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ABSTRACT
Microservice systems are highly dynamic and complex. For such
systems, operation engineers and developers highly rely on trace
analysis to understand architectures and diagnose various prob-
lems such as service failures and quality degradation. However, the
huge number of traces produced at runtime makes it challenging
to capture the required information in real-time. To address the
faced challenges, in this paper, we propose a graph-based approach
of microservice trace analysis, named GMTA, for understanding
architecture and diagnosing various problems. Built on a graph-
based representation, GMTA includes efficient processing of traces
produced on the fly. It abstracts traces into different paths and fur-
ther groups them into business flows. To support various analytical
applications, GMTA includes an efficient storage and access mech-
anism by combining a graph database and a real-time analytics
database and using a carefully designed storage structure. Based
on GMTA, we construct analytical applications for architecture
understanding and problem diagnosis; these applications support
various needs such as visualizing service dependencies, making
architectural decisions, analyzing the changes of service behaviors,
detecting performance issues, and locating root causes. GMTA has
been implemented and deployed in eBay. An experimental study
based on trace data produced by eBay demonstrates GMTA’s effec-
tiveness and efficiency for architecture understanding and problem
diagnosis. A case study conducted in eBay’s monitoring team and
Site Reliability Engineering (SRE) team further confirms GMTA’s
substantial benefits in industrial-scale microservice systems.
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1 INTRODUCTION
Microservice architecture has the benefits of faster delivery, im-
proved scalability, and greater autonomy, and thus has been the
latest trend in building cloud-native applications. A microservice
system is implemented as a suite of small services, each running
in its process and communicating via lightweight mechanisms (of-
ten an HTTP resource API) [15]. Microservice systems are highly
complex and dynamic. In a microservice system, each request may
result in a series of distributed service invocations executed syn-
chronously or asynchronously. A service can have several to thou-
sands of instances dynamically created, destroyed, and managed
by a microservice discovery service (e.g., the service discovery
component of Docker swarm) [21, 22].

For a microservice system, operation engineers and developers
highly rely on trace analysis to understand architectures and di-
agnose various problems. Due to high complexity and dynamism
of a microservice system, it is hard for its operation engineers and
developers to use static analysis and logs to achieve the purposes.
Moreover, a microservice system undergoes frequent deployments,
which continuously change the dependencies and behaviors of its
services. Therefore, an industrial microservice system has been
commonly equipped with distributed tracing, which tracks the exe-
cution of a request across service instances. The distributed tracing
system records each invocation of the service operation as a span
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and the execution process of each external request as a trace, to-
gether with related properties such as latency and error status. By
analyzing the trace data (including spans and traces), operation
engineers and developers can understand the interactions and de-
pendencies between services and pinpoint where failures occur and
what causes poor performance [18].

However, the huge number of traces produced at runtime makes
it challenging to capture the required information in real-time, with
two particular challenges: (1) the trace data needs to be efficiently
processed to produce aggregated trace representations of different
levels and high quality; (2) detailed information of specific traces
can be made available in an on-demand way. For example, in eBay,
the microservice systems produce nearly 150 billion traces per day.
For architecture understanding, it is thus necessary to aggregate the
traces to exhibit the dependencies and behaviors of a large number
of services, while at the same time revealing the changes caused
by deployments and updates. For problem diagnosis, abnormal
traces need to be quickly identified, and their details (e.g., related
metrics such as response time and error rate) can be provided in an
on-demand way.

To address these challenges, in this paper, we propose a graph-
based approach of trace analysis, named GMTA, for understanding
microservice architecture and diagnosing various problems. Built
on a graph-based representation, GMTA includes efficient process-
ing of traces produced on the fly. It abstracts traces into different
paths and further groups them into business flows. To support
various analytical applications, GMTA includes an efficient stor-
age and access mechanism by combining a graph database and a
real-time analytics database and using a carefully designed storage
structure. Based on GMTA, we construct GMTA Explorer for archi-
tecture understanding and problem diagnosis, supporting various
needs such as visualizing service dependencies, making architec-
tural decisions, analyzing changes of service behaviors, detecting
performance issues, and locating root causes.

