uses the PageRank and spreading activation
networks to help programmers navigate and understand usages of the
given methods. These approaches require users to provide good query
terms and require that keywords extracted from the query terms appear
in the code base. SNIFF [7] searches API document description of API
methods invoked in the code base to support a query in plain English.
CodeHow [35] recognizes potential APIs with the help of API
documentation and applies the Extend Boolean model instead of a SVM
model to retrieve code snippets that match queries. RACS supports a
free-form NL query, and uses a metric to reflect semantic text similarity
instead of keyword matching as used by previous related approaches.
Prospector [3] accepts a query in the form of source and target objects

types. It synthesizes code fragments using both API method signatures

and type cast information mined from a code base. PARSEWeb [5]

interacts with the Google code search engine and suggests relevant

method-invocation sequences. Semantics-based code search [26] lets

users specify what they are looking for as precisely as possible using

keywords, method signatures, test cases, etc. The query forms required

by these preceding approaches may not be easy to formulate if the

programmers are unfamiliar with the framework to be reused. RACS

accepts a plain NL query, and extracts specifications from the NL query

instead of requiring users to formulate a detailed query using

programming keywords.

There are other code search approaches whose input query form is close

to actual code. Strathcona [23] locates relevant code in a code base

based on heuristically matching the structure of the code under

development. XSnippet [25] makes use of the context information

similar to Strathcona, but it offers improvements on reducing irrelevant

code examples being matched along with using only relevant contexts.

MAPO [6] mines patterns that describe a certain usage scenario and

further recommends mined API usage patterns and their associated code

snippets upon users’ requests. PRIME [24] can answer queries focused

on API usage with code showing how an API method should be used.

PRIME searches code over partial programs using a relaxed inclusion

matching technique. RACS can answer similar questions without

requiring users to write a detailed query such as source code. Chan et

al.’s approach [34] constructs an API graph from an API library’s

implementation code. Such API graph connects classes and methods

with relationships (i.e., inheritance class, member methods, input

parameter, and output parameter), and then their approach selects nodes

(i.e., classes and methods) with high textual similarity on node names

only. Subgraphs with higher accumulated node textual similarity are

ranked higher. RACS constructs an MCR graph from an API library’s

client code and uses graph similarity to search MCR graphs with A-

MCR graphs by considering both node types and relationship types (i.e.,

sequencing, callback, and condition).

6.2 JavaScript Code Analysis and Usage
Pattern Mining
Code analysis and code mining are basic components of various

software engineering tasks. Dealing with JavaScript code needs more

specific techniques due to its language features. Our technique of

mining API usage patterns for JavaScript frameworks handles

JavaScript language features similar to TAJS [15] and JSMiner [9].

TAJS [15] is a whole-program dataflow analyzer for JavaScript,

including the ECMAScript standard library and large parts of the W3C

browser API and HTML DOM functionality. JSMiner [9] uses a graph-

based representation, JSModel, for JavaScript usage and mines inter-

procedural, data-oriented JavaScript usage patterns. JSModel contains

non-essential information (such as data flow dependencies) that

contributes little to producing query results, but reduces the search

efficiency. RACS uses MCR graphs to abstractly represent JavaScript

code using a certain framework. An MCR graph is more concise and

contains essential information that may be reflected in a user query.

6.3 NLP-based Specification Extraction and
Program Synthesis
There exist various approaches that extract specifications automatically

from NL. Zhong et al. [20] infer resource specifications from API

documentation and detect code bugs. Xiao et al. [18] develop a

template-based approach to extract security policies from NL software

documentation and resource-access information from NL scenario-

based functional requirements. Pandita et al. [17] infer formal method

specifications from NL text of API documentation. These approaches

apply NLP techniques to analyze software documents. Other

approaches analyze an NL search query from the users and synthesize

programs meeting the requirements of the users. SmartSynth [12] is an

end-to-end programming system for synthesizing smartphone

automation scripts from NL descriptions. NLyze [11] is an Excel add-in

that supports a rich user interaction model including annotating the users’

NL specification and explaining the synthesized programs (written in a

domain-specific language) by paraphrasing them into structured English.

RACS searches for relevant code snippets from a code base based on

analyzing an NL search query.

