
Retrofitting Unit Tests for Parameterized Unit Testing

Suresh Thummalapenta1, Madhuri R. Marri1, Tao Xie1,

Nikolai Tillmann2, and Jonathan de Halleux2
1{sthumma,mrmarri,txie}@ncsu.edu

2{nikolait, jhalleux}@microsoft.com
1 Department of Computer Science, North Carolina State University, Raleigh, USA

2 Microsoft Research, One Microsoft Way, Redmond, USA

Abstract. Recent advances in software testing introduced parameterized unit

tests (PUT), which accept parameters, unlike conventional unit tests (CUT), which

do not accept parameters. PUTs are more beneficial than CUTs with regards to

fault-detection capability, since PUTs help describe the behaviors of methods

under test for all test arguments. In general, existing applications often include

manually written CUTs. With the existence of these CUTs, natural questions that

arise are whether these CUTs can be retrofitted as PUTs to leverage the bene-

fits of PUTs, and what are the cost and benefits involved in retrofitting CUTs as

PUTs. To address these questions, in this paper, we conduct an empirical study to

investigate whether existing CUTs can be retrofitted as PUTs with feasible effort

and achieve the benefits of PUTs in terms of additional fault-detection capability

and code coverage. We also propose a methodology, called test generalization,

that helps in systematically retrofitting existing CUTs as PUTs. Our results on

three real-world open-source applications (≈ 4.6 KLOC) show that the retrofitted

PUTs detect 19 new defects that are not detected by existing CUTs, and also in-

crease branch coverage by 4% on average (with maximum increase of 52% for

one class under test and 10% for one application under analysis) with feasible

effort.3

1 Introduction

Unit tests are widely adopted in software industry for ensuring high quality of produc-

tion code. Unit testing helps detect defects at an early stage, reducing the effort required

in fixing those defects. Recent advances in unit testing introduced parameterized unit

tests (PUT) [23], which accept parameters, unlike conventional unit tests (CUT), which

do not accept parameters. Existing state-of-the-art test-generation approaches such as

Dynamic Symbolic Execution (DSE) [10, 15, 20, 22] can be used in combination with

PUTs to automatically generate CUTs by instantiating the parameters. In particular,

DSE systematically explores the code under test exercised by a PUT and generates

CUTs that achieve high structural coverage such as branch coverage of the code under

test. Section 2 presents more details on how CUTs can be generated from PUTs via

DSE.

In general, PUTs are more beneficial than CUTs. The primary reason is that PUTs

help describe the behaviors of methods under test for all test arguments. With PUTs,

test data can be automatically generated using DSE-based approaches, thereby helping

address the following two issues with CUTs. First, developers may not be able to write

3 The first and second authors have made equal contributions.

test data (in CUTs) that exercise all important behaviors of methods under test, thereby

resulting in unit tests with low fault-detection capability. Second, developers may write

different test data that exercise the same behavior of methods under test, thereby re-

sulting in redundant unit tests [24]. These redundant unit tests increase only the testing

time and do not increase the fault-detection capability. Consider the three CUTs shown

in Figure 1 for testing the Push method of an integer stack class IntStack. These

three CUTs exercise the Push method with different test data in different test scenarios.

For example, CUT1 and CUT2 exercise Push with different argument values, when the

stack is empty, while CUT3 exercises Push, when the stack is not empty. Consider that

there is a defect (Push) that can be detected by passing a negative value as an argument

to Push. These three tests cannot detect the preceding defect, since these tests do not

pass a negative integer value as an argument. Furthermore, CUT2 is a redundant unit

test with respect to CUT1, since IntStack has the same behavior for all non-negative

integers passed as arguments to Push. Since test data is automatically generated by

DSE-based approaches that tend to exercise all feasible paths in the methods under test,

the fault-detection capability of PUTs is often higher than that of CUTs. Furthermore,

a single PUT can represent multiple CUTs, thereby reducing the size of test code and

improve the maintainability of the test code. For example, the PUT shown in Figure 2

tests the same or more behaviors of the method under test as the three CUTs shown in

Figure 1.

01:public void CUT1() {
02: int elem = 1;
03: IntStack stk = new IntStack();
04: stk.Push(elem);
05: Assert.AreEqual(1, stk.Count()); }
06:public void CUT2() {
07: int elem = 30;
08: IntStack stk = new IntStack();
09: stk.Push(elem);
10: Assert.AreEqual(1, stk.Count()); }
11:public void CUT3() {
12: int elem1 = 1, elem2 = 30;
13: IntStack stk = new IntStack();
14: stk.Push(elem1);
15: stk.Push(elem2);
16: Assert.AreEqual(2, stk.Count()); }

Fig. 1. Three CUTs test an integer stack that

does not accept negative integers.

01:public void PUT(int[] elem) {
02: IntStack stk = new IntStack();
03: foreach (int i in elem) {
04: stk.Push(i); }
05: Assert.AreEqual(elem.Length,

stk.Count()); }

Fig. 2. A single PUT replacing the three CUTs.

In general, existing applications often

include manually written CUTs [9]. With

the existence of these CUTs, natural ques-

tions that arise are whether these CUTs can

be retrofitted as PUTs to leverage the bene-

fits of PUTs, and what are the cost and ben-

efits involved in retrofitting CUTs as PUTs.