GMTA has been implemented and deployed in eBay. To assess
GMTA’s effectiveness and efficiency, we conduct an experimental
study on real trace data of eBay, including 197.89 billion spans and
10.29 billion traces. The study compares GMTAwith two traditional
trace processing approaches both qualitatively and quantitatively.
We derive six trace analysis scenarios that require trace data ac-
cesses of different levels (i.e., trace, path, business flow). The re-
sults show that GMTA can effectively support all these scenarios
and its effectiveness substantially outperforms the two traditional
approaches. We present GMTA Explorer based on GMTA to the
monitoring team and Site Reliability Engineering (SRE) team of
eBay and conduct a case study in real tasks. The results further con-
firm GMTA’s substantial benefits in industrial-scale microservice
systems.

2 BACKGROUND AND MOTIVATION
With the microservice trend, one modern distributed system can
generally involve hundreds or thousands of microservices. The com-
plex calling relationship of these microservices makes it difficult to
conduct development, management, and monitoring for the system.
The traditional operation mechanisms of machine-centric monitor-
ing is not effective, due to the lack of a coherent view of the work

done by a distributed service’s nodes and dependencies. To address
this issue, end-to-end tracing based on workflow-centric tracing
techniques [5, 8, 18] is proposed in recent years. The basic concept
of tracing is straightforward: instrumentation at chosen points in
the distributed service’s code produces data when executed, and
the data from various executed points for a given request can be
combined to produce an overall trace. For example, for a request-
based distributed service, each trace would show the work done
within and among the service’s components to process a request.
Since end-to-end tracing captures the detailed work of the causally-
related activity within and among the components of a distributed
system, there are a growing number of industry implementations,
including Google’s Dapper [18], Cloudera’s HTrace [5], Twitter’s
Zipkin [8], etc. Looking forward, end-to-end tracing has the po-
tential to become the fundamental substrate for providing a global
view of intra- and inter-data center activity in cloud environments.

However, leveraging tracing data formonitoring and architecture
understanding faces two major challenges. First, it is challenging to
process, store and analyze the huge real-time trace data efficiently,
given that with the increase of a microservice system’s scale, the
quantity of trace data increases dramatically. Second, building ef-
fective applications using trace data needs to address the quality
issues of the trace data such as wrong chain and broken chain, given
that the large service ecosystem can consist of various application
frameworks and different systems.

To address the preceding two challenges, we propose GMTA and
GMTA Explorer to support microservice monitoring and trou-
bleshooting. After the basic distributed tracing implementation
is in place, it is valuable to leverage a large number of distributed
tracing data for insights. Especially for developers and SREs, ob-
serving applications’ behaviors and analyzing them enable to gain
more knowledge to do troubleshooting, and even business analysis.
In 2019, there are a few millions of lines of code and config changes
for the whole eBay service ecosystem. It is almost impossible to cap-
ture or understand these changes based on only design documents
or domain knowledge.

3 GRAPH-BASED MICROSERVICE TRACE
ANALYSIS (GMTA) SYSTEM

Figure 1 presents an overview of the Graph-based Microservice
Trace Analysis (GMTA) system. It includes three modules: process-
ing, storage, and access. The processing module takes as input raw
data, i.e., span logs obtained from the distributed tracing system,
and assembles spans into traces, paths, till business flows. These
processing results are persisted in the storage for further analy-
sis. To support flexible and efficient trace data access, the storage
module combines both the graph database and real-time analytics
database and uses a carefully designed storage structure. The access
module provides flexible and efficient trace data access interfaces
at three levels: the business flow level, path level, and trace level.

Trace data are a kind of streaming data that are generated con-
tinuously by a huge number of service instances. The overall design
principle of the system is flexibly combining graph and non-graph
based trace data processing and storage for efficient access of a vast
number of trace data of different levels.
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Figure 1: GMTA System Overview

Figure 2: Graph-based Trace Data Representation

In the rest of this section, we first introduce the graph-based
representation of trace data of different levels and then detail the
three modules (processing, access, and storage).
3.1 Graph-based Representation
Our graph-based system of microservice trace analysis is built on a
series of concepts about trace and flow analysis. These concepts and
their relationships are described in the conceptual model shown in
Figure 2.

