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ABSTRACT 

JavaScript frameworks, such as jQuery, are widely used for 

developing web applications. To facilitate using these JavaScript 

frameworks to implement a feature (e.g., functionality), a large 

number of programmers often search for code snippets that 

implement the same or similar feature. However, existing code 

search approaches tend to be ineffective, without taking into 

account the fact that JavaScript code snippets often implement a 

feature based on various relationships (e.g., sequencing, condition, 

and callback relationships) among the invoked framework API 

methods. To address this issue, we present a novel Relationship-

Aware Code Search (RACS) approach for finding code snippets 

that use JavaScript frameworks to implement a specific feature. In 

advance, RACS collects a large number of code snippets that use 

some JavaScript frameworks, mines API usage patterns from the 

collected code snippets, and represents the mined patterns with 

method call relationship (MCR) graphs, which capture framework 

API methods’ signatures and their relationships. Given a natural 

language (NL) search query issued by a programmer, RACS 

conducts NL processing to automatically extract an action 

relationship (AR) graph, which consists of actions and their 

relationships inferred from the query. In this way, RACS reduces 

code search to the problem of graph search: finding similar MCR 

graphs for a given AR graph. We conduct evaluations against 

representative real-world jQuery questions posted on Stack 

Overflow, based on 308,294 code snippets collected from over 

81,540 files on the Internet. The evaluation results show the 

effectiveness of RACS: the top 1 snippet produced by RACS 

matches the target code snippet for 46% questions, compared to 

only 4% achieved by a relationship-oblivious approach. 
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• Software and its engineering ➝ Software creation and 

management;  • Information system ➝ Information retrieval; 
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1. INTRODUCTION 
JavaScript frameworks are widely used for developing web 

applications. A recent survey [16] has shown that 72.5% of the top 

10 million websites use JavaScript frameworks, such as jQuery, 

MooTools, Prototype, YUI, and ExtJS. Meanwhile, among all these 

frameworks, jQuery has a share of 95.9%. When using these 

JavaScript frameworks, a large number of programmers are often in 

great need of help. For example, 9.5% of 11,245,425 questions in 

Stack Overflow (the most well-known programming Q&A website) 

are tagged with “JavaScript”, which is the top 1 tag. 

When using these JavaScript frameworks to implement a feature 

(e.g., functionality), programmers can benefit from existing code 

snippets that implement the same or similar feature [1]. To search 

for such code snippets, the programmers can read Application 

Programming Interface (API) documentation or tutorials, post 

questions on Q&A websites [2], use code search engines and so on. 

However, these existing approaches of code search face various 

limitations for JavaScript frameworks. For example, API 

documentation contains only a very limited number of hand-crafted 

code snippets. Existing code search engines, such as Ohloh Code 

(https://code.openhub.net/) and Krugle (http://www.krugle.com/), 

mainly use text similarity to find code snippets in open source code 

repositories (e.g., GitHub, SourceForge), and tend to be inaccurate. 

Recent research contributes new approaches that leverage code 

analysis and code mining, e.g., PARSEWeb [5], MAPO [6], SNIFF 

[7]; they take into account code characteristics, such as API usage 

patterns [6] and encoded code patterns [8]. However, none of these 

approaches considers the characteristics of JavaScript code snippets 

or search queries related to using a JavaScript framework API. 

Searching for code snippets using JavaScript frameworks has three 

main unique characteristics. First, in JavaScript, relationships 

between method calls are complex, beyond sequencing relationships 

(e.g., open() should be invoked before read()) among method 

calls, as commonly captured by existing approaches [5][6][22][24]. 

For example, many API methods in JavaScript frameworks are 

asynchronous: although the call sites of these asynchronous 

methods are sequentially listed in a code snippet, there can be a 

large number of concurrent executions of these methods at runtime. 

In addition, callback is often used in JavaScript code to enforce 

strict execution order of some method calls. For example, Lines 4-7 

in the lower part of Figure 1 define an anonymous function, in 

which API methods $(‘#loader_img’) (jQuery uses "$" as a 

shortcut for "jQuery") and hide() are called (Line 6). This 

anonymous function is passed as a callback parameter of the 

method load() (Line 4). The code’s runtime behavior is that these 

two API methods are called only after the method load() has 

completed.  

Second, JavaScript is mainly used for client-side scripting in web 

browsers. Many typical search queries for JavaScript framework 

API usage describe user interaction, browser control, asynchronous 
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communication, and altering of a displayed document content. Thus 

these queries usually consist of simple actions, conjuncted with 

relationship-describing words (e.g., “when” and “after”). For 

example, the underlined sentence in the upper part of Figure 1 

illustrates such a query, which includes multiple actions: “show a 

busy image”, “image is downloaded”, and “busy image is removed”. 

Table 2 in Section 4.1 provides more query examples from Stack 

Overflow. Many short descriptions for a simple action can be 

mapped to the corresponding action-implementing methods in 

JavaScript frameworks, by leveraging their API documentation. In 

addition, the conjunction words between short descriptions (e.g., 

“when” as shown in Figure 1) reflect the relationships of these 

actions. These relationship-describing words may also be mapped to 

aforementioned relationships among API method calls, “sequencing” 

and “callback”, respectively.  

Third, JavaScript frameworks such as jQuery are usually used to 

select and manipulate Document Object Model (DOM) elements. 

The types (e.g., “img”, “div”) and attributes of DOM elements (e.g., 

“class”, “id”) are usually defined in HTML code. API methods in 

JavaScript code use CSS selectors (e.g. “.child”, “#option”) to select 

DOM elements and are generally applicable to manipulate various 

types of DOM elements without directly referring to these elements’ 

types. Therefore, it is undesirable to directly use elements’ types 

that appear in an NL search query (e.g., “div” in the “hide div” 

query) to search code snippets for the target code snippet. Special 

care needs to be taken to process these elements’ types in a search 

query before being used in code search.  

Based on the observations of these unique characteristics, we 

propose a Relationship-Aware Code Search (RACS) approach for 

finding code snippets that use JavaScript frameworks to implement 

a specific feature, being described in the given search query. RACS 

emphasizes the utility of semantic information, especially the 

relationships between API method calls in code snippets and 

relationships between actions in search queries. RACS abstracts a 

code snippet as an API method call relationship (MCR) graph, 

which consists of the signatures of the API methods invoked in the 

code snippet along with the relationships among these methods. 

Given a natural language (NL) search query, RACS conducts NL 

processing to automatically abstract the query to an action 

relationship (AR) graph. In this way, RACS reduces code search to 

the problem of graph search: finding similar MCR graphs for a 

given AR graph.  

This paper makes the following main contributions: 

 The first approach for finding relevant JavaScript-framework-

based code snippets given a search query in NL. 

 A technique for mining framework API usage patterns expressed 

formally as MCR graphs from large-scale JavaScript code 

snippets. 

 A technique for abstracting an NL search query to an AR graph. 

 A technique for reducing the code search problem as a graph 

search problem. 

 Evaluations conducted against representative real-world jQuery 

questions (posted on Stack Overflow), based on 308,294 code 

snippets collected from over 81,540 files on the Internet. The 

evaluation results show the effectiveness of RACS: the top 1 

snippet produced by RACS matches the target code snippet for 46% 

questions, compared to only 4% achieved by a relationship-

oblivious approach (existing state-of-the-art code search 

approaches [7][31] are relationship-oblivious approaches).  

The rest of the paper is organized as follows. Section 2 explains our 

RACS approach through an example. Section 3 elaborates RACS. 

Section 4 discusses evaluation results. Section 5 discusses the 

applicability and limitations of RACS. Section 6 presents related 

work. Finally, Section 7 concludes this paper. 

2. MOTIVATING EXAMPLE 
In this section, using an example, we elaborate characteristics of 

both JavaScript code snippets and search queries related to using a 

JavaScript framework API. Figure 1 shows a real-world question 

(the upper part) and one accepted answer (the lower part) from 

Stack Overflow. This question describes a typical scenario in 

developing web applications. The underlined sentence is an NL 

description for a feature implemented in JavaScript or jQuery. The 

accepted answer contains a code snippet implementing the feature 

with jQuery.  