Here, cost includes the effort required in

retrofitting CUTs as PUTs, and benefits

include the additional fault-detection ca-

pability and code coverage achieved via

retrofitting. However, to the best of our

knowledge, there exists no empirical study

that shows cost and benefits involved in

retrofitting existing CUTs as PUTs. To ad-

dress this issue, in this paper, we conduct

an empirical study to investigate whether

existing CUTs can be retrofitted as PUTs

with feasible effort and such retrofitting

achieves benefits in terms of fault-detection capability and code coverage. We also pro-

pose a methodology, called test generalization, that includes a systematic procedure for

manually retrofitting CUTs as PUTs.

In particular, our empirical study helps address the following two fundamental ques-

tions. First, is it cost-effective to retrofit existing CUTs as PUTs (using test generaliza-

tion) with regards to the benefits of test generalization? Second, can developers other

than the original developers who wrote the code under test (who do not have sufficient

knowledge of the code under test) use our methodology to retrofit CUTs as PUTs? Such

other developers could be those who take over legacy applications or those who try to

augment the test suites for the code not written by them. The primary reason for investi-

gating the second question is that, in general, developers who wrote code under test may

not face challenges in writing test oracles (in PUTs) that need to describe the expected

behavior for all test arguments; however, these other developers often do not have suf-

ficient knowledge of code under test and may face challenges in writing test oracles in

PUTs. Therefore, in this paper, we study whether our test-generalization methodology

could help these other developers in addressing the challenge of test-oracle generaliza-

tion (generalizing test oracles in existing CUTs). In particular, to address this issue, the

first and second authors (of this paper) who do not have sufficient knowledge of our

applications under analysis follow our methodology to retrofit existing CUTs as PUTs.

Our results show that test generalization helps these other developers in achieving ad-

ditional benefits in terms of fault-detection capability and code coverage with feasible

effort.

In summary, this paper makes the following major contributions:

– The first empirical study that investigates cost and benefits involved in retrofitting

existing CUTs as PUTs for leveraging the benefits of PUTs.

– A methodology, called test generalization, that helps developers to write PUTs with

feasible effort by leveraging existing CUTs.

– Our empirical results on three real-world applications (≈ 4.6 KLOC) show that test

generalization helps detect 19 new defects that are not detected by existing CUTs,

showing the benefits in terms of fault-detection capability with feasible effort. A

few of these defects are complex to be detected using manually written CUTs.

Furthermore, test generalization increases branch coverage by 4% on average (with

a maximum increase of 52% for one class under test and 10% for one application

under analysis).

2 Background

We use Pex [4] as an example state-of-the-art DSE-based test generation tool for gener-

ating CUTs using PUTs. Pex is a white-box test generation tool for .NET programs. Pex

accepts PUTs and symbolically executes the PUTs and the code under test to generate

a set of CUTs that can achieve high code coverage of the code under test. Since these

generated CUTs are targeted for some common testing frameworks such as NUnit [7],

it is possible to debug and analyze failing CUTs. Initially, Pex explores the code under

test with random or default values and collects constraints along the execution path. Pex

next systematically negates parts of the collected constraints and uses a constraint solver

to generate concrete values that guide program execution through alternate paths. Pex

has been applied on industrial code bases and detected serious new defects in a software

component, which had already been extensively tested previously [22].

3 Test Generalization Methodology

We next present our test generalization methodology that assists developers in achieving

test generalization. Although we explain our methodology using Pex, our methodology

is independent of Pex and can be used with other DSE-based test generation tools [20].

Our methodology is based on the following two requirements.

– R1: the PUT generalized from a passing CUT should not result in false-positive

failing CUTs being generated from the PUT.

– R2: the PUT generalized from a CUT should help achieve the same or higher struc-

tural coverage than the CUT and should help detect the same or more defects than

the CUT.

We next describe more details on

these two requirements. R1 ensures that

test generalization does not introduce

false positives. In particular, a CUT

generated from a PUT can fail for two

reasons: a defect in the method un-

der test (MT) or a defect in the PUT.

Failing CUTs for the second reason

are considered as false positives. These

failing CUTs are generated when gen-

eralized PUTs do not satisfy either nec-

essary preconditions of the MT or as-

sumptions on the input domain of the

parameters required for passing the test

oracle in the PUTs. On the other hand,

R2 ensures that test generalization does

not introduce false negatives. The ra-

tionale is that PUTs provide a generic

representation of CUTs, and should be

able to guide a DSE-based approach in

generating CUTs that exercise the same

or more paths in the MT than CUTs,

and thereby should have the same or

higher fault-detection capability.

We next provide an overview of

how a developer generalizes existing

CUTs to PUTs by using our method-

ology to satisfy the preceding require-

ments and then explain each step in detail using illustrative examples from the NUnit

framework [7].

3.1 Overview

Our test generalization algorithm includes five major steps: (S1) Parameterize, (S2)

Generalize Test Oracle, (S3) Add Assumption, (S4) Add Factory Method, and (S5) Add

Mock Object. In our methodology, Steps S1 and S2 are mandatory, whereas Steps S3,

S4, and S5 are optional and are used when R1 or R2 is not satisfied. Indeed, recent

work [16, 21] (as discussed in subsequent sections) could help further alleviate effort

required in Steps S3, S4, and S5. We next explain our methodology in detail.