A service provides a set of operations and each invocation of
an operation is a span. Each span has a unique ID and a set of
properties such as invoked service and operation, start time and
duration and parent span’s ID. A trace represents the execution
process of an external request. Each trace has a unique ID and a
tree structure consisting of spans; the parent-child relationship in
the tree structure represents the service invocation relationship.
The traces that have exactly the same tree structures (i.e., the same
service operations and invocation orders) can be abstracted into a
path. A trace thus can be understood as an instance of a path. A path
has a tree structure consisting of hops; each hop is abstracted from
the corresponding spans in the traces. The paths that implement
the same scenario can be further grouped into a business flow.
Therefore, a trace type can be regarded as a variant of a business
flow, and the paths of a business flow usually can be selected based
on some key service operations that are involved. Usually a business
flow can specify the key operations that its paths must go through
or further specify the execution order of these operations.

Figure 3 shows an example business flow for placing order, which
specifies “createOrder” as its key operation. In the figure, an ellipse
represents a service, a rectangle represents an operation, a thick
arrow represents a hop, and a thin arrow represents a span. The busi-
ness flow includes two paths, i.e., guest checkout and user checkout,
which consist of a series of hops with the red and green colors, re-
spectively. Each path has a number of traces as its instances. For
example, the guest checkout path has two traces consisting of a
series of spans with the blue and black colors, respectively. Note
that some of their spans are not depicted due to space limit.

The two paths of the business flow are grouped together based
on the identified key operation (here “createOrder”). Both of them
have a tree structure and differ only in the checkout operation
(“guestCheckout” or “userCheckout”). The guest checkout path has

Figure 3: An Example of Business Flow (Place Order)

two traces. They have exactly the same tree structure and record
two execution instances of the path. For example, the two spans
between “guestCheckout” and “createOrder” have different trace
IDs, span IDs, timestamps, and durations.

To support error propagation analysis, we also define the con-
cept of error propagation chain (in short as EP chain), which is a
sequence of spans that propagate errors. For example, the EP chain
“coupon → calculateMoney → createOrder” indicates that an error
is propagated from “coupon” to “createOrder”.

3.2 Data Processing
The span logs of a trace are produced in a distributed way by the
service instances involved in the trace. The processing module
of GMTA assembles these spans into a trace, and further cleans,
aggregates, and analyzes the trace. All the preceding processing is
performed in a streaming way, which can be implemented based
on streaming processing frameworks such as Flink [2].

3.2.1 Trace Assembling and Repairing. To assemble a trace, we
need to collect all its spans and connect them according to the
parent span ID recorded in each span. Trace assembling is a contin-
uous process during which a huge number of spans from different
service instances are produced and received in a streaming way.
To efficiently handle the streaming data, we adopt a time window
strategy. We collect and group spans that have the same trace ID
and can be reached in a given time window (e.g., 5 minutes) based
on the assumption that all the spans of a trace can be produced and
received in a short time. Then for each group of spans, we try to
assemble a trace in memory.

Span logs are generated by a large number of services, which are
developed by different developers and collected through a complex
distributed network. Therefore, some span logs may include incor-
rect or incomplete information, making the derived traces invalid.
Currently GMTA detects and repairs two kinds of such problems:
invalid operation name and broken trace.

Invalid operation name is usually caused by incorrectly passed
parameters in logging, e.g., the user ID included in a request may
be passed as a part of operation name by mistake. The number of
operations of a service is usually stable and not large. Therefore, we
can identify invalid operation names in span logs by monitoring the
changes of the numbers of different operation names of the same
services. We prompt users to check the identified invalid operation
names and ask the users to provide matching and replacement rules,
e.g., using regular expressions. Then invalid operation names that
arrive later can be automatically matched and replaced with correct
names. In this way, false paths caused by invalid operation names
can be avoided.