7. CONCLUSION
Existing code search approaches are not effective in finding code

snippets that use JavaScript frameworks to implement a specific feature

reflected by the given NL search query. In this paper, we have presented

a novel Relationship-Aware Code Search (RACS) approach. RACS

first collects a large number of code snippets that use some JavaScript

frameworks, mines API usage patterns from the collected code snippets,

and represents the mined patterns with MCR graphs. Given an NL

search query, RACS conducts NL processing to automatically

transform the query to an AR graph. In this way, RACS reduces code

search to the problem of graph search: searching the MCR graphs for a

graph similar to the given AR graph. During the graph search, RACS

includes a technique based on text semantic similarity to bridge the gap

between NL actions in an AR graph and framework API methods in an

MCR graph. We have conducted evaluations against popular real-world

jQuery questions (posted on Stack Overflow), based on 308,294 code

snippets collected from over 81,540 files on the Internet. The evaluation

results show the effectiveness of RACS: the top 1 snippet produced by

RACS matches the target code snippet for 46% questions, compared to

only 4% achieved by a relationship-oblivious approach.

8. ACKNOWLEDGMENTS
This work is supported by the National Basic Research Program of

China (973) under Grant No. 2015CB352201; the National Natural

Science Foundation of China under Grant Nos. 91318301, 61421091,

61529201; and US National Science Foundation under grants no. CCF-

1409423, CNS-1434582, CNS-1513939, CNS-1564274.

9. REFERENCES
[1] Annie T. T. Ying and Martin P. Robillard. Selection and

presentation practices for code example summarization. In

Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE '14),

pp. 460-471, 2014.

[2] Siddharth Subramanian and Reid Holmes. Making sense of

online code snippets. In Proceedings of the 10th Working

Conference on Mining Software Repositories (MSR '13), pp.

85-88, 2013.

[3] David Mandelin, Lin Xu, Rastislav Bodík, and Doug

Kimelman. Jungloid mining: helping to navigate the API

jungle. In Proceedings of the 2005 ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI

'05), pp. 48-61, 2005.

[4] Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, and Zhi

Jin. Classifying relations via long short term memory networks

along shortest dependency paths. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language

Processing (EMNLP '15), pp. 1785–1794, 2015.

[5] Suresh Thummalapenta and Tao Xie. PARSEWeb: A

programmer assistant for reusing open source code on the web.

In Proceedings of the 22nd IEEE/ACM International

Conference on Automated Software Engineering (ASE '07), pp.

204-213, 2007.

[6] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei.

MAPO: Mining and recommending API usage patterns. In

Proceedings of the 23rd European Conference on Object-

Oriented Programming (ECOOP '09), pp. 318-343, 2009.

[7] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. SNIFF:

A search engine for Java using free-form queries. In

Proceedings of the 12th International Conference on

Fundamental Approaches to Software Engineering (FASE '09),

pp. 385-400, 2009.

[8] Iman Keivanloo, Juergen Rilling, and Ying Zou. Spotting

working code examples. In Proceedings of the 36th

International Conference on Software Engineering (ICSE '14),

pp. 664-675, 2014.

[9] Hung Viet Nguyen, Hoan Anh Nguyen, Anh Tuan Nguyen,

and Tien N. Nguyen. Mining interprocedural, data-oriented

usage patterns in JavaScript web applications. In Proceedings

of the 36th International Conference on Software Engineering

(ICSE '14), pp. 791-802, 2014.

[10] Vasile Rus, Mihai Lintean, Rajendra Banjade, Nobal Niraula,

and Dan Stefanescu. SEMILAR: The semantic similarity

toolkit. In Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics (ACL '13), Demo

Track, 2013.

[11] Sumit Gulwani and Mark Marron. NLyze: interactive

programming by natural language for spreadsheet data analysis

and manipulation. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data (SIGMOD

'14), pp. 803-814, 2014.

[12] Vu Le, Sumit Gulwani, and Zhendong Su. SmartSynth:

synthesizing smartphone automation scripts from natural

language. In Proceeding of the 11th Annual International

Conference on Mobile Systems, Applications, and Services

(MobiSys '13), pp. 193-206, 2013.

[13] Rada Mihalcea, Courtney Corley, and Carlo Strapparava.

Corpus-based and knowledge-based measures of text semantic

similarity. In Proceedings of the 21st National Conference on

Artificial Intelligence (AAAI '06), pp. 775-780, 2006.

[14] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin.

Convolutional neural networks over tree structures for

programming language processing. In Proceedings of the

Thirtieth AAAI Conference on Artificial Intelligence (AAAI

'16), pp. 1287-1293, 2016.

[15] Esben Andreasen and Anders Møller. Determinacy in static

analysis for jQuery. In Proceedings of the 2014 ACM

International Conference on Object Oriented Programming

Systems Languages & Applications (OOPSLA '14), pp. 17-31,

2014.