For an MT, the developer uses our algorithm to generalize the set of CUTs of that

MT, one CUT at a time. First, the developer identifies concrete values and local vari-

ables in the CUT and promotes them as parameters for a PUT (Line 7). Second, the

developer generalizes the assertions in the CUT to generalized test oracles in the PUT

(Line 8). After generalizing test oracles, the developer applies Pex to generate CUTs

(referred to as gCUTS) from PUTs (Line 9). When any of the generated CUTs fails

(Line 11), the developer checks whether the reason for the failing CUT(s) is due to ille-

gal values generated by Pex for the parameters (Line 12), i.e., whether the failing CUTs

are false-positive CUTs. To avoid these false-positive CUTs and thereby to satisfy R1,

the developer adds assumptions on the parameters to guide Pex to generate legal input

values (Line 13). The developer then applies Pex again and continues this process of

adding assumptions till either no generated CUTs fail or the generated CUTs fail due to

defects in the MT.

//MSS=MemorySettingsStorage
00:public class SettingsGroup{
01: MSS storage; ...
02: public SettingsGroup(MSS storage){
03: this.storage = storage; }
05: public void SaveSetting(string sn, object sv) {
06: object ov = storage.GetSetting(sn);
07: //Avoid change if there is no real change
08: if(ov != null) {
09: if(ov is string && sv is string &&

(string)ov==(string)sv ||
10: ov is int&&sv is int&&(int)ov==(int)sv ||
11: ov is bool&&sv is bool&&(bool)ov==(bool)sv ||
12: ov is Enum&&sv is Enum&&ov.Equals(sv))
13: return;
14: }
15: storage.SaveSetting(sn, sv);
16: if (Changed != null)
17: Changed(this, new SettingsEventArgs(sn));
18: }}

Fig. 3. The SettingsGroup class of NUnit

with the SaveSetting method under test.
00://tg is of type SettingsGroup
01:[Test]
02:public void TestSettingsGroup() {
03: tg.SaveSetting("X",5);
04: tg.SaveSetting("NAME","Tom");
05: Assert.AreEqual(5,tg.GetSetting("X"));
06: Assert.AreEqual("Tom",tg.GetSetting("NAME"));
07:}

Fig. 4. A CUT to test the SaveSetting method.

After satisfying R1, the developer

checks whether R2 is also satisfied,

i.e., the structural coverage achieved by

generated CUTs is at least as much as

the coverage achieved by the existing

CUTs. If R2 is satisfied, then the devel-

oper proceeds to the next CUT. On the

other hand, if R2 is not satisfied, then

there could be two issues: (1) Pex was

not able to create desired object states

for a non-primitive parameter [21], and

(2) the MT includes interactions with

external environments [16]. Although

DSE-based test-generation tools such

as Pex are effective in generating CUTs

from PUTs whose parameters are of

primitive types, Pex or any other DSE-

based tool faces challenges in cases

such as generating desirable objects for

non-primitive parameters. To address

these two issues, the developer writes

factory methods (Line 21) and mock

objects [16] (Line 24), respectively, to assist Pex. More details on these two steps are

described in subsequent sections.

The developer repeats the last three steps till the requirements R1 and R2 are met, as

shown in Loop 10-29. Often, multiple CUTs can be generalized to a single PUT. There-

fore, to avoid generalizing an existing CUT that is already generated by a previously

generalized PUT, the developer checks whether the existing CUT to be generalized be-

longs to already generated CUTs (referred to as gAllCUTs) (Lines 3 − 5). If so, the

developer ignores the existing CUT; otherwise, the developer generalizes the existing

CUT. We next illustrate each step of our methodology using an MT and a CUT from

the NUnit framework shown in Figures 3 and 4, respectively.

3.2 Example

MT and CUTs. Figure 3 shows an MT SaveSetting from the SettingsGroup class

of the NUnit framework. The SaveSetting method accepts a setting name sn and a

setting value sv, and stores the setting in a storage (represented by the member vari-

able storage). The setting value can be of type int, bool, string, or enum. Before

storing the value, SaveSetting checks whether the same value already exists for that

setting in the storage. If the same value already exists for that setting, SaveSetting

returns without making any changes to the storage.

Figure 4 shows a CUT for testing the SaveSetting method. The CUT saves two

setting values (of types int and string) and verifies whether the values are set prop-

erly using the GetSetting method. The CUT verifies the expected behavior of the

SaveSetting method for the setting values of only types int and string. This CUT

is the only test for verifying SaveSetting and includes two major issues. First, the

CUT does not verify the behavior for the types bool and enum. Second, the CUT does

not cover the true branch in Statement 8 of Figure 3. The reason is that the CUT does

not invoke the SaveSetting method more than once with the same setting name. This

CUT achieves 10% branch coverage4 of the SaveSetting method. We next explain

how the developer generalizes the CUT to a PUT and addresses these two major issues

via our test generalization.

S1 - Parameterize. For the CUT shown in Figure 4, the developer promotes the

string “Tom” and the int 5 as a single parameter of type object for the PUT. The

advantage of replacing concrete values with symbolic values (in the form of parameters)

is that Pex generates concrete values based on the constraints encountered in different

paths in the MT. Since SaveSetting accepts the parameter of type object (shown

in Figure 5), Pex automatically identifies the possible types for the object type such

as int or bool from the MT and generates concrete values for those types, thereby

satisfying R2. In addition to promoting concrete values as parameters of PUTs, the de-

veloper promotes other local variables such as the receiver object (tg) of SaveSetting

as parameters. Promoting such receiver objects as parameters can help generate differ-

ent object states (for those receiver objects) that can help cover additional paths in the

MT. Figure 5 shows the PUT generalized from the CUT shown in Figure 4.