Broken trace is usually caused by incomplete data passing in
logging because of development specifications and historical legacy
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Algorithm 1 SpanHash(span)
1: ℎ𝑎𝑠ℎ = 𝐻𝑎𝑠ℎ𝐶𝑜𝑑𝑒 (𝑠𝑝𝑎𝑛.𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑁𝑎𝑚𝑒) +

𝐻𝑎𝑠ℎ𝐶𝑜𝑑𝑒 (𝑠𝑝𝑎𝑛.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒)+𝑠𝑝𝑎𝑛.𝑙𝑒𝑣𝑒𝑙×𝑃𝑅𝐼𝑀𝐸𝑁𝑈𝑀𝐵𝐸𝑅

2: for each 𝑐ℎ𝑖𝑙𝑑 in 𝑠𝑝𝑎𝑛.𝑐ℎ𝑖𝑙𝑑𝑆𝑝𝑎𝑛𝑠 do
3: ℎ𝑎𝑠ℎ+ = 𝑆𝑝𝑎𝑛𝐻𝑎𝑠ℎ (𝑐ℎ𝑖𝑙𝑑)
4: end for
5: return ℎ𝑎𝑠ℎ

systems, e.g., the parent span ID is missing in the span. Based on
the tree structure of an assembled trace, we detect and repair three
kinds of broken traces:

(1) a trace has no root;
(2) a trace has more than one root;
(3) a trace has a root but some spans have no parent spans.
For the first case, we simply add a root node and make it the

parent of the spans that have no parent spans. For the second and
third cases, we try to repair the broken trace by timestampmatching.
Given a span that has no parent span or the root of a subtree 𝑆 , we
try to find a parent span for it in the following way: if there is a
leaf span 𝑃 in other subtrees meeting the condition that the start
time and end time of 𝑆 are during the duration of 𝑃 , 𝑃 is regarded
as the parent span of 𝑆 , and the two subtrees are thus connected.

During trace assembling, we also recognize EP chains based on
the error tags of spans. Given a span with an error tag, we examine
whether one of the span’s child spans also has an error tag. If not,
the current span is regarded as the starting point of the EP chain,
and a special tag and the length of the chain are set into the span.

3.2.2 Path Identification. Path identification is continuously per-
formed together with trace assembling. Different from traces, the
number of paths is relatively stable. A new path usually appears
only when the system is updated or errors/exceptions occur in
service invocations. Path identification requires to check whether
two traces have the same tree structure. To avoid the expensive
tree comparisons between traces, we generate for each trace a path
ID that can uniquely identify a path. The path ID is generated by
computing a hash code for the root span using Algorithm 1. Given a
span, the algorithm computes a hash code for its service name and
operation name, respectively, and then adds up the two hash codes
and an offset computed based on the level of the span in the trace
tree. If the span has child spans, the algorithm recursively computes
a hash code for each child span and adds them up together.

Given a trace, we compute a path ID for it and check whether the
path with the same ID already exists. If the path exists, we update
its properties such as trace count, average latency, and occurrence
times of different EP chains. If the path does not exist, we create a
new path for the trace. For example, the two traces inside the red
arrow in Figure 3 get the same path ID because the operations and
sequences passed are exactly the same. When the trace represented
by the blue arrow appears, because this path ID appears for the first
time, we record the operation and related information passed by
the current trace as a new path. But when the trace represented by
the purple arrow comes, the path ID already exists, so we update
the corresponding path information according to the current trace
properties.

3.2.3 Business Flow Identification. Business flows can be defined
by developers and operation engineers in an on-demand way. For
example, besides the business flow for placing order (see Figure 3),
a developer can define a business flow for updating inventory to
examine all the paths that involve the invocation of the “updateIn-
ventory” operation. By analyzing this business flow, the developer
may find clues for a fault about inventory updates.

A business flow can be defined as a logical combination (using
AND/OR operations) of any number of basic conditions of the
following two types:

(1) a service operation is invoked;
(2) a service operation is invoked before or after another one.
The identification of business flows involves the examination

of the existence of specific service invocations and the order of
specific service invocations in a path. This examination can be effi-
ciently supported by graph databases such as Neo4j [7]. Therefore,
we continuously store and update the identified paths in the graph
database of the storage module and use graph queries to dynam-
ically identify paths that meet the definition of a given business
flow.

3.3 Data Access
The objective of GMTA is to provide efficient and flexible access
supports for various trace analysis applications such as architec-
ture understanding and problem diagnosis. The trace data access
requirements can be categorized into the following three levels.