 

From an earlier version of http://stackoverflow.com/questions/4635388
1
         

Figure 1. Example from Stack Overflow 

The code snippet in the accepted answer shows a callback 

relationship in JavaScript code (Lines 4-7). An anonymous callback 

function is defined and passed as a parameter of the jQuery API 

method call load(). Two other jQuery API methods, 

$(‘#loader_img’) and   hide() (Line 6),  are  called  inside  the 

anonymous function. Existing approaches [5][6][22][24] mainly 

extract method-call sequences as the abstract representation of the 

code snippet and apply mining algorithms on the sequences. In this 

code snippet, Line 4 with the callback not only represents the 

occurrence order in the code snippet, but also reflects the strict 

execution order for asynchronous methods (as explained by the 

comments in Lines 3 and 5). RACS analyzes the JavaScript code 

snippet, extracts method signatures for the API methods invoked in 

the code snippet, and identifies different relationships between the 

method calls (see Section 3.1 for details). In this example, show() 

and load() have a sequencing relationship, while load() and 

hide() have a callback relationship, enforcing a strict order. We 

represent the signatures of the invoked methods and their 

relationships as an API method call relationship (MCR) graph, the 

abstract representation of the code snippet. 

In the upper part of Figure 1, the underlined sentence is an NL 

description of a feature. The feature consists of multiple actions in 

each clause (“show a busy image”, “image is downloaded”, and 

“busy image is removed”), and there are structural relationships 

between clauses (implied by relationship-describing words “when” 

and “after”). No existing approach considers such structural 

information. In some existing code search tools, the users need to 

manually extract query terms based on the NL description. For 

example, in Keivanloo et al.’s approach [8], the users manually 

select candidate terms from Koder’s query log dataset. Then the 

users manually map the description “successfully login and logout” 

                                                                 

1 The latest version of the accepted answer includes the updated code 

being compatible with a more recent version of jQuery. 

Stack Overflow Question and Description 

How to display loading image while actual image is downloading 

Some time images take some time to render in the browser. I want 
show a busy image while the actual image is downloading, and when 
image is downloaded, the busy image is removed and actual image is be 
shown there. How can I do this with JQuery or any javascript? 

Accepted Answer 

You can do something like this: 
1| // show loading image   
2| $('#loader_img').show();   
3| // main image loaded ?   
4| $('#main_img').load(function(){  
5| // hide/remove the loading image  
6| $('#loader_img').hide();   
7| });     

You assign load event to the image which fires when image has 
finished loading. Before that, you can show your loader image. 



to query term “FtpClient”. Programmers with little knowledge of 

the names of the target framework API methods can hardly write a 

query as specific terms. Some other approaches, such as SNIFF [7], 

directly take short descriptions as the query after preliminary 

preprocessing, e.g., stop-word removal and stemming. Our RACS 

approach uses NL processing to extract semantic descriptions for 

actions in each clause. RACS analyzes the sentence structure and 

identifies different relationships between actions (see Section 3.2 for 

details). In addition, RACS constructs a mapping between a method 

signature and its API documentation description, and uses this 

mapping to connect a given action description to its corresponding 

API method. For a given action description, RACS seeks to find a 

matching API documentation description and then the method 

signature. The matching between an action description and API 

documentation description is based on text semantic similarity, 

instead of keyword matching, to address NL complications. 

3. APPROACH 
Given an NL search query for snippets using a JavaScript 

framework API, RACS returns multiple highly relevant code 

snippets. As shown in Figure 2, RACS is composed of three major 

components that conduct three steps: 

(1) Mining API usage patterns. This component mines JavaScript 

code snippets for framework API usage patterns, and represents the 

patterns as Method Call Relationship (MCR) graphs. This process is 

offline. 

(2) Abstracting NL query. This component analyzes the given NL 

query’s description and generates an Action Relationship (AR) 

graph to reflect the user’s search intention.  

(3) Searching snippets. This component searches all the MCR 

graphs for the top ones that match the AR graph (produced by Step 

2). This component leverages the API documentation description to 

bridge the NL query and the API methods invoked in code snippets. 

The component then presents to the user the ranked code snippets 

associated with the top matched MCR graphs. 

Large Scale JS 

Code Snippets

Mining API 

Usage Patterns 

JS API Usage 

Patterns with 

MCR Graphs

Searching 

Snippets 

Code 

Snippets

NL Search 

Query

Abstracting 

NL Query

AR Graph 

for Query
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(3)

(2)

API

Documentation

 

Figure 2. Overview of RACS 

RACS emphasizes both relationships between statements in 

programs and relationships between sentences in an NL query. 

Based on the observations of the JavaScript language and search 

queries for JavaScript frameworks, RACS focuses on three main 

relationships: sequencing, callback, and condition.  

Before presenting RACS in detail, we give major definitions of 

important concepts used in the rest of this paper. 

Definition 1. Method Call Relationship (MCR) Graph for a code 

snippet 

A method call relationship (MCR) graph for a code snippet is a 

Directed Acyclic Graph (DAG) as a tuple < 𝑀, 𝑅 >, where 

 M is a non-empty vertex set represented as {𝑚1, 𝑚2, … , 𝑚𝑥}. 

Every element in M is a method signature including its name and 

parameter type list. 

 R is an edge set represented as {𝑟1, 𝑟2, … , 𝑟𝑦}. Every element in 

R is a triple < 𝑚𝑖 , 𝑚𝑗 , 𝑡 > , indcating that relationship 𝑡  exists 

from vertex 𝑚𝑖  to vertex 𝑚𝑗; 𝑡 is one of the three relationships: 

sequencing, callback, and condition. In particular, the detailed 

meanings of< 𝑚𝑖 , 𝑚𝑗 , 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔 > , < 𝑚𝑖 , 𝑚𝑗 , 𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘 >, <

𝑚𝑖 , 𝑚𝑗 , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 >  for JavaScript are further elaborated in 

Section 3.1.1. 

An MCR graph is an abstract representation of a code snippet 

including one or more framework API method calls, focusing on 

essential behaviors involving these framework API method calls. 

Definition 2. Action Relationship (AR) Graph for a query 

An action relationship (AR) graph for a query is a DAG as a tuple 

<A,R>, where 

 A is a non-empty vertex set represented as {𝑎1, 𝑎2, … , 𝑎𝑛}. Every 

element in A is an action that implements a feature reflected by 

the query. 

 R is an edge set represented as {𝑟1, 𝑟2, … , 𝑟𝑚}. Every element in 

R is a triple < 𝑎𝑖 , 𝑎𝑗 , 𝑡 >, indicating that relationship 𝑡 exists from 

vertex 𝑎𝑖  and vertex 𝑎𝑗 ; 𝑡   is one of the three relationships: 

sequencing, callback, and condition. In particular, the detailed 

meanings of < 𝑎𝑖 , 𝑎𝑗 , 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔 >  , < 𝑎𝑖 , 𝑎𝑗 , 𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘 > , <

𝑎𝑖 , 𝑎𝑗 , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 >  for JavaScript are further elaborated in 

Section 3.2.3. 

An AR graph is an abstract representation of an NL search query 

including one or more actions, focusing on essential behaviors 

involving these actions. 

3.1 Mining API Usage Patterns  
The component of mining API usage patterns consists of two sub-

processes. First, it analyzes large-scale JavaScript code snippets, 

and extracts an MCR graph as an abstract representation of each 

snippet. Second, it analyzes each MCR graph, and groups the code 

snippets with the same MCR graph as one API usage pattern. 

3.1.1 Abstracting Code Snippets  

RACS constructs a snippet base from an initial JavaScript code base.  

In particular, from the JavaScript and HTML files collected in the 

initial JavaScript code base, RACS first extracts sequences of 

framework API methods being invoked in each JavaScript function 

in the files. Then each contiguous subsequence of such sequence 

forms a code snippet. For a function consisting of 𝑛 API method 

calls, we obtain 𝑛 ∗ (𝑛 + 1)/2 snippets:  𝑛 snippets each include 1 

API method call, 𝑛 − 1  snippets each include 2  API method 

calls, …, and 1 snippet includes 𝑛 API method calls. 