S2 - Generalize Test Oracle. The developer next generalizes test oracles in the CUT.

In the CUT, a setting is stored in the storage using SaveSetting and is verified using

GetSetting. By analyzing the CUT, the developer generalizes the test oracle of the

CUT by replacing the constant value with the relevant parameter of the PUT. The test

oracle for the PUT is shown in Line 4 of Figure 5.

In practice, generalizing a test oracle is a complex task, since determining the ex-

pected output values for all the generated inputs is not trivial. Therefore, to assist de-

velopers in generalizing test oracles, we proposed 15 PUT patterns, which developers

can use to analyze the existing CUTs and generalize test oracles. More details of the

patterns are available in Pex documentation [6].
4 We use NCover (http://www.ncover.com/) to measure branch coverage. NCover uses

.NET byte code instead of source code for measuring branch coverage.

S3 - Add Assumption. A challenge faced during test generalization is that Pex or any

DSE-based approach requires guidance in generating legal values for the parameters of

PUTs. These legal values are the values that satisfy preconditions of the MT and help

set up test scenarios to pass test assertions (i.e., test oracles). These assumptions help

avoid generating false-positive CUTs, thereby satisfying R1. For example, without any

assumptions, Pex by default generates illegal null values for non-primitive parameters

such as st of the PUT shown in Figure 5. To guide Pex in generating legal values, the

developer adds sufficient assumptions to the PUT. In the PUT, the developer annotates

each parameter with the tag PexAssumeUnderTest5, which describes that the param-

eter should not be null and the type of generated objects should be the same as the

parameter type. The developer adds further assumptions to PUTs based on the behavior

exercised by the CUT and the feedback received from Pex. Recently, there is a growing

interest towards a new methodology, called Code Contracts [5], where developers can

explicitly describe assumptions of the code under test. We expect that effort required

for Step S3 can be further reduced when the code under test includes contracts.

//PAUT: PexAssumeUnderTest
00:[PexMethod]
01:public void TestSave([PAUT]SettingsGroup st,
02: [PAUT] string sn, [PAUT] object sv) {
03: st.SaveSetting(sn, sv);
04: PexAssert.AreEqual(sv,st.GetSetting(sn));}

Fig. 5. A PUT for the CUT shown in Figure 4.

//MSS: MemorySettingsStorage (class)
//PAUT: PexAssumeUnderTest (Pex attribute)
00:[PexFactoryMethod(typeof(MSS))]
01:public static MSS Create([PAUT]string[]
02: sn, [PAUT]object[] sv) {
03: PexAssume.IsTrue(sn.Length == sv.Length);
04: PexAssume.IsTrue(sn.Length > 0);
05: MSS mss = new MSS();
06: for(int count=0;count<sn.Length;count++){
07: mss.SaveSetting(sn[count], sv[count]);
08: }
09: return mss;}

Fig. 6. An example factory method for the

MemorySettingsStorage class.

S4 - Add Factory Method. In gen-

eral, Pex (or any other existing DSE-

based approaches) faces challenges

in generating CUTs from PUTs that

include parameters of non-primitive

types, since these parameters require

method-call sequences (that create

and mutate objects of non-primitive

types) to generate desirable object

states [21]. These desirable object

states are the states that are required

to exercise new paths or branches in

the MT, thereby to satisfy R2. For

example, a desirable object state to

cover the true branch of Statement

8 in Figure 3 is that the storage ob-

ject should already include a value for the setting name sn. Recent techniques in object-

oriented testing [13, 21] could help reduce effort required for this step. However, since

Pex does not include these techniques yet, the developer can assist Pex by writing

method-call sequences inside factory methods, supported by Pex. Figure 6 shows an

example factory method for the MemorySettingsStorage class.

S5 - Add Mock Object. Pex (or any other existing DSE-based approaches) also faces

challenges in handling PUTs or MT that interacts with an external environment such as

a file system. To address this challenge related to the interactions with the environment,

developers write mock objects for assisting Pex [16]. These mock objects help test

features in isolation especially when PUTs or MT interact with environments such as a

5 PexAssumeUnderTest is a custom attribute provided by Pex, shown as “PAUT” for sim-

plicity in Figures 5, 6, and 9.

Table 1.

(a) Names.

Subject

Applications

NUnit

DSA

QuickGraph

(b) Characteristics of subject applications.

Downloads Code Under Test

#C #M #KLOC Avg.CC Max.CC

193, 563 9 87 1.4 1.48 14.0

3239 27 259 2.4 2.09 16.0

7969 56 463 6.2 1.79 16.0

(c) Existing CUTs.

Existing Test Code

#C #CUTs #KLOC

9 49 0.9

20 337 2.5

9 21 1.2

file system. Recent work [16] on mock objects can further help reduce effort in writing

mock objects.

Generalized PUT. Figure 5 shows the final PUT after the developer follows our method-

ology. The PUT accepts three parameters: an instance of SettingsGroup, the name

of the setting, and its value. The SaveSetting method can be used to save either an

int value or a string value (the method accepts both types for its arguments). There-

fore, the CUT requires two method calls shown in Statements 3 and 4 of Figure 4 to

verify whether SaveSetting correctly handles these types. On the other hand, only

one method call is sufficient in the PUT, since the two constant setting values are pro-

moted to a PUT parameter of type object. Pex automatically explores the MT and

generates CUTs that cover both int and string types. Indeed, the SaveSetting

method also accepts bool and enum types. The existing CUTs did not include test

data for verifying these two types. Our generalized PUT automatically handles these

additional types, highlighting additional advantage of test generalization in reducing

the test code substantially without reducing the behavior exercised by existing CUTs.