(1) Trace Level Access. Trace level access includes trace search-
ing and trace detail query. Trace searching searches for all the traces
that involve the invocations of specific service operations or occur
within a given time range. Trace detail query requests various types
of information of a given trace (usually by trace ID), including its
spans and related metrics such as duration. The query may also
request extended information of a trace such as its path ID and
involved EP chains.

(2) Path Level Access. Path level access includes path searching
and path detail query. Path searching searches for all the paths that
involve the invocations of specific service operations. Path detail
query requests various types of information of a given path (usually
by path ID), including its traces within a given time range, trace
count, and other aggregated metrics such as error rate and average
latency. The query may also request extended information of a path
such as involved EP chains and occurrence times.

(3) Business Flow Level Access. Business flow level access
includes business flow searching and business flow detail query.
Business flow searching searches for all the business flows that
involve specific paths. Business flow detail query requests the paths
of a business flow (usually by business flow name) within a given
time range.

For each of the preceding requirements, a basic access interface
can be defined and implemented to support efficient access of spe-
cific trace data. Besides these basic interfaces, other more specific
access interfaces can also be defined and implemented based on our
graph-based representation of trace data. Although some trace data
access requirements can also be satisfied by combining basic access
interfaces, it may be more efficient to design specific interfaces for
them. For example, a trace analysis requirement may be finding all
the paths in which a service directly or indirectly invokes another

1390



Graph-Based Trace Analysis for Microservice Architecture Understanding and Problem Diagnosis ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 4: Data Storage Structure

service in 𝑛 hops. This requirement can be implemented by using
the basic access interfaces: we first obtain all the paths that include
both of the two services, and then filter out the paths in which the
invocation between the two services is beyond 𝑛 hops. If we design
a specific interface for this requirement, the trace data access can
be much more efficient, as the paths that meet the condition can be
directly obtained by graph query.

3.4 Data Storage
Trace data processing and analysis involve graph-based queries
such as searching for paths that involve the invocations of specific
services. This kind of operation can be efficiently supported by
graph databases such as Neo4j [7]. At the same time, trace data
processing and analysis also involve real-time analytics of non-
graph-based data such as selecting the spans of a specific service
operation in the last one hour and grouping them by path ID. This
kind of operations can be efficiently supported by real-time an-
alytics OLAP (On-Line Analytical Processing) databases such as
Druid [1] and Clickhouse [4]. Therefore, a key design decision for
the storage module is how to distribute trace data between the two
kinds of databases.

All the traces of the same path share exactly the same structure,
and paths are much more stable than traces. These features imply
that trace level graph queries (e.g., finding all the traces that involve
a specific service invocation) can be implemented by corresponding
path level graph queries. Based on this observation, we design a
mixed storage structure as shown in Figure 4. The figure shows
the graph structure of the graph database and the main tables of
the analytics database. The figure also shows the main properties
of the nodes and edges in the graph database together with their
references to the fields in the analytics database.

We store the relatively stable part of the graph-based repre-
sentation (see Figure 2) in the graph database, including services,
operations, hops, and paths. There can be multiple edges between
two service operations, and each edge represents a hop of a specific
path. Therefore, the hops of a path can be obtained by a graph query
using the path ID to filter the graph. We store detailed information
of trace spans in the analytics database, such as span ID, trace ID,
service name, operation name, timestamp, duration, and error tag.
The analytics database should support real-time querying of the full
scope of data in a certain period of time or automatic aggregation
according to specified fields. Each span records its path ID to enable
the selection of spans and traces of a given path. As a business

Table 1: GMTA Explorer Functionalities
Functions Sub Functions Trace Path Business Flow

Basic Visualization
Trace View

√ × ×
Path View

√ √ ×
Business Flow View

√ √ √

Change Visualization Path Comparison × √ ×
Business Flow Comparison × √ √

Anomaly Comparison
Path Comparison × √ ×
Business Flow Comparison × √ √

EP Chain Comparison × √ √

EP Chain Query EP Chain Query × √ √

flow represents a group of paths, we store the mappings between
business flows and paths in the analytics database.