For each code snippet (in the snippet base), RACS analyzes its 

Abstract Syntax Tree (AST) and constructs an MCR graph. In our 

implementation, we use the Rhino JavaScript engine 

(https://www.mozilla.org/rhino/) for JavaScript code analysis. When 

visiting the AST nodes, RACS identifies framework API method calls 

(e.g., according to the list of API methods documented in the jQuery 

API documentation). Meanwhile, RACS identifies relationships 

among these API method calls according to relationships among AST 

nodes. Currently, RACS considers three common relationships in 

JavaScript: sequencing, callback, and condition. Figure 3a shows a 

code snippet involving all three kinds of relationships. Figure 3b 

shows the correspondent AST (simplified with leaf nodes and part of 

other non-critical nodes such as block statement being removed) of 

the code snippet listed in Figure 3a. 

Sequencing relationship. If method B is called immediately after 

method A is called, there is a sequencing relationship from A to B, 

formally represented as a triple <A, B, sequencing>. In the AST, 

parent-child method call nodes are method chains, having a 



sequencing relationship. For example, in Figure 3b, there is a 

sequencing relationship from method call $(‘#loader_img’) 

(Node 1) to method call show() (Node 2) in one statement, and  

there is a sequencing relationship from show() (Node 2) to 

$(‘#main_img’) in two statements. 

Callback relationship. If method A is called via an anonymous 

function as its parameter and method B is a method called inside the 

anonymous function, there is a callback relationship from A to B, 

formally represented as a triple <A, B, callback>. In Figure 3b, 

there is a callback relationship from method call load() (Node 4) to 

method call hide()(Node 6). 

Condition relationship. If method A appears in a predicate of a 

conditional statement, such as IfStatement, and method B is the first 

method called in one of the branches, then there is a condition 

relationship from A to B, formally represented as a triple <A, B, 

condition>. For a method C being called after B in the same 

conditional block, we do not record a condition relationship between 

A and C, but we do record a sequencing relationship between B and C. 

In Figure 3b, there is a condition relationship from method call 

width() (Node 8) to method call show() (Node 10). 

 
Figure 3a. Code snippet extended from code in Figure 1. 

Program

ExpressionStatement IfStatementExpressionStatement

CallExpression
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$('#loader_img').show()

CallExpression
-------------------------------
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Figure 3b. Simplified AST for code snippet in Figure 3a. 

In jQuery, method “$” (in nodes 1, 3, 5, and 7) is used for selecting 

elements by string selectors. All method calls with signature 

“$(STRING)” are considered to be semantically equivalent. 

“$(STRING)” often appears in code and provides limited semantics. 

Therefore, RACS ignores all method “$” calls to simplify the MCR 

graph. This process removes method calls with low degree of 

differentiation, sharing similar ideas with stop-word removal and TF-

IDF. The MCR graph for the snippet in Figure 3a is shown in Figure 4. 

3.1.2 Clustering Code Snippets  
Many MCR graphs from different snippets are equivalent. To avoid 

unnecessary duplicated graph matching in the next section, and thus 

improve the querying speed, RACS clusters code snippets in its 

base according to their MCR graphs. To capture precise semantics 

of code snippets falling into the same cluster, we use a relatively 

conservative way of clustering: if two code snippets are abstracted 

to the same MCR graph, they fall into one cluster represented by the 

MCR graph. 

After this step, we attain a large number of clusters represented as 

MCR graphs, reflecting different usage patterns of a JavaScript 

framework API. Each MCR graph (i.e., each cluster) is associated 

with one or more code snippets. 

Figure 4. MCR graph for the example in Figure 3. 

3.2 Abstracting NL Query  
This section presents the techniques for extracting an AR graph that 

accurately captures essential semantics of the given NL query. 

3.2.1 Preprocessing 
The step of preprocessing accepts the given NL query’s sentences 

and processes these sentences to get a more accurate result of NL 

analysis. In particular, this step performs two major tasks. 

First, the step transforms some special identifiers to plain English 

text.  Identifiers in an NL query may pose complication in NL 

analysis. For example, the character period (‘.’) in identifiers (e.g., 

“jQuery.Ajax”) may be recognized as the end of a sentence, 

leading to wrong parsing (see Section 3.2.2 for detail). In addition, 

some identifiers are the combination of multiple English words (e.g., 

“toggleClass”), negatively influencing the calculation of sentence-

semantic similarity in a later process (See Section 3.3.1 for detail). 

To deal with these complications, we replace the period (“.”) 

character with a space, split identifiers concatenated with hyphen (“-

”) or underscore (“_”), and split “camelCase” style identifiers 

following the JavaScript naming convention.  

Second, the step transforms abbreviations into full terms (e.g., “attr” 

to “attribute”) based on a domain-specific dictionary.  The domain-

specific dictionary contains the top 20 most frequent expansions in 

programs found in Hill's et al.'s research [30]. Besides a short list of 

abbreviations, we automatically extract terms from 

DOM/JavaScript documentation using Python scripts. The domain-

specific dictionary includes a word list of DOM elements (e.g., “div”, 

marked by <td title=“Name”> in https://www.w3.org/TR/1999/REC-

html401-19991224/index/elements.html) and JavaScript events (e.g., 

“mouseenter”, marked by <a class=“eventtype”> in https://www.w3.org 

/TR/DOM-Level-3-Events/#event-types). 

3.2.2 Action Identification 
The step of action identification uses NL processing techniques, 

such as POS (Parts Of Speech) tagging and parsing, to attain the 

structure of a given NL query sentence, and identifies the actions in 

the sentence. 

POS tagging determines the part of speech (e.g., a singular or mass 

noun’s POS tag is NN) for each word in the given sentence. Parsing 

determines the parse tree of the given sentence. Each word in the 

sentence is represented as a leaf node in the parse tree, and each 

grammatical unit (e.g., verb phrase) corresponds to a sub-tree. We 

use the Stanford Parser [19] to generate the POS tags and parse tree. 

RACS traverses the parse tree and identifies the actions in the given 

NL query. In the language structure, the description of an action 

consists of Verb Phrase (VP), Noun Phrase (NP), and optional 

Prepositional Phrase (PP). A sub-tree with this structure can be 

identified as one action. Figure 5 shows the parse tree of the NL 

query in Figure 1. RACS identifies five actions in this example (see 

the rectangle in Figure 5). Note that these actions are not the final 

elements of the action set; they may be modified or even discarded 

by the post-processing step described in Section 3.2.4. 

3.2.3 Relationship Identification 
The step of relationship identification identifies potential 

relationships among the actions, by mapping relationship-describing 

$('#loader_img').show(); 
$('#main_img').load(function(){ 
 $('#loader_img').hide(); 
});  
if($(window).width() < 960 ){ 
 $('#warning_img').show(); 
} 

show()

load(function)

width()

hide()

show()

sequencing

callback

condition



words to the three aforementioned relationships. These relationship-

describing words are the most commonly used in a lot of Stack 

Overflow questions’ descriptions. For each adjacent action pair 

found in the given NL query’s description, we check whether it 

corresponds to one of the following three relationships.  

 
Figure 5. Parse Tree of NL query in Figure 1 

Sequencing relationship. A sequencing relationship from action 

𝑎𝑖  to action 𝑎𝑗 exists when two actions’ descriptions are connected 

by a connecting word being a preposition (“before” and “after”), a 

conjunction (“and” and “then”), or a punctuation (comma, 

semicolon, and period). Note that the direction of the sequencing 

relationship is properly determined based on the semantics of the 

connecting word. Only the action after connecting word “after” is 

the starting point of the sequencing relationship. In other cases, the 

later action is the end point. An example of such relationship is in 

sentence “add class ‘checked’ to element and fade in the element.”  