When we applied Pex on the PUT shown in Figure 5, Pex generated 8 CUTs from the

PUT. These CUTs test the SaveSetting method with different setting values of types

such as int, string, or other non-primitive object types. Furthermore, the CUT used

for generalization achieved branch coverage of 10%, whereas the CUTs generated from

the generalized PUT achieved branch coverage of 90%, showing the benefits achieved

through our test generalization methodology.

4 Empirical Study
We conducted an empirical study using three real-world applications to show the bene-

fits of retrofitting CUTs as PUTs. In our empirical study, we show the cost and benefits

of PUTs over existing CUTs using three metrics: branch coverage, the number of de-

tected defects, and the time taken for test generalization. In particular, we address the

following three research questions in our empirical study:

– RQ1: Branch Coverage. How much higher percentage of branch coverage is

achieved by retrofitted PUTs compared to existing CUTs? Since PUTs are a gen-

eralized form of CUTs, this research question helps address whether PUTs can

achieve additional branch coverage compared to CUTs. We focus on branch cover-

age, since detecting defects via violating test assertions in unit tests can be mapped

to covering implicit checking branches for those test assertions.

– RQ2: Defect Detection. How many new defects (that are not detected by existing

CUTs) are detected by PUTs and vice-versa? This research question helps address

whether PUTs have higher fault-detection capabilities compared to CUTs.

– RQ3: Generalization Effort. How much effort is required for generalizing CUTs

to PUTs? This research question helps show that the effort required for generaliza-

tion is worthwhile, considering the generalization benefits.

We first present the details of subject applications and next describe our setup for

our empirical study. Finally, we present the results of our empirical study. The detailed

results of our empirical study are available at our project website https://sites.

google.com/site/asergrp/projects/putstudy.

4.1 Subject Applications

We use three popular open source applications (as shown by their download counts in

their hosting web sites) in our study: NUnit [7], DSA [11], and Quickgraph [12]. Table

1(a) shows the names of three subject applications. While we used all namespaces and

classes for DSA and QuickGraph in our study, for NUnit, we used nine classes from its

Util namespace, which is one of the core components of the framework. Table 1(b)

shows the characteristics of the three subject applications. Column “Downloads” shows

the number of downloads of the application (as listed in its hosting web site in January

2011). Column “Code Under Test” shows details of the code under test (of the appli-

cation) in terms of the number of classes (“#C”), number of methods (“#M”), number

of lines of code (“#KLOC”), and the average and maximum cyclometic complexity

(“Avg.CC” and “Max.CC”, respectively) of the code under test. Similarly, Table 1(c)

shows the statistics of existing CUTs for these subject applications.

4.2 Study Setup

We next describe the setup of our study conducted by the first and second authors of this

paper for addressing the preceding research questions. The authors were PhD (fourth

year) and master (second year) students, respectively, with the same experience of two

years with PUTs and Pex at the time of conducting the study. Before joining their grad-

uate program, the authors had three and five years of programming experience, respec-

tively, in software industry. Each of the authors conducted test generalization for half

of CUTs across all the three subjects. The authors do not have prior knowledge of the

subject applications and conducted the study as third-party testers. We expect that our

test-generalization results could be much better, if the test generalization is performed

by the developers of these subject applications. The reason is that these developers can

incorporate their application knowledge during test generalization to write more effec-

tive PUTs.

To address the preceding research questions, the authors used three categories of

CUTs. The first category of CUTs is the set of existing CUTs available with subject

applications. The second category of CUTs is the set of CUTs generated from PUTs.

To generate this second category of CUTs, the authors generalized existing CUTs to

PUTs and applied Pex on those PUTs. Among all three subject applications, the au-

thors retrofitted 407 CUTs (4.6 KLOC) as 224 PUTs (4.0 KLOC). The authors also

measured the time taken for generalizing all CUTs to compute the generalization effort

for addressing RQ3. The measured time includes the amount of time taken for perform-

ing all steps described in our methodology and also applying Pex to generate CUTs

Subject Branch Coverage Overall Max.

Inc. Inc.

CUTs CUTs+RTs(#) PUTs

NUnit 78% 78%(144) 88% 10% 52%

DSA 91% 91%(615) 92% 1% 1%

QuickGraph 87% 88%(3628) 89% 2% 11%

Table 2. Branch coverage achieved by the existing CUTs, CUTs + RTs, and CUTs generated by

Pex using the retrofitted PUTs.

from PUTs. The authors wrote 10 factory methods and 1 mock object during test gener-

alization. The third category of CUTs is the set of existing CUTs + new CUTs (hereby

referred to as RTs) that were generated using an automatic random test-generation tool,

called Randoop [18]. The authors used the default timeout parameter of 180 seconds.

The rationale behind using the default timeout is that running Randoop for longer time

often generates a large number of tests that are difficult to be compiled. This third

category (CUTs + RTs) helps show that the benefits of test generalization cannot be

achieved by simply generating additional tests using tools such as Randoop. To address

RQ1, the authors measured branch coverage using a coverage measurement tool, called

NCover6. To address RQ2 and RQ3, the authors measured the number of failing tests

and computed the code metrics (LOC) using the CLOC7 tool, respectively. The authors

did not compare the execution time of CUTs for all three categories, since the time

taken for executing CUTs of all categories is negligible (< 20 sec).