All the preceding data are continuously updated in trace data
processing. When a trace is assembled, its spans are added into the
span table and its path is analyzed. If a new path is created, its hops
and possibly new services and operations are added into the graph
database. Periodically business flow identification is conducted
by querying the paths in the graph database, and the identified
business flows are updated into the business flow mapping table
in the analytics database. To support efficient data query, we add
some aggregated metrics such as the trace number and error count
of a hop as the hop properties in the graph database.

Our current implementation of GMTA uses Neo4j [7] as the
graph database and Druid [1] as the analytics database.

4 ARCHITECTURE UNDERSTANDING AND
PROBLEM DIAGNOSIS

By leveraging GMTA, we can build GMTA Explorer in eBay; GMTA
Explorer is designed to help developers and operation engineers
within the company quickly understand architecture and improve
the efficiency of problem diagnosis. Table 1 shows the function-
alities provided by GMTA Explorer and the corresponding levels
of trace data access interfaces provided by GMTA. Among these
functionalities, basic visualization and change visualization serve
for architecture understanding; anomaly comparison and EP chain
query serve for problem diagnosis.

4.1 Architecture Understanding
GMTA Explorer supports the following three use cases of architec-
ture understanding:
U1. as developers, to visualize the dependencies and dependents

of a service in a business flow to determine the change impact
of the service.

U2. as architects, to learn the paths and metrics related to critical
businesses (e.g., payment) to support architectural decisions.

U3. as SREs, to confirm the changes or patterns of service behav-
iors, and evaluate the impact of business changes or other
factors on metrics such as traffic, latency, and error rate.

For U1 and U2, by calling GMTA to provide trace level, path
level, and business flow level query interfaces, GMTA Explorer can
provide interactive visualizations, allowing the users to drill up and
down between the three levels. For example, the users can choose
to examine the metrics (e.g., traffic, duration, and error rate) of a
specific path in a business flow, and then drill down into a specific
trace of the path through condition-based filtering. The users can
also start from a certain operation, examine the paths through this
operation, and then pick a specific path to get the business flows
that it belongs to.
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Figure 5: Business Flow Example
Figure 5 shows three views of GMTA Explorer. In the business

flow view, each tree represents a path, each rectangle represents
a hop in a path, the color of the rectangle represents a service,
and the rectangles of the same color belong to the same service.
The users can click a hop to see the detailed properties of the
corresponding hop in this flow. The users can also enter the trace
view below by double-clicking the path. In the trace view, each
tree represents a trace, and each rectangle represents a span. The
color meaning is the same as above. The users click a rectangle to
see the detailed properties of the span. The red operation name
indicates that there is an error in the current span. With the help of
GMTA Explorer, the users can quickly understand the dependencies
between services and operations in a business flow and enter the
path view or trace view by filtering to obtain more detailed metrics.
This feature can also be used later to discover technical debt and
architectural antipattern (e.g., cyclic dependency and god service).

For U3, GMTA Explorer queries the path/business flow informa-
tion in the two time periods specified by the users, and visualize the
changes in the two time periods through graph-based comparison
and analysis, so that the users can understand business changes
and path changes. Through the comparison of business flow within
two time periods, relevant personnel can not only understand the
existing business processes but also compare the path changes. For
example, the traffic may disappear within a subset of a path and
switch to another one. The changes can be visualized by doing a
graph comparison between snapshots of the same business flow.

Figure 6 shows an example of business flow changes. The upper
part represents the path of this business flow. It can be seen that in
this business flow there are three paths (each of which corresponds
to a hop), the color of the rectangle represents the latency change of
the two periods before and after, and green represents the decrease
of latency, the red represents the increase, and the darker the color,

Figure 6: Business Flow Comparison Example

the greater the change. It can be seen from the figure that the
operation latency of Path A has partially increased or decreased,
path B is all dark red, indicating that the path has disappeared
in the new time period, and the dark green path C indicates that
the path is new; we can clearly know that path C replaces path B
in the new time period. But unlike the preceding simple example,
a business flow may contain dozens or hundreds of paths in the
actual production environment, so it is sometimes difficult to obtain
effective information by directly displaying the paths. So under
normal circumstances, we group the paths of the same business
flow according to the root, and then merge the same operation in
each group, and we also merge the corresponding attributes. The
users can also click a box to view the details of the corresponding
operation such as the change rate of flow rate and change rate of
error rate. Finally, we show the results of the comparison of the
two business flows after the merger. The effect is shown in the
lower part of Figure 6. This view can more intuitively show the
changes that occur in a business flow. From Figure 6, it can be seen
that the “coupon” called by “calculateMoney” has been updated
to “couponv2” (in the paths) that starts with “userCheckout“. This
view is more clear and concise, and it is convenient for the users
to see the changes in business flow in different time periods more
intuitively.