Condition relationship. A condition relationship from action 𝑎𝑖  to 

action 𝑎𝑗 exists when two actions’ descriptions are connected by a 

connecting word being a preposition (“if”) indicating that whether 

action 𝑎𝑗 will happen or not depends on the result of action 𝑎𝑖. The 

action after the connecting word is the starting point of the condition 

relationship. An example of such relationship is in sentence “show a 

warning image if screen width is less than 960px.” 

Callback relationship. A callback relationship from action 𝑎𝑖  to 

action 𝑎𝑗  exists when not only (1) two actions’ descriptions are 

connected by a connecting word being a conjunction or a 

preposition indicating point-in-time (“when”, “after”, and “if”), but 

also (2) the action happening first, i.e., action 𝑎𝑖, should imply an 

event or describe a completion status; in other words, the 

description is supposed to contain a word from the word list for 

JavaScript events in the domain-specific dictionary (described in 

Section 3.2.1), or the POS of a verb in the description should be a 

gerund/present participle (VBG) or a past participle (VBN). The 

action after the connecting word is the starting point of the callback 

relationship. An example of such relationship is in sentence “when 

image is downloaded, the busy image is removed.” 

The arrowed lines in Figure 5 show three relationships between 

actions (two being sequencing and one being callback). 

3.2.4 Post-processing 
The step of post-processing further processes the identified actions, 

and forms an AR graph for the given NL query. RACS adds an 

inferred notional verb “get” to a description containing only the link 

verb “be”. Consider an example description “screen width is less than 

960px”. This description does not contain a notional verb. Adding 

“get” as “get the screen width” makes the description more precise. 

This process is similar to Hill et al.’s technique [21] for inferring an 

action for a method name that does not begin with a verb. 
show 

element

element is 

downloaded

element is 

be shown

element is 

removed
sequencing

callback

condition

 

Figure 6. AR graph for NL query in Figure 1 

Elements selected by the jQuery selector are usually defined in 

HTML code, and too little detailed information about the elements 

could be found only in the JavaScript code. For example, consider 

three code snippets where $(“.child”).hide() and 

$(“#option”).hide()2 are used to hide a selected “div” element3 , 

respectively, in two JavaScript code snippets; $(“div”).show() is 

used to show the “div” element in the third code snippet. If the 

given user query is “hide div”, although the three code snippets 

would have the equal number of terms matched by the query, the 

first two snippets should be returned but not the last one. The reason 

is that in NL queries, terms for describing the detailed types (e.g., 

“div”) of DOM elements are not as important as other terms (e.g., 

“hide”, “show”) for jQuery-API identification. In addition, code 

snippets with the same usage pattern but with different element 

types as the target code snippet are still often useful to the 

developers. For example, in Figure 1, if we change all the “img” 

element type in the accepted answer to the “div” element type, the 

code snippet still gives valuable hints to complete the target task.  

Based on this insight, our step of post-processing replaces some 

specific nouns (e.g., “image”, “div” indicating element types) with 

more general ones (e.g., “element”) based on the word list for DOM 

elements in the domain-specific dictionary (described in Section 

3.2.1), and removes determiners and adjectives. For example, 

RACS transforms “the busy image” to “element”. At the same time, 

RACS stores these changed words as keywords, which are used for 

later ranking code snippets (as described in Section 3.3.3). The AR 

graph for the NL query in Figure 5 is shown in Figure 6. 

3.3 Searching Snippets 
Given an AR graph generated from the NL query, this step first 

derives multiple AR-derived MCR (A-MCR) graphs for the AR 

graph based on text semantic similarity. Then it uses the A-MCR 

graphs as the graph query to search the set of MCR graphs 

(produced by the technique described in Section 3.1) for the most 

relevant MCR graphs. Finally, it selects top code snippets 

associated with the most relevant MCR graphs as the snippets 

returned to the user. 

3.3.1 Deriving A-MCR graphs from the AR graph 
The names of actions (NL by nature) in an AR graph are often quite 

different from the names of framework API methods (programming 

languages by nature) in an MCR graph. Such differences pose 

barriers for searching MCR graphs with an AR graph as the graph 

query. To address such challenge, we refine the AR graph to 

                                                                 

2 In CSS, “.child” selects all elements with class=“child”, and 

“#option” selects all elements with id=“option”. An element’s 

class and id attributes and their values are described in HTML 

code, e.g., <div class=”child” id=”option”>. 

3 The “div” element indicated by a <div> tag defines a division or 

a section in an HTML document. 

(ROOT 
 (S 
  (VP (VB show) 
   (NP (DT a) (JJ busy) (NN image)) 
   (SBAR (IN while) 
    (S 
     (S 
      (S 
       (NP (DT the) (JJ actual) (NN image)) 
       (VP (VBZ is) 
        (VP (VBG downloading)))) 
      (, ,) 
      (CC and) 
      (S 
       (SBAR 
        (WHADVP (WRB when)) 
     (S 
         (NP (NN image)) 
         (VP (VBZ is) 
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       (, ,) 
       (NP (DT the) (JJ busy) (NN image)) 
       (VP (VBZ is) 
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       (VP (VB be) 
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multiple AR-derived MCR (A-MCR) graphs by replacing the 

actions in the AR graph with the actions’ corresponding framework 

API methods, determined by our technique of text semantic 

similarity. Given an action, RACS searches for API methods whose 

descriptions in the API documentation share high text semantic 

similarity with the description of the action (i.e., the text description 

of the action in the NL query).  

To match actions and API methods, matching based on text 

semantic similarity [13] in RACS has advantages over keyword 

(lexical) matching, which has been widely used in existing 

approaches such as SNIFF [7].  Keyword matching is fast and strict, 

while ignoring semantic similarity, but may miss to match many 

cases, e.g., “I own a dog” and “I have an animal”. On the other hand, 

matching based on text semantic similarity is based on word-to-

word similarity metrics, addressing such issue and achieving a 

higher recall. In particular, matching based on text semantic 

similarity computes the similarity between two texts (T1 and T2) 

using the following equation: 

𝑠𝑖𝑚(𝑇1, 𝑇2) =
1

2
(

∑ (𝑚𝑎𝑥𝑆𝑖𝑚(𝑤,𝑇2)∗𝑖𝑑𝑓(𝑤))𝑤∈{𝑇1}

∑ 𝑖𝑑𝑓(𝑤)𝑤∈{𝑇1}
+

∑ (𝑚𝑎𝑥𝑆𝑖𝑚(𝑤,𝑇1)∗𝑖𝑑𝑓(𝑤))𝑤∈{𝑇2}

∑ 𝑖𝑑𝑓(𝑤)𝑤∈{𝑇2}
)  

where 𝑚𝑎𝑥𝑆𝑖𝑚(𝑤, 𝑇)  computes the maximum word-to-word 

similarity between word 𝑤 and any word with the same POS in text 

T; 𝑖𝑑𝑓(𝑤) denotes the inverse document frequency of word 𝑤. The 

word-to-word similarity metrics can be either knowledge-based 

(e.g., WordNet similarity: https://wordnet.princeton.edu/) or corpus-

based (e.g., latent semantic analysis: http://lsa.colorado.edu/). In our 

implementation, we use the knowledge-based MCS technique 

implemented by the SEMILAR toolkit [10].  

For each action, RACS chooses the top K framework API methods 

as the candidate methods corresponding to the action. Thus, for a 

given AR graph with n actions, RACS replaces each action of AR 

graph with multiple corresponding candidate methods, and attain 

𝐾𝑛 A-MCR graphs. 

3.3.2 Searching MCR graphs with A-MCR graphs 
This step uses the A-MCR graphs as the graph query to search for 

the most relevant MCR graphs, based on graph similarity.  

We first define “matched relationships” (i.e., edges) between two 

graphs. Given two graphs  𝐺1(an A-MCR graph) and 𝐺2 (an MCR 

graph), relationship < 𝑚𝑖 , 𝑚𝑗 , 𝑡 >  from 𝐺1  and relationship <

𝑚′𝑘, 𝑚′𝑙 , 𝑡′ >  from 𝐺2  are matched when (𝑚𝑖 ==  𝑚′𝑘 ) && 

( 𝑚𝑗 ==  𝑚′𝑙) && (𝑡 == 𝑡′) . Two method signatures are equal 

when they have the same method name and parameter type list. 