4.3 RQ1: Branch Coverage

01:public void RemoveSetting(string sn) {
02: int dot = settingName.IndexOf(’.’);
03: if (dot < 0)
04: key.DeleteValue(settingName, false);
05: else {
06: using(RegistryKey subKey = key.OpenSubKey(

sn.Substring(0,dot),true)) {
07: if (subKey != null)
08: subKey.DeleteValue(sn.Substring(dot+1));}
09:}}

Fig. 7. RemoveSetting method whose coverage

is increased by 60% due to test generalization.

We next describe our empirical re-

sults for addressing RQ1. Table 2

shows the branch coverage achieved

by executing the existing CUTs,

CUTs + RTs, and the CUTs generated

by Pex using the retrofitted PUTs.

The values in brackets (#) for CUTs +

RTs indicate the number of RTs, i.e.,

the tests generated by Randoop. Col-

umn “Overall Inc.” shows the overall increase in the branch coverage from the existing

CUTs to the retrofitted PUTs. Column “Max. Inc.” shows the maximum increase for a

class or namespace in the respective subject applications.

Column “Overall Inc.” shows that the branch coverage is increased by 10%, 1%, and

2% for NUnit, DSA, and QuickGraph, respectively. Furthermore, Column “Max Inc.”

shows that the maximum branch coverage for a class or a namespace is increased by

52%, 1%, and 11% for NUnit, DSA, and QuickGraph, respectively. One major reason

for not achieving an increase in the coverage for DSA is that the existing CUTs already

achieved high branch coverage and PUTs help achieve only a little higher coverage than

existing CUTs.

6 http://www.ncover.com/
7 http://cloc.sourceforge.net/

To show that the increase in the branch coverage achieved by PUTs is not trivial

to achieve, we compare the results of PUTs with CUTs + RTs. The increase in the

branch coverage achieved by CUTs + RTs compared to CUTs alone is 0%, 0%, and

1% for NUnit, DSA, and QuickGraph, respectively. This comparison shows that the

improvement in the branch coverage achieved by PUTs is not trivial to achieve, since

the branches that are not covered by the existing CUTs are generally quite difficult to

cover (as shown in the results of CUTs + RTs).

4.4 RQ2: Defects

To address RQ2, we identify the number of defects detected by PUTs. We did not

find any failing CUTs among existing CUTs of the subject applications. Therefore,

we consider the defects detected by failing tests among the CUTs generated from PUTs

as new defects not detected by existing CUTs. In addition to the defects detected by

PUTs, we also inspect the failing tests among the RTs to compare the fault-detection

capabilities of PUTs and RTs.
//To test Remove item not present
01:public void RemoveCUT() {
02: Heap<int> actual = new Heap<int>{

2, 78, 1, 0, 56};
03: Assert.IsFalse(actual.Remove(99));}

Fig. 8. Existing CUT to test the Remove method

of Heap.

01:public void RemoveItemPUT (
[PAUT]List<int> in, int item) {

02: Heap<int> ac = new Heap<int>(in);
03: if (input.Contains(item)) {
04: }
05: else {
06: PexAssert.IsFalse(ac.Remove(randomPick));
07: PexAssert.AreEqual(in.Count, ac.Count);
08: CollectionAssert.AreEquivalent(ac, in);}
09: }

Fig. 9. A generalized PUT of the CUT shown in

Fig. 8.

In summary, our PUTs found 15

new defects in DSA and 4 new defects

in NUnit. After our inspection, we re-

ported the failing tests on their hosting

websites8. On the other hand, RTs in-

clude 90, 25, and 738 failing tests for

DSA, NUnit, and QuickGraph, respec-

tively. Since RTs are generated auto-

matically using Randoop, RTs do not

include test oracles. Therefore, an RT is

considered as a failing test, if the execu-

tion of the RT results in an uncaught ex-

ception being thrown. In our inspection

of these failing tests in RTs, we found

that only 18 failing tests for DSA are

related to 4 real defects in DSA, since the same defect is detected by multiple failing

tests. These 4 defects are also detected by our PUTs. The remaining failing tests are due

to two major issues. First, exceptions raised by RTs are expected. In our methodology,

we address this issue by adding annotations to PUTs regarding expected exceptions. We

add these additional annotations based on expected exceptions in CUTs. Second, illegal

test data such as null values are passed as arguments to methods invoked in RTs. In

our methodology, we address this issue of illegal test data by adding assumptions to

PUTs in Step S1. This issue of illegal test data in RTs shows the significance of Step S1

in our methodology.

To further show the significance of generalized PUTs, we applied Pex on these

applications without using these PUTs and by using PexWizard. PexWizard is a tool

provided with Pex and this tool automatically generates PUTs (without test oracles) for

8 Reported bugs can be found at the DSA CodePlex website with defect IDs from 8846 to 8858

and the NUnit SourceForge website with defect IDs 2872749, 2872752, and 2872753.

each public method in the application under test. We found that the generated CUTs

include 23, 170, and 17 failing tests for DSA, NUnit, and QuickGraph, respectively.

However, similar to Randoop, only 2 tests are related to 2 real defects (also detected by

our generalized PUTs) in DSA, and the remaining failing tests are due to the preceding

two issues faced by Randoop.