The functionalities of trace, path, and business flow visualiza-
tion and path/business flow comparison provided by GMTA Ex-
plorer can support the preceding three use cases, help developers,
SREs, and architects to quickly understand service dependencies,
and obtain service and operation runtime information and confirm
business changes.

4.2 Problem Diagnosis
GMTA Explorer can help the users locate the scope and confirm the
root cause of a problem. In large enterprises, the root cause of the
problem needs to be located and repaired as soon as possible after
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Figure 7: EP Chain Comparison Example

an online issue, but diagnosing a production problem at runtime
for the large-scale service ecosystem is troublesome. The diagnosis
requires not only domain and site reliability knowledge, but also
automated observability support. There are many tools such as
metric monitoring and alarming, basic trace visualization, and log
visualization tools available for use. However, due to the complexity
of the system and the uncertainty of the problem, SREs still cannot
quickly diagnose problems in many cases. To help SREs to diagnose
various problems, GMTA Explorer supports the following two use
cases of problem diagnosis:
U4. as SREs, to reduce the root cause scope of a production

problem by comparing the business flows before and after
the problem occurs and analyzing the EP chains.

U5. as SREs, to retrieve EP chains and visualize them for given
operation(s)/service(s) based on observations such as ser-
vice/application alerts.

For large-scale microservice systems, many “soft” EP chains
exist. A “soft” EP chain passes error messages, but does not impact
the availability or performance of the business. When SREs try to
find the EP chains that actually cause a production issue, the SREs
are often swamped with “soft” error chains. Therefore, “soft” EP
chains heavily interfere with problem diagnosis and thus become a
challenge for trace analysis.

For U4, GMTA Explorer provides two views for the comparison
of paths and business flows. The first view is similar to what is used
for U3, as shown in Figure 6. With this comparison view, SREs can
carefully choose the time ranges of comparison and examine the
differences of the same path or business flow before and after a
runtime issue is raised. Based on the comparison, SREs may quickly
narrow down the scope of problem diagnosis to a single path and
a few operations. The other view provided by GMTA Explorer is
the visualization of new EP chains that occur with the reported
runtime issue. As shown in Figure 7, GMTA Explorer highlights
the EP chains with a significant change: if the count of an EP chain
increases by more than 50% and accounts for more than 5% of the
traffic of the path, this EP chain is highly likely to be associated
with the issue. Then SREs can examine the logs of the highlighted
EP chain to further locate the root cause of the issue.

U5 is related to alerts generated for specific services and oper-
ations. The root cause of an alert is often not the service where
the alter is raised. Therefore, SREs need to identify and examine
many dependent services to locate the root cause. For example,
a regular service in eBay may have up to 100 dependent services.
Therefore, this process of problem diagnosis can be time-consuming
and challenging. For U5, GMTA Explorer can retrieve and visualize
the EP chains that pass the operation that raises an alert within

Figure 8: EP Chain Filtering Example

Figure 9: GMTA in eBay
the specified paths and business flows in near real-time. From the
examined EP chains, SREs can identify the root causes more easily.

Figure 8 shows a real case of the EP chain visualization. “Create
Order” is first alerted with an error spike alert. The view high-
lights an EP chain: “verifyInventory → updateInventory → create
Order”. Although the EP chain of “coupon → calculateMoney” ap-
pears 1850 times for retrying, it is filtered out since the operation
“caclulateMoney” is not impacted.

GMTA Explorer provides the features of business flow visual-
ization and comparison along with EP chain comparison and EP
chain filtering. These features can help users understand service
dependencies and business flow changes, narrow down the scope,
and improve the efficiency of problem diagnosis.