Then we define the “graph similarity score” between A-MCR graph 

𝐺1 and MCR graph 𝐺2  as 

𝑠𝑖𝑚(𝐺1, 𝐺2) =
𝑚𝑟𝑛(𝐺1,𝐺2)

𝑟𝑛(𝐺1)+𝑟𝑛(𝐺2)−𝑚𝑟𝑛(𝐺1,𝐺2)
  

where 𝑚𝑟𝑛(𝐺1, 𝐺2) denotes the number of matched relationships 

between 𝐺1  and 𝐺2 ; 𝑟𝑛(𝐺𝑖)  denotes the total number of 

relationships (i.e., edges) in 𝐺𝑖 . This graph similarity score has a 

value between 0 and 1, with the score of 1 indicating that two MCR 

graphs are identical, and the score of 0 indicating no matched 

relationship between the graphs. RACS selects the top K' MCR 

graphs ranked based on the graph similarity scores for further 

selection of snippets (as described in the subsequent subsection).  

3.3.3 Selecting Code Snippets 
Each MCR graph (indicating a usage pattern) may be associated with 

more than one code snippet, and not all the associated code snippets 

are of the same importance to the user. To help the user locate the 

desired code snippets more efficiently, this step selects one code 

snippet for each of top K' ranked MCR graphs based on two metrics: 

the number of the keywords in the NL query matched by a code 

snippet, and the length of the code snippet.  

Recall that the keywords in the NL query are those words changed by 

the technique described in Section 3.2.4. RACS gives higher ranks to 

code snippets matching more keywords in the NL query. This ranking 

heuristic gives preference to those code snippets more similar to the NL 

query. If two code snippets have the same number of matched 

keywords, RACS ranks the shorter code snippet higher. This ranking 

heuristic has been widely used in previous approaches, such as 

Prospector [3] and PARSEWeb [5], making the returned code 

snippets concise. After applying the two ranking heuristics, RACS 

finally returns the ranked code snippets as the final search results for 

the given NL query. 

4. EVALUATIONS 
We conducted evaluations to assess the effectiveness of RACS. In 

our evaluations, we implemented RACS and addressed two main 

research questions: 

RQ1: How effectively can RACS search JavaScript code snippets 

for a given NL search query? 

RQ2: How much can RACS outperform a relationship-oblivious 

code search approach? 

4.1 Evaluation Setup 
We constructed a JavaScript snippet base consisting of snippets using 

the popular jQuery framework. The snippet base was constructed 

from Ohloh (currently OpenHub https://www.openhub.net/) and 

Amazon.com. Ohloh is a popular public directory of open source 

software projects. We attained the code locations of 620 jQuery-

tagged projects from Ohloh and downloaded the source code of these 

open source projects. Amazon.com is one of the world’s top ten web 

sites [28], which uses jQuery heavily. We ran a web crawler on 

Amazon to download jQuery-related files. We constructed the code 

base in this way to ensure the diversity and quality of our snippet base. 

The snippet base consists of 81,540 JavaScript files, from which we 

obtained 308,294 code snippets.  Table 1 shows the details of the 

snippet base. We mined 9,905 API usage patterns from the snippet 

base, according to jQuery core API documentation (which contains 

over 700 method signatures) within 115s. 

Table 1. JavaScript snippet base 
Source #Project Date of #files #snippets 

Ohloh 620 06/28/2014 51,949 226,099 

Amazon.com 1 08/16/2014 29,591 82,195 

Total 621 -- 81,540 308,294 

We also constructed a benchmark, which contains 50 real-world 

representative jQuery related queries from Stack Overflow. We 

manually checked the list of highest voted jQuery-tagged questions 

sequentially, and unless a question satisfies any of the following 

exclusion conditions, it was added to the benchmark. 

(1) The accepted answer of the question does not contain a JavaScript 

code snippet. (2) The code snippet in the accepted answer contains 

only JavaScript built-in method(s), without using jQuery or other 

JavaScript frameworks. (3) The code snippet in the accepted answer is 

implemented by using only a jQuery plugin or a non-jQuery JavaScript 

library. (4) The question is only about the setting of parameters, such 

as the writing of selectors. (5) The description of the question is vague. 

The questioner and the respondent discussed the details later in the 

comments. (6) The description of the question is at too high abstraction 

level. For example, for the question “get all descendant text nodes of 

an element”, the accepted answer mentions “jQuery does not have a 

convenient function for this. You need to combine contents(), which 

will give just child nodes but includes text nodes, with find(), which 

gives all descendant elements but no text nodes”. (7) The question is 

not related to code search, such as discussing programming experiences. 

For example, a search query cannot be extracted from a question with 

title “.prop() vs. attr()”. (8) The code snippet in the accepted answer 



contains only one jQuery method (instead of two or more jQuery 

methods as focused by the work in this paper). 

We manually checked the selected questions and further filtered out 

redundant questions: some questions have similar descriptions and 

thus have the same or very similar code snippets in their accepted 

answers.  Table 2 shows these 50 search queries. We acquired a “NL 

search query” directly from the corresponding question’s title and 

description. All the questions corresponding to these search queries 

have accepted answers with code snippets. For each question, we used 

the code snippet in the accepted answer as the target snippet, and 

checked whether a snippet returned by RACS hits the target snippet 

(i.e., both snippets have the same jQuery API method calls with the 

same relationships); if so, we consider such snippet as a hit snippet. 

Instead of user studies, our evaluations use real-world snippets from 

answers accepted by developers to validate our results. To good 

extent, the "accept" reflects the real-world developers' feedback of 

usefulness. Our validation is conservative: some “failed” cases could 

actually be reasonable snippets that help users for their tasks at hand.  

In our evaluations, parameters K and K' introduced in Section 3.3 are 

set to 5 and 50, respectively, by default. In initial investigation of 

sample cases (outside of the benchmark), we evaluated different 

settings of K, and found that when K is set as 5, we could achieve a 

good balance between acceptable query time and satisfactory recall.  

Note that when K is set higher, the query time is longer and the recall 

is higher. Setting K' to 50 is to limit the total number of results needed 

to be checked. All of our evaluations were conducted on a Linux 

machine with an Intel i7 3.0 GHz CPU and 4 GB of RAM. The 

details of our evaluation subjects and results can be found on our 

project website: https://sites.google.com/site/racsproject/. 

Table 2. Selected Stack Overflow queries, search results of RACS, and characteristic of accepted answers 
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1 1854556 If a field is click into, check if input is empty, display a red background. 3 2 4 3 209 463 1 
2 6677035 When the user clicks on that input subject, the page should scroll to the last element of the page with a nice 

animation to scroll to bottom and not to top. 
3 1 3 2 247 471 44 

3 554273 When someone clicks on an image, change the image source. 2 1 2 1 188 78 3 
4 986120 Get the value of the selected radio button when any of these three are clicked. 2 1 2 1 195 100 1 
5 1423561 Hide the container if focus is lost. 2 1 2 1 181 80 1 
6 699065 When I press Enter on the form, the form is submitted. 2 1 2 1 194 79 1 
7 901712 If the age checkbox is checked, then I need to show a textbox to enter age, else hide the textbox. 3 2 2 1 214 356 1 
8 152975 Show HTML menus completely when a user clicks on the head of these menus. Hide these elements when 

the user clicks outside the menus' area. 
4 3 3 2 287 2633 NF 

9 169506 When I catch the submit form event with jQuery, get all the input fields of that form in an associative array. 2 1 2 1 211 101 1 
10 1594952 When the text field is empty the submit button should be "disabled". When something is typed in the text field to 

remove the "disabled" attribute. If the text field becomes empty again the submit button should be "disabled" again. 
6 5 4 3 302 70155 NF 