We next explain an example defect detected in the Heap class of the DSA appli-

cation by CUTs generated from generalized PUTs. The details of remaining defects

can be found at our project website. The Heap class is a heap implementation in the

DataStructure namespace. This class includes methods to add, remove, and heapify

the elements in the heap. The Remove method of the class takes an item to be removed

as a parameter and returns true when the item to be removed is in the heap, and returns

false otherwise. Figure 8 shows the existing CUT that checks whether the Remove

method returns false when an item that is not in the heap is passed as the parameter.

On execution, this CUT passed, exposing no defect in the code under test, and there

are no other CUTs (in the existing test suite) that exercise the behavior of the method.

However, from our generalized PUT shown in Figure 9, a few of the generated CUTs

failed, exposing a defect in the Remove method. The test data for the failing tests had

the following common characteristics: the heap size is less than 4 (the input parameter

of the PUT is of size less than 4), the item to be removed is 0 (the item parameter of

the PUT), and the item 0 was not already added to the heap (the generated value for

input did not contain the item 0).

When we inspected the causes of the failing tests, we found that in the constructor

of the Heap class, a default array of size 4 (of type int) is created to store the items.

In C#, an integer array is by default assigned values zero to the elements of the array.

Therefore, there is always an item 0 in the heap unless an input list of size greater than

or equal to 4 is passed as the parameter. Therefore, on calling the Remove method to

remove the item 0, even when there is no such item in the heap, the method returns

true indicating that the item has been successfully removed and causing the assertion

statement to fail (Statement 6 of the PUT). However, this defect was not detected by the

CUT shown in Figure 8 since the unit test assigns the heap with 5 elements (Statement

2) and therefore the defect-exposing scenario of heap size ≤ 4 is not exercised. These 19

new defects that were not detected by the existing CUTs show that PUTs are an effective

means for rigorous testing of the code under test. Furthermore, as described earlier, it is

also difficult to write new CUTs (manually) that test corner cases as exercised by CUTs

generated from PUTs.

4.5 RQ3: Generalization Effort

We next address RQ3 regarding the manual effort required for the generalization of

CUTs to PUTs. The first two authors conducted comparable amount of generalization

by equally splitting the existing CUTs of all three subject applications for generaliza-

tion. The cumulative effort of both the authors in conducting the study is 2.8, 13.8, and

1.5 hours for subject applications NUnit, DSA, and QuickGraph, respectively. Our mea-

sured timings are primarily dependent on four factors: the expertise with PUTs and the

Pex tool, prior knowledge of the subject applications, number of CUTs and the number

of generalized PUTs, and the complexity of a CUT or a generalized PUT. Although the

authors have experience with PUTs and using Pex, the authors do not have the prior

knowledge of these subject applications and conducted the study as third-party testers.

Therefore, we expect that the developers of these subject applications, despite unfamil-

iar with PUTs or Pex, may take similar amount of effort. Overall, our results show that

the effort of test generalization is worthwhile considering the benefits that can be gained

through generalization.

5 Threats to Validity

The threats to external validity primarily include the degree to which the subject pro-

grams, defects, and CUTs are representative of true practice. The subject applications

used in our empirical study range from small-scale to medium-scale applications that

are widely used as shown by their number of downloads. We tried to alleviate the threats

related to detected defects by inspecting the source code and by reporting the defects to

the developers of the application under test. These threats could further be reduced by

conducting more studies with wider types of subjects in our future work. The threats to

internal validity are due to manual process involved in generalizing CUTs to PUTs and

only two human subjects involved in the study. Our study results can be biased based

on our experience and knowledge of the subject applications. These threats can be re-

duced by conducting more case studies with more subject applications and additional

human subjects. The results in our study can also vary based on other factors such as

test-generation capability of Pex.

6 Related Work

Pex [22] accepts PUTs and uses dynamic symbolic execution to generate test inputs.

Although we use the Pex terminology in describing our generalization procedure, our

procedure is independent of Pex and can be applied with other testing tools that ac-

cept unit tests with parameters such as JUnitFactory [1] for Java testing. Other existing

tools such as Parasoft Jtest [2] and CodeProAnalytiX [3] adopt the design-by-contract

approach [17] and allow developers to specify method preconditions, postconditions,

and class invariants for the unit under test and carry out symbolic execution or random

testing to generate test inputs. More recently, Saff et al. [19] propose theory-based test-

ing and generalize six Java applications to show that the proposed theory-based testing

is more effective compared to traditional example-based testing. A theory is a partial

specification of a program behavior and is a generic form of unit tests where assertions

should hold for all inputs that satisfy the assumptions specified in the unit tests. A the-

ory is similar to a PUT and Saff et al.’s approach uses these defined theories and applies

the constraint solving mechanism based on path coverage to generate test inputs similar

to Pex. In contrast to our study, their study does not provide a systematic procedure of

writing generalized PUTs or show empirical evidence of benefits of PUTs as shown in

our study.

There are existing approaches [8,14,18] that automatically generate required method-

call sequences that achieve different object states. However, in practice, each approach

has its own limitations. For example, Pacheco et al.’s approach [18] generates method-

call sequences randomly by incorporating feedback from already generated method-call

sequences. However, such a random approach can still face challenges in generating de-

sirable method-call sequences, since often there is little chance of generating required

sequences at random. In our test generalization, we manually write factory methods to

assist Pex in generating desirable object states for non-primitive data types, when Pex’s

existing sequence-generation strategy faces challenges.

