
Clamp: Automated Joinpoint Clustering and
Pointcut Mining in Aspect-Oriented Refactoring

Prasanth Anbalagan Tao Xie
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

panbala@ncsu.edu, xie@csc.ncsu.edu

ABSTRACT

Software refactoring consists of a set of techniques to reorganize
code while preserving the external behavior. Aspect-Oriented Pro-
gramming (AOP) provides new modularization of software systems
by encapsulating crosscutting concerns. Based on these two tech-
niques, Aspect-Oriented (AO) refactoring restructures crosscutting
elements in code. AO refactoring includes two steps: aspect min-
ing (identification of aspect candidates in code) and aspect refac-
toring (semantic-preserving transformation to migrate the aspect-
candidate code to AO code). Aspect refactoring clusters the join
points for the aspect candidates and encapsulates each cluster with
an effective pointcut definition. With the increase in size of the
code and crosscutting concerns, it is tedious to manually identify
aspects and their corresponding join points, cluster the join points,
and infer a pointcut expression. This paper proposes an automated
framework that clusters join point candidates and infers a pointcut
expression for each cluster.

1. INTRODUCTION
Aspect-Oriented Programming (AOP) [3] provides constructs for

modularizing crosscutting concerns. Existing software applications
often contain instances of such crosscutting concerns. Refactoring
such applications towards AOP helps modularize these crosscutting
functionalities. Aspect-Oriented (AO) refactoring [4] provides ad-
ditional means to conventional refactoring techniques. While steps
in conventional refactoring modularize code into a clean OO imple-
mentation, the use of AOP squeezes out code that cannot be further
refactored. We next illustrate the aspect-oriented refactoring pro-
cess through an example.

Figure 1 shows the implementation of an Account class that per-
forms a permission check at the beginning of two methods. Here a
method call to checkPermission is spread into these two meth-
ods. Here we create a pointcut that captures all the join points
where we would like to add the refactored functionality. To mini-
mize unwanted effects, the pointcut simply enumerates each of the
required methods. The pointcut definition is given below:
private pointcut permissionCheckedExecution() :

(execution(public void Account.creditAccount(float)) ||

execution(public void Account.debitAccount(float));

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’06 Portland, Oregon
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

public class Account {
public Account(int accountNumber) {

_accountNumber = accountNumber;

}

public void creditAccount(float amount) {
AccessController.checkPermission("accountOperation");

_balance = _balance + amount;

}

public void debitAccount(float amount) {
AccessController.checkPermission("accountOperation");

....

}

Figure 1: Partial Implementation of an Account Class

The preceding example shows refactoring for a simple case of re-
peated method invocations in each method. Here no clustering has
been done on the join points to group similar join points together
so that each cluster can be characterized by a simple pointcut. In-
stead, all the join points have been combined using the logical op-
erator “||”. In real-world applications, the source code would span
thousands of lines and it would be tedious to manually identify as-
pects and their corresponding join points, cluster the join points,
and infer a pointcut expression. In this paper, we propose an auto-
mated framework, called Clamp, to address the problem of cluster-
ing the join point candidates (identified manually or automatically
by existing aspect mining techniques [2]) and inferring a pointcut
expression for each cluster; our framework complements the exist-
ing aspect mining techniques [2], serving as a post-processor of the
results produced by these aspect mining techniques.

2. APPROACH
The input to our proposed Clamp framework includes aspect

candidates and join point candidates. The inputs are provided ei-
ther manually or automatically by an aspect mining tool [2], which
identifies aspect candidates and and their respective join point can-
didates in the original code. Our framework uses existing aspect
mining tools like Aspect Mining Tool (AMT) [1] to identify as-
pects and existing data mining tools like WEKA1 to cluster iden-
tified join point candidates. Then the clustered join points are fed
as input to an inference engine. The inference engine, based on a
string alignment algorithm, is used to infer pointcuts for the clus-
tered join points.

Figure 2 provides an overview of our Clamp framework. Our
framework consists of two components: the clustering engine and
inference engine. The clustering engine receives the aspect candi-
dates and join point candidates (identified before using our frame-
work) as inputs. In order to perform clustering, we process the join

1http://www.cs.waikato.ac.nz/ml/weka/

����������

�	�
�
	���

���������

�������
�������

�����������

���������

��������
���������

Figure 2: Overview of the Clamp framework

point candidates to form a data set, which is fed as input to the data
mining tool. The data set includes two sections: attributes and data.
The attributes are usually different naming parts of a join point can-
didate for an aspect and are the prime factors based on which we
perform the grouping of join points. For example, if a join point
is that of a method execution, then the attributes would be naming
parts of the method, i.e., its modifiers, return type, method name,
and arguments. The data contains distinct values, i.e., the join point
candidates arranged in the order described by the attributes. A sam-
ple data set has been shown in the preliminary results section.