11 24816 Escaped an arbitrary string and display in an HTML page. 2 1 2 1 191 90 NF 
12 303767 Grab the height of the window and the scrolling offset in jQuery. 2 1 2 1 200 88 NF 
13 1216114 Make a div stick to the top of the screen once it's been scrolled enough to contact its top boundary 2 0 2 1 236 90 NF 
14 253689 Change the background image of a div when it is clicked. 2 1 2 1 193 88 1 
15 480735 Select all contents of textbox when it receives focus. 2 1 2 1 189 89 3 
16 164085 Execute a callback when an IFRAME has finished loading. 2 1 2 1 196 91 NF 
17 376081 Loop though the table, and get the value of the "Customer Id" column for each row. 2 1 2 1 192 83 NF 
18 4551175 Before the AJAX request if the previous request is not completed I've to abort that request and make a new request. 2 1 2 1 224 85 NF 
19 912711 Load javascript file only if the user clicks on a certain button.  2 1 2 1 202 99 1 
20 47824 Remove all the options of a select box, then add one option. 3 2 3 2 288 498 NF 
21 540349 Hide the rollover image when the onmouseout event happen 2 1 2 1 194 90 1 
22 3709597 Wait for all Ajax requests to be done before I execute the next 2 1 2 1 167 85 NF 
23 34830973 If a field is clicked, display a background image 2 1 2 1 209 463 1 
24 3044573 Determine the size of the browser viewport, and to redetect this if the page is resized? 3 2 3 2 245 590 NF 
25 8423217 An event to fire client side when a checkbox is checked 2 1 2 1 202 86 NF 
26 5797539 When you click inside a textarea, its entire content gets selected 2 1 2 1 231 417 4 
27 871063 Check radio option whether no default is set and then set a default. 2 1 2 1 211 376 1 
28 4177159 When element clicked, toggle between checked and unchecked. 2 1 3 2 223 98 NF 
29 1064089 When someone clicks a link, a word or two to be inserted where the cursor is. 2 1 2 1 320 1687 1 
30 437958 When one of these links is clicked, hide the links that are not clicked. 2 1 2 1 230 79 1 
31 1212500 Create a CSS class and add it to DOM at runtime with jQuery. 2 1 2 1 184 83 1 
32 7717527 JQuery smooth scrolling when clicking an anchor link. 2 1 2 1 179 80 NF 
33 9398870 Remove the top and left attribute from the inline style on the div when clicked. 2 1 2 1 199 345 3 
34 946534 Insert text into a text area using jquery, upon the click of an anchor tag. 2 1 2 1 189 78 1 
35 1925614 Get the value selected from a dropdown menu and change the form action 1 0 2 1 201 79 NF 
36 360491 Strip white space when grabbing text with jQuery? 2 1 2 1 178 83 NF 
37 2358205 Trigger an event after any other type of iterative callback has completed. 2 1 2 1 234 345 NF 
38 4687579 I want just the new "blah" div to fade in after the content gets appended. 2 1 2 1 169 76 1 
39 3024391 Get child elements and iterate through each of those elements. 2 1 2 1 197 85 NF 
40 2380230 Get the selected option from a dropdown and populate another item with that text. 2 1 2 1 203 98 1 
41 316278 Have an element fade in, then in 5000 ms fade back out again 2 1 2 1 187 80 NF 
42 2330209 If the "Check Me" checkbox is checked, all the other 3 checkboxes should be enabled. 2 1 2 1 223 485 1 
43 4613261 Get the position of layer1 and set the same position to layer2. 2 1 2 1 202 87 1 
44 5176803 When the radio button is selected I enable an edit box. 2 1 2 1 198 89 NF 
45 4996002 Get the index of the child li relative to it's parent, when clicking that li 2 1 2 1 188 104 1 
46 13626517 Disable inputs at first and then enable them when click a link  3 2 3 2 174 84 NF 
47 2230704 Get the value of the hidden field when the select is changed. 2 1 2 1 210 93 1 
48 6658752 Generate a new tag with class name "test" in h2 by clicking the button 2 1 2 1 186 88 8 
49 4076770 When the <select> dropdown is changed, get the value before change. 2 1 2 1 213 80 1 
50 1314450 Capture the TAB keypress, cancel the default action. 2 1 2 1 204 479 1 



4.2 Metrics 
To assess the effectiveness of a code search approach with respect to 

a single query, our evaluations used the metric of the best hit rank, i.e., 

the highest rank of the hit snippets for the query. A higher best hit 

rank implies lower user effort for inspection to find the hit snippet.   

To assess the effectiveness of a code search approach with respect to a 

set of queries, our evaluations used the metric of success percentage 

at k, i.e., the success percentage among the set of queries considering 

only the top k results returned by a search approach. In particular, the 

success percentage at k (𝑃𝑘) in our evaluations is calculated using the 

following formula: 

𝑃𝑘 =
# 𝑏𝑒𝑠𝑡 ℎ𝑖𝑡 𝑟𝑎𝑛𝑘𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛  𝑘

𝑡𝑜𝑡𝑎𝑙 # 𝑞𝑢𝑒𝑟𝑖𝑒𝑠
  

We investigated 𝑃𝑘  with k’s respective values as 1, 5, and 10 

returned snippets, reflecting the typical sizes of snippets that various 

users would invest to inspect. Such metric has been popularly used 

to assess the effectiveness of a code search approach [8][27]. Note 

that we do not use MRR (Mean Reciprocal Rank), which is popular 

for assessing navigational search and question answering but is not 

appropriate for assessing code search. 

4.3 Effectiveness of RACS (RQ1) 
We first evaluated the effectiveness of RACS. Table 2 also shows the 

results of RACS and some characteristics of a question’s accepted 

answer (including its sample code snippet). Columns “#Meth” and 

“#Rela” under “Target Snippet MCR Graph” show the number of the 

jQuery API method calls and relationships in the accepted answer, 

respectively. Columns “#Act” and “#Rela” under “Query AR Graph” 

show, for each NL search query, the total number of actions and 

relationships that are identified, respectively. Columns “T1” and “T2” 

represent the time (in millisecond) for deriving A-MCR graphs (Section 

3.3.1) and searching MCR graphs (Section 3.3.2), respectively. The last 

column shows the best hit rank, i.e., the highest rank of hit snippets that 

answered the question. “NF” denotes “Not Found”.  

For 23 of the queries (46% of 50), top 1 of the snippet list returned by 

RACS is a hit snippet, i.e., one that matches the target code snippet. 

For 28 queries (56% of 50), top 10 of the snippet list returned by 

RACS include at least one hit snippet. Once RACS constructed a very 

precise MCR graph, which is the same as the MCR graph of the 

accepted answer’s code, RACS returns the right snippet in the top 1 

rank. As shown in Figure 6, RACS accurately returned code snippets 

for queries 6 and 7 in Table 2. The jQuery API method calls (marked 

with a rectangle box) meet the semantics of each action, and the code 

structures meet the relationships implied in the NL query. 

RACS did not return good results for some queries as shown in 

Table 2. There are three main reasons. First, our current snippet 

base is not sufficiently large to contain their required sample 

snippets (queries 8, 10, 16, 18, 20, 24, 39, 41, and 46). When we 

added (to our current snippet base) the code snippet from the 

accepted answer for each query, all of these queries got the target 

snippet in top 10 results. Second, the AR graph generated from a 

query may not exactly reflect the semantics (queries 2, 13, and 35). 

Queries 2 and 35 miss one relationship, and query 13 includes an 

incorrectly identified callback relationship. Third, an NL search 

query is not similar to the required method’s API documentation 

description (queries 11, 12, 17, 22, 25, 28, 36, 37, and 44). Thus, 

given limited API documentation description, relying on semantic-

similarity-based method searching, RACS cannot identify the 

candidate methods for these nine queries unless these queries are 

rewritten. 

We also investigated the influence of replacing some specific nouns 

with more general ones as done in post-processing (in Section 3.2.4). 

The detailed results can be found on our project website:  

https://sites.google.com/site/racsproject/. 

Query 6: “When I press Enter on the form, the form is submitted”  

 
Query 7: “If the age checkbox is checked, then I need to show a textbox to enter 

age, else hide the textbox.” 

 

Figure 6. Top 1 ranked code snippet for queries 6 and 7. 