In our previous work [16], we presented an empirical study to analyze the use of

parameterized mock objects in unit testing with PUTs. We showed that using a mock

object can ease the process of unit testing and identified challenges faced in testing code

when there are multiple APIs that need to be mocked. In our current study, we also use

mock objects in our testing with PUTs. However, our previous study showed the benefits

of mock objects in unit testing, while our current study shows the use of mock objects

to help achieve test generalization. In our other previous work with PUTs [25], we

propose mutation analysis to help developers in identifying likely locations in PUTs that

can be improved to make more general PUTs. In contrast, our current study suggests a

systematic procedure of retrofitting CUTs for parameterized unit testing.

7 Conclusion

Recent advances in software testing introduced parameterized unit tests (PUTs) [23],

which are a generalized form of conventional unit tests (CUTs). With PUTs, devel-

opers do not need to provide test data (for PUTs), which are generated automatically

using state-of-the-art test-generation approaches such as dynamic symbolic execution.

Since many existing applications often include manually written CUTs, in this paper,

we present an empirical study to investigate whether existing CUTs can be retrofitted

as PUTs to leverage the benefits of PUTs. We also proposed a methodology, called

test generalization, for systematically retrofitting CUTs as PUTs. Our empirical results

show that test generalization helped detect 19 new defects and also helped achieve ad-

ditional branch coverage of the code under test. In future work, we plan to automate our

methodology to further reduce the manual effort required for test generalization. Fur-

thermore, given the results of our current study, we plan to conduct further empirical

study to compare the cost and benefits involved in writing PUTs directly, and writing

CUTs first and generalizing those CUTs as PUTs using our methodology.

Acknowledgments

This work is supported in part by NSF grants CCF-0725190, CCF-0845272, CCF-

0915400, CNS-0958235, ARO grant W911NF-08-1-0443, and ARO grant W911NF-

08-1-0105 managed by NCSU SOSI.

References

1. Agitar JUnit Factory (2008), http://www.agitar.com/developers/junit_

factory.html

2. Parasoft Jtest (2008), http://www.parasoft.com/jsp/products/home.jsp?

product=Jtest

3. CodePro AnalytiX (2009), http://www.eclipse-plugins.info/eclipse/

plugin_details.jsp?id=943

4. Pex - automated white box testing for .NET (2009), http://research.microsoft.

com/Pex/

5. Code Contracts (2010), http://research.microsoft.com/en-us/projects/

contracts/

6. Pex Documentation (2010), http://research.microsoft.com/Pex/

documentation.aspx

7. Cansdale, J., Feldman, G., Poole, C., Two, M.: NUnit (2002), http://nunit.com/

index.php

8. Csallner, C., Smaragdakis, Y.: JCrasher: an automatic robustness tester for Java. Softw. Pract.

Exper. 34(11) (2004)
9. Daniel, B., Jagannath, V., Dig, D., Marinov, D.: ReAssert: Suggesting repairs for broken unit

tests. In: Proc. ASE. pp. 433–444 (2009)
10. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing. In: Proc.

PLDI. pp. 213–223 (2005)
11. Granville, Tongo, L.D.: Data structures and algorithms (2006), http://dsa.

codeplex.com/

12. de Halleux, J.: Quickgraph, graph data structures and algorithms for .NET (2006), http:

//quickgraph.codeplex.com/

13. Jaygarl, H., Kim, S., Xie, T., Chang, C.K.: OCAT: Object capture-based automated testing.

In: Proc. ISSTA. pp. 159–170 (2010)
14. Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized symbolic execution for model check-

ing and testing. In: Proc. TACAS. pp. 553–568 (2003)
15. King, J.C.: Symbolic execution and program testing. Communications of the ACM 19(7),

385–394 (1976)
16. Marri, M.R., Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: An empirical study of testing

file-system-dependent software with mock objects. In: Proc. AST, Business and Industry

Case Studies. pp. 149–153 (2009)
17. Meyer, B.: Object-Oriented Software Construction. Prentice Hall PTR (2000)
18. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test generation.

In: Proc. ICSE. pp. 75–84 (2007)
19. Saff, D., Boshernitsan, M., Ernst, M.D.: Theories in practice: Easy-to-write specifications

that catch bugs. Tech. Rep. MIT-CSAIL-TR-2008-002, MIT Computer Science and Arti-

ficial Intelligence Laboratory (2008), http://www.cs.washington.edu/homes/

mernst/pubs/testing-theories-tr002-abstract.html

20. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: Proc.

ESEC/FSE. pp. 263–272 (2005)
21. Thummalapenta, S., Xie, T., Tillmann, N., de Halleux, P., Schulte, W.: MSeqGen: Object-

oriented unit-test generation via mining source code. In: Proc. ESEC/FSE. pp. 193–202

(2009)
22. Tillmann, N., de Halleux, J.: Pex - white box test generation for .NET. In: Proc. TAP. pp.

134–153 (2008)
23. Tillmann, N., Schulte, W.: Parameterized Unit Tests. In: Proc. ESEC/FSE. pp. 253–262

(2005)
24. Xie, T., Marinov, D., Notkin, D.: Rostra: A framework for detecting redundant object-

oriented unit tests. In: Proc. ASE. pp. 196–205 (2004)
25. Xie, T., Tillmann, N., de Halleux, P., Schulte, W.: Mutation analysis of parameterized unit

tests. In: Proc. Mutation. pp. 177–181 (2009)