[16] http://w3techs.com/technologies/overview/JavaScript_library

/all

[17] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen

Oney, and Amit Paradkar. Inferring method specifications

from natural language API descriptions. In Proceedings of the

34th International Conference on Software Engineering (ICSE

'12), pp. 815-825, 2012.

[18] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and

Tao Xie. Automated extraction of security policies from

natural-language software documents. In Proceedings of the

ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering (FSE '12), pp. 1-11,

2012.

[19] Dan Klein and Christopher D. Manning. Accurate

unlexicalized parsing. In Proceedings of the 41st Annual

Meeting on Association for Computational Linguistics (ACL

'03), pp. 423-430, 2003.

[20] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. Inferring

resource specifications from natural language API

documentation. In Proceedings of the 2009 IEEE/ACM

International Conference on Automated Software Engineering

(ASE '09), pp. 307-318, 2009.

[21] Emily Hill, Lori Pollock, and K. Vijay-Shanker. Automatically

capturing source code context of NL-queries for software

maintenance and reuse. In Proceedings of the 31st

International Conference on Software Engineering (ICSE '09),

pp. 232-242, 2009.

[22] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao

Xie, and Dongmei Zhang. Mining succinct and high-coverage

API usage patterns from source code. In Proceedings of the

10th Working Conference on Mining Software Repositories

(MSR '13), pp. 319-328, 2013.

[23] Reid Holmes, Robert J. Walker, and Gail C. Murphy.

Strathcona example recommendation tool. In Proceedings of

the 10th European Software Engineering Conference held

jointly with 13th ACM SIGSOFT International Symposium on

Foundations of Software Engineering (ESEC/FSE '13), pp.

237-240, 2005.

[24] Alon Mishne, Sharon Shoham, and Eran Yahav. Typestate-

based semantic code search over partial programs. In

Proceedings of the ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages, and Applications

(OOPSLA '12), pp. 997-1016, 2012.

[25] Naiyana Sahavechaphan and Kajal Claypool. XSnippet:

mining For sample code. In Proceedings of the 21st ACM

SIGPLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA '06), pp. 413-

430, 2006.

[26] Steven P. Reiss. Semantics-based code search. In Proceedings

of the 31st International Conference on Software Engineering

(ICSE '09), pp. 243-253, 2009.

[27] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing

Xie, and Chen Fu. Portfolio: finding relevant functions and

their usage. In Proceedings of the 33rd International

Conference on Software Engineering (ICSE '11), pp. 111-120,

2011.

[28] http://www.alexa.com/topsites

[29] Jeffrey Stylos and Brad A. Myers. Mica: A web-search tool for

finding API components and examples. In Proceedings of the

Visual Languages and Human-Centric Computing (VLHCC

'06), pp. 195-202, 2006.

[30] Emily Hill, Zachary P. Fry, Haley Boyd, Giriprasad Sridhara,

Yana Novikova, Lori Pollock, and K. Vijay-Shanker. AMAP:

automatically mining abbreviation expansions in programs to

enhance software maintenance tools. In Proceedings of the

2008 International Working Conference on Mining Software

Repositories (MSR '08), pp. 79-88, 2008.

[31] Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Denys

Poshyvanyk, and Chad Cumby. A search engine for finding

highly relevant applications. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering

(ICSE '10), pp. 475-484, 2010.

[32] Giriprasad Sridhara, Lori Pollock, and K. Vijay-Shanker.

Automatically detecting and describing high level actions

within methods. In Proceedings of the 33rd International

Conference on Software Engineering (ICSE '11) pp. 101-110,

2011.

[33] Ethan Fast, Daniel Steffee, Lucy Wang, Joel R. Brandt, and

Michael S. Bernstein. Emergent, crowd-scale programming

practice in the IDE. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (CHI '14), pp. 2491-

2500, 2014.

[34] Wing-Kwan Chan, Hong Cheng, and David Lo. Searching

connected API subgraph via text phrases. In Proceedings of

the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering (FSE '12), pp.1-11, 2012.

[35] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang,

Dongmei Zhang, and Jianjun Zhao. CodeHow: Effective code

search based on API understanding and extended boolean

model. In Proceedings of the 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE '15), pp.

260-270, 2015.

[36] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi

Jin. Building program vector representations for deep learning.

In Proceedings of the 8th International Conference on

Knowledge Science, Engineering and Management (KSEM

'15), pp. 547-553, 2015.