4.4 Comparison with Relationship-oblivious 

Approach (RQ2) 
We next present the evaluation results of comparing RACS with a 

relationship-oblivious approach. We implemented a relationship-

oblivious code search approach (ROCS) that uses keyword 

matching between the given query text and the API documentation 

text related with a particular code snippet. This implemented 

relationship-oblivious approach shares key ideas with two existing 

state-of-the-art code search approaches (SNIFF [7] and Exemplar 

[31]). Similar to SNIFF, this relationship-oblivious approach applies 

stop-word removal and stemming to a user query, and retrieves 

usage patterns (in the form of MCR graphs for direct comparison 

with RACS) from the snippet base based on keyword matching 

(while taking no account of the order of keywords). The existing 

relationship-oblivious approaches typically use support for ranking 

each usage pattern (along with a sample code snippet that matches 

the pattern) based on the number of code snippets that match the 

pattern. Such ranking is based on the premise that more-popularly 

implemented patterns tend to be more relevant for a query among 

all the patterns that match the query (i.e., matching the keywords in 

the query).  

By contrast, RACS uses two different search techniques as 

presented in Section 3.3. In particular, RACS uses semantic 

similarity (instead of keyword matching) for matching a query text 

against text in API documentation (see Section 3.3.1 for detail). 

RACS uses relationship-aware ranking (instead of pattern support), 

which ranks the MCR graphs by the graph similarity of A-MCR 

graphs (derived from the query) and MCR graphs (see Section 3.3.2 

for detail). To evaluate how these two key techniques in RACS 

contribute to the overall effectiveness of RACS, we also 

implemented two variant approaches that each replace one 

technique in RACS with the corresponding technique in the baseline 

approach ROCS. Then we compared the effectiveness of the four 

approaches:  

RACS: semantic similarity + relationship-aware ranking 

ROCS: keyword matching + relationship-oblivious (i.e., support-

based) ranking 

ROCS
+: semantic similarity + relationship-oblivious ranking 

RACS
−: keyword matching + relationship-aware ranking 

We investigated the success percentage at k with k’s respective values 

as 1, 5, and 10 snippets.  The results are shown in Table 3. The table 

shows that RACS could answer more questions with higher rank than 

ROCS. RACS could hit the target code snippet with the top 1 snippet 

for 46% queries, compared to only 4% achieved by ROCS. ROCS 

found the desired code snippet for only query 30 and query 38 in top 1 

$("[id^='relExInput']").keypress(function(A) { 
  if (A.which == 13)  
  { 
    $("#i").val(this.value); 
    $("#calculate").submit(); 

} 
}); 

$('.hide-postbox-tog').bind('click.postboxes', function() { 
  var box = $(this).val(); 
  if ($(this).prop('checked'))  
  { 
    $('#' + box).show(); 
    if ($.isFunction(postboxes.pbshow))  
    self.pbshow(box); 
  } else { 
    $('#' + box).hide(); 
    if ($.isFunction(postboxes.pbhide))  
    self.pbhide(box); 
  } 
  self.save_state(page); 
  self._mark_area(); 
}); 



snippet. In top 5 snippets, the success percentage of RACS is 54%, 

while the success percentage of ROCS is only 10%. With top 10 

snippets, RACS could answer 28 questions for the entire 50 questions, 

while ROCS could answer only 8 questions. We did t-test on the 

value of the best hit rank. RACS significantly outperformed the other 

three approaches. The detailed results can be found on our project 

website: https://sites.google.com/site/racsproject/. 

Table 3. Comparison results 

 

Metrics 

Pattern 
Searching 

Method 
Searching 

Relationship-

oblivious 

Relationship-

Aware 

Typeless 

Relationship-Aware  

𝑃1  

Keyword 

Matching 

4% 16% 10% 

𝑃5 10% 22% 20% 

𝑃10 16% 26% 26% 

𝑃1  

Semantic 

Similarity 

14% 46% 36% 

𝑃5 34% 54% 52% 

𝑃10 48% 56% 56% 

RACS:        ROCS:        ROCS+:        RACS−: 

In Table 3, the success percentage results in column “Relationship-

aware” are always higher than the results in column “Relationship-

oblivious”, indicating that relationship-aware ranking performs better 

than relationship-oblivious (support-based) ranking. The results show 

that relationship among API method calls is very valuable when 

conducting code search for JavaScript frameworks. Sometimes, code 

snippets with the highest support may not be the target snippets. For 

example, for query 4 “Get the value of the selected radio button when 

any of these three are clicked”, the best hit rank of RACS is 1. The top 

1 code snippet contains a callback relationship of .click(FUNCTION) 

and .val(). In contrast, the best hit rank of ROCS+ for query 4 is 10. 

The ROCS+  approach ranks the sequencing of .children(STRING) 

and .find(STRING) first, with the highest support. RACS’s awareness 

of the method call relationship improves the effectiveness of searching. 

Table 3 also shows that the approaches based on semantic similarity 

achieve higher success percentage than the approaches based on 

keyword matching. The approaches based on keyword matching are 

effective only if the words in an NL search query exactly match the 

words in API documentation. RACS uses text semantic similarity, 

which can overcome such shortcomings. For example, for query 3, 

“When someone clicks on an image, change the image source”, 

RACS found a code snippet in top 1 similar to the accepted answer’s code 

snippet, while RACS−  failed to answer this query. RACS analyzed the 

sentence in the NL search query and generated the MCR graph with 

method signature set {.click(FUNCTION),.attr(STRING,STRING)} and 

callback relationship between them. RACS−  failed in searching for a 

relevant method using keyword matching, because the query and API 

documentation description use semantic similar words (“change” and 

“set”), rather than exactly the same word. 

We also investigated the significance of identifying different types of 

relationships. In the processes of mining API usage patterns and 

abstracting an NL query, we treated all the three kinds of relationships 

as one type – sequencing relationship, leading to more AR graphs that 

have the same similarity with the A-MCR graph. We used support to 

re-rank patterns with the same similarity. As shown in the last column 

of Table 3, not differentiating relationship types leads to reducing the 

effectiveness, especially for 𝑃1. In addition, we found that the number 

of the relationships does not affect the effectiveness of RACS when 

the code corpus includes the target code snippet. For queries with 1 or 

2 relationships, RACS gets better results than being relationship-

obvious. Actually, >2-relationship queries are rare in Stack Overflow, 

and their target code snippets are also rare in the snippet base. After 

we added in the snippet base the target code snippets from the 

accepted answers for each query, all of these >2-relationship queries 

got their target snippets in top 10 results. 

We compared RACS with Ohloh Code (https://code.openhub.net/), 

which is a publicly available industrial Internet-scale code search 

engine. All our projects for building the snippet base except Amazon 

are included in the underlying repositories used by Ohloh Code. We 

removed the Amazon snippets from the snippet base of RACS, mined 

6,778 usage patterns, and searched on the smaller snippet base. For 

Ohloh Code, we added “jquery” to each benchmark query and filtered 

out non-JavaScript code snippets. If there was no hit in top 10 search 

results, we directly used the API names in the accepted answer as query 

keywords in place of the NL query. For the top 10 search results, RACS 

could hit the target code snippet for 48% queries, while Oholh Code 

could hit for 16%: RACS substantially outperformed Ohloh Code.  

4.5 Threats to Validity 
The threats to external validity primarily include the degree to which 

selected JavaScript frameworks and search queries are representative of 

true practice. There are many kinds of JavaScript frameworks for 

different purposes. In our evaluations, we selected only the most 

commonly used web-application related framework – jQuery. There are 

other frameworks with different qualities of documentation, which may 

influence the results. The qualities of search queries also affect the query 

results. To make queries used in our evaluations to reflect real-world 

queries, we selected representative questions from Stack Overflow 

based on the vote number, and directly used the question title and 

description as search queries. Queries written by different users have 

different qualities. These threats could be reduced by more experiments 

on more frameworks and more search queries in the future. In addition, 

the relationship-oblivious approach was implemented by us. To 

alleviate this threat, we already took great care to accomplish fair 

comparison and evaluation. For example, the only two modifications 

from RACS to produce ROCS are (1) from semantic similarity to 

keyword matching and (2) from relationship-aware ranking to support 

ranking, where the keyword matching and support ranking are 

common/typical techniques adopted by existing approaches. Moreover, 

we implemented two variant approaches ROCS+ and RACS- to 

represent broad comparison bases. 