We provide the user with an option to select the attributes based
on which the clustering is performed. By default, our approach
automatically chooses the prime factors based on which the group-
ing of join points is performed. In our current implementation,
the prime factor has been chosen as the name field of a join point
candidate. The name field of a join point candidate is split into
different parts. Splitting the name field gives a higher probability
of detecting a common pattern among the name fields of different
join points. For example, consider the method names of the join
points creditAccount and debitAccount. The names are split
into “credit”, “Account”, and “debit”, “Account”. After the
names are split, we find that there is a common pattern “Account”
and the method names are grouped into one cluster. Similarly the
procedure of splitting the name field is repeated for all join point
candidates. The data input to be fed to the clustering tool is formed
by including the split name fields and the individual join points.

In the case of join points for the class Account, one cluster is
possible where the methods public void creditAccount(float)

and public void debitAccount(float) have a common pat-
tern Account in their names. The cluster assignment is shown in
Figure 3. This file is in a format similar to the data input but each
join point is assigned a cluster number in the end of data lines. The
framework automatically performs the clustering and provides the
output as a textual file. This file is in a format similar to the dataset
but each data value is assigned a cluster number. The output file
is then processed to group the elements belonging to a cluster to-
gether. The join points belonging to the same cluster are identified
by the cluster number assigned to each join point. This clustered
data is then fed as input to the inference engine.

We use the inference engine to form a pointcut given a set of
clustered join point candidates. This component is based on a string
alignment algorithm such as the similarity measure algorithms in
Simmetrics2, an open source similarity measure library. The clus-
tered data input has the join points with its naming parts separated
by commas. The inference engine parses each item in the data input
and identifies the naming parts. Then the inference engine forms
expressions for each naming part and combines the individual ex-
pressions of the naming parts to form a complete pointcut. If more
than one expression can be inferred for a cluster, an optimal one is
selected. The optimality is determined as the expression that suits
best for all strings in the cluster as well has the maximal similarity
measure based on a string distance measure. The formed expres-
sion is combined together with the designator corresponding to the
join point candidates.

2http://sourceforge.net/projects/simmetrics/

Join points

public void Account.creditAccount(float)

public void Account.debitAccount(float)

Clustered Data

@relation Method_cluster

@attribute Modifier {public}
@attribute return_type {void }
@attribute Method_name {creditAccount,debitAccount}
@attribute Class_name {Account}
@attribute arguments {(float)}
@data

0,public,void,Account,creditAccount,(float),cluster0

1,public,void,Account,debitAccount,(float),cluster0

Poincut expression for clustered data

execution(public void Account.*Account(float));

Figure 3: Preliminary results

3. PRELIMINARY RESULTS
We have implemented the approach and performed preliminary

experiments on a few sample sets. Figure 3 shows a sample result
for the example described in Section 1. It also shows the intermedi-
ate results produced by the cluster engine. Clustering can be done
based on a single attribute or a set of attributes. The results show a
sample clustering based on the class name, i.e., join points belong-
ing to the class Account have been grouped together to belong to a
single cluster. This output is similar in format to the data set except
that the individual data values are assigned to a cluster. Since there
is only one possible grouping of join points here, the join points
are grouped to a cluster named as cluster0. After the data set
is processed to group elements belonging to the same cluster to-
gether, the data set is fed as input to the inference engine. The ex-
pression “public void Account.*Account(float)” denotes
the expression inferred from the join points in cluster0. Because
the modifier, return type, class name, and argument of the methods
identified as join points are similar, the expression is inferred for
the strings “creditAccount” and “debitAccount”, which are
the method names. After the expression is formed, the respective
designator is assigned to the pointcut expression. The final result
gives the complete pointcut expression based on the cluster data.

4. REFERENCES
[1] J. Hannemann and G. Kiczales. Overcoming the prevalent

decomposition of legacy code. In Proc. Workshop on

Advanced Separation of Concerns at the International

Conference on Software Engineering, pages 220–242, 2001.

[2] A. Kellens and K. Mens. A survey of aspect mining tools and
techniques. Technical Report 2005-08, INGI, UCL, Belgium,
2005.

[3] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proc. 11th European Conference on

Object-Oriented Programming, pages 220–242, 1997.

[4] R. Laddad. Aspect Oriented Refactoring. Addison-Wesley,
September 2006.