5. Discussion 
In this section, we discuss the applicability and limitations of our current 

implementation of the RACS approach.  

Given free-form NL descriptions, RACS can effectively search snippets 

(JavaScript framework client code) for relevant code snippets. RACS is 

very useful for beginner programmers of using a framework. The 

programmers do not need to know details about the framework, such as 

the method name and type information in the target framework API 

method. Our implemented tool can be integrated in programming Q&A 

sites and development environments for the jQuery framework.  

With some modifications, our RACS approach can be applied to a 

wider scope. For example, when used for another JavaScript framework, 

RACS needs to use only the framework’s corresponding API 

documentation. RACS focuses on a JavaScript framework, and 

introduces three common relationships in JavaScript code. Considering 

only sequencing and condition relationships, RACS could be applied to 

other languages. We can also define more relationships that best show 

these languages’ features. 

Our RACS approach attains the NL description for an API method 

directly from the API documentation’s short description, which may not 

comprehensively capture the API method’s semantics. The user may 

use a high-level description where one action maps to multiple API 

methods. Automatic techniques of comment generation [32] and NL 

relation classification techniques based on model neural networks [4] 

may alleviate this problem. We can also attain more knowledge by 

crowdsourcing [33] beyond API documentation.  

Automatically identifying actions and relationships from an NL search 

query may not work well for some search queries due to the arbitrariness 

of NL, especially for sentences with ambiguous meanings or grammatical 



mistakes. Cooperation between the user and the tool [18] can be used to 

address such issues. Another extension is to incorporate deep learning-

based approaches to automatically characterize code features [14][36]. 

6. Related Work 
In this section, we discuss related work to our code search approach, 
along with our approach’s technique of mining framework API usage 
patterns and technique of abstracting the AR graph from an NL query. 

6.1 Source Code Search 
There have been various code search approaches for different forms of 
queries. The most common form is an NL query, which is the same 
form as the one in general search engines. Mica [29] augments Google 
Web API’s search results to help programmers find the target API 
classes and methods given a description of desired functionality. Mica 
can return some web pages containing code snippets that show basic 
usage of API methods. RACS directly searches code snippets in a large-
scale code base and can find complex usage of API methods. Keivanloo 
et al. [8] use code-clone detection to spot out working code snippets, 
with a time complexity as low as the complexity of existing code search 
engines. Portfolio [27] uses the PageRank and spreading activation 
networks to help programmers navigate and understand usages of the 
given methods. These approaches require users to provide good query 
terms and require that keywords extracted from the query terms appear 
in the code base. SNIFF [7] searches API document description of API 
methods invoked in the code base to support a query in plain English. 
CodeHow [35] recognizes potential APIs with the help of API 
documentation and applies the Extend Boolean model instead of a SVM 
model to retrieve code snippets that match queries. RACS supports a 
free-form NL query, and uses a metric to reflect semantic text similarity 
instead of keyword matching as used by previous related approaches.   
Prospector [3] accepts a query in the form of source and target objects 

types.  It synthesizes code fragments using both API method signatures 

and type cast information mined from a code base. PARSEWeb [5] 

interacts with the Google code search engine and suggests relevant 

method-invocation sequences. Semantics-based code search [26] lets 

users specify what they are looking for as precisely as possible using 

keywords, method signatures, test cases, etc. The query forms required 

by these preceding approaches may not be easy to formulate if the 

programmers are unfamiliar with the framework to be reused. RACS 

accepts a plain NL query, and extracts specifications from the NL query 

instead of requiring users to formulate a detailed query using 

programming keywords. 

There are other code search approaches whose input query form is close 

to actual code. Strathcona [23] locates relevant code in a code base 

based on heuristically matching the structure of the code under 

development. XSnippet [25] makes use of the context information 

similar to Strathcona, but it offers improvements on reducing irrelevant 

code examples being matched along with using only relevant contexts. 

MAPO [6] mines patterns that describe a certain usage scenario and 

further recommends mined API usage patterns and their associated code 

snippets upon users’ requests. PRIME [24] can answer queries focused 

on API usage with code showing how an API method should be used. 

PRIME searches code over partial programs using a relaxed inclusion 

matching technique. RACS can answer similar questions without 

requiring users to write a detailed query such as source code. Chan et 

al.’s approach [34] constructs an API graph from an API library’s 

implementation code. Such API graph connects classes and methods 

with relationships (i.e., inheritance class, member methods, input 

parameter, and output parameter), and then their approach selects nodes 

(i.e., classes and methods) with high textual similarity on node names 

only. Subgraphs with higher accumulated node textual similarity are 

ranked higher. RACS constructs an MCR graph from an API library’s 

client code and uses graph similarity to search MCR graphs with A-

MCR graphs by considering both node types and relationship types (i.e., 

sequencing, callback, and condition). 

6.2 JavaScript Code Analysis and Usage 
Pattern Mining  
Code analysis and code mining are basic components of various 

software engineering tasks. Dealing with JavaScript code needs more 

specific techniques due to its language features. Our technique of 

mining API usage patterns for JavaScript frameworks handles 

JavaScript language features similar to TAJS [15] and JSMiner [9]. 

TAJS [15] is a whole-program dataflow analyzer for JavaScript, 

including the ECMAScript standard library and large parts of the W3C 

browser API and HTML DOM functionality. JSMiner [9] uses a graph-

based representation, JSModel, for JavaScript usage and mines inter-

procedural, data-oriented JavaScript usage patterns. JSModel contains 

non-essential information (such as data flow dependencies) that 

contributes little to producing query results, but reduces the search 

efficiency. RACS uses MCR graphs to abstractly represent JavaScript 

code using a certain framework. An MCR graph is more concise and 

contains essential information that may be reflected in a user query. 

6.3 NLP-based Specification Extraction and 
Program Synthesis 
There exist various approaches that extract specifications automatically 

from NL. Zhong et al. [20] infer resource specifications from API 

documentation and detect code bugs. Xiao et al. [18] develop a 

template-based approach to extract security policies from NL software 

documentation and resource-access information from NL scenario-

based functional requirements. Pandita et al. [17] infer formal method 

specifications from NL text of API documentation. These approaches 

apply NLP techniques to analyze software documents. Other 

approaches analyze an NL search query from the users and synthesize 

programs meeting the requirements of the users. SmartSynth [12] is an 

end-to-end programming system for synthesizing smartphone 

automation scripts from NL descriptions. NLyze [11] is an Excel add-in 

that supports a rich user interaction model including annotating the users’ 

NL specification and explaining the synthesized programs (written in a 

domain-specific language) by paraphrasing them into structured English. 

RACS searches for relevant code snippets from a code base based on 

analyzing an NL search query. 

7. CONCLUSION 
Existing code search approaches are not effective in finding code 

snippets that use JavaScript frameworks to implement a specific feature 

reflected by the given NL search query. In this paper, we have presented 

a novel Relationship-Aware Code Search (RACS) approach. RACS 

first collects a large number of code snippets that use some JavaScript 

frameworks, mines API usage patterns from the collected code snippets, 

and represents the mined patterns with MCR graphs. Given an NL 

search query, RACS conducts NL processing to automatically 

transform the query to an AR graph. In this way, RACS reduces code 

search to the problem of graph search: searching the MCR graphs for a 

graph similar to the given AR graph.  During the graph search, RACS 

includes a technique based on text semantic similarity to bridge the gap 

between NL actions in an AR graph and framework API methods in an 

MCR graph. We have conducted evaluations against popular real-world 

jQuery questions (posted on Stack Overflow), based on 308,294 code 

snippets collected from over 81,540 files on the Internet. The evaluation 

results show the effectiveness of RACS: the top 1 snippet produced by 

RACS matches the target code snippet for 46% questions, compared to 

only 4% achieved by a relationship-oblivious approach. 
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