5 EXPERIMENTAL STUDY
GMTA has been implemented and used in eBay. We conduct an
experimental study based on the trace data produced by eBay. The
objective of the study is to evaluate the effectiveness and efficiency
of GMTA for the requirements of architecture understanding and
problem diagnosis.

The microservice system under study in eBay includes around
3,000 services and more than 100,000 operations. These services
work together to serve more than 10 business domains and form
thousands of paths. In eBay, the microservice system processes
around 26 billion spans per day. eBay has established a distributed
tracing system with 1% sampling rate. The sampled trace data
is pushed to a distributed messaging system implemented with
Kafka [3]. Based on the distributed tracing infrastructure, we de-
sign GMTA as a pipeline shown in Figure 9. In the current ver-
sion, the module of trace data processing is implemented based on
Flink [2] (a stream processing framework), and the graph database
and analytics database in the storage module are implemented with
Neo4j [7] and Apache Druid [1], respectively.

In the study, we compare GMTA with two traditional trace pro-
cessing approaches, i.e., OTD-R and ATD-R, qualitatively and quan-
titatively. OTD-R stores the original trace data (i.e., spans, traces,
and their properties) in a relational analytics database. ATD-R ag-
gregates the traces into paths but still stores the trace and path data
in a relational analytics database. OTD-R is often used in small-scale
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Table 2: Approaches under Comparison
Approach Traces Paths Business Flow Graph-based Storage
OTD-R

√ × × ×
ATD-R

√ √ × ×
GMTA

√ √ √ √

Table 3: Performance Study Results (ms)
Use Case OTD-R ATD-R GMTA

cold hot cold hot cold hot
S1: Single Trace Query 2130 501 2250 486 2348 545
S2: Single Operation Query 1405 402 482 305 462 283
S3: Single Path Query timeout timeout 180 75 196 64
S4: Error Propagation Chain Query timeout timeout 551 225 648 43

S5: Business Flow Generation simple timeout timeout 2307 909 1477 117
complex timeout timeout 8829 2385 4036 1144

S6: Service Dependency Analysis timeout timeout timeout timeout 200 15

microservice systems, while ATD-R was previously used in eBay.
The characteristics of the three approaches are shown in Table 2.
OTD-R does not support trace aggregation, while ATD-R supports
trace aggregation but without graph-based business flow group-
ing. GMTA supports both of trace aggregation and business flow
grouping, and implements graph-based storage. In the study, both
OTD-R and ATD-R are implemented based on Apache Druid [1].

Microservice architecture understanding and problem diagnosis
involve trace analysis requirements at three levels, i.e., trace, path,
business flow. We derive the following six scenarios from the prac-
tices in eBay and use these scenarios to evaluate the effectiveness
and efficiency of the three approaches.

• S1: Single Trace Query. Collect the spans and related met-
rics (e.g., latency) of a given trace.

• S2: Single OperationQuery. Collect the metrics (e.g., error
rate, traffic, latency) of a given operation of a service.

• S3: Single Path Query. Collect the hops and related metrics
(e.g., latency) of a given path.

• S4: Error PropagationChainQuery. Collect the EP chains
that pass more than three services.

• S5: Business Flow Generation. Construct and return a
business flow that passes the given operation(s), along with
related metrics (e.g., error rate, traffic, latency) at the opera-
tion level.

• S6: Service Dependency Analysis. Return all the services
that directly or indirectly invoke a given operation in the
same trace.

Based on these scenarios, we conduct a series of experiments in
the pre-production environment of eBay.

The first experiment is to evaluate the processing performance
of GMTA. We take a part of eBay’s trace data as input and use
a server with 4 CPU cores and 8GB of memory as the running
environment. We gradually increase the data load of GMTA. When
GMTA processes 24K spans per second, the server’s CPU usage is
close to 100%.

In the end, we deploy the GMTA processing module as a Flink [2]
job, and run 20 parallel instances to handle eBay’s trace data. The
configuration of each instance is 4 CPU cores and 8GB of memory.
Our initial empirical investigation shows that that 20 instances can
process trace data from eBay’s production environment in a timely
fashion.

The second experiment is to evaluate query performance of
GMTA. eBay generates around 300K spans per second. In this ex-
periment, we process and store trace data for 7 days. After sam-
pling, around 2 billion spans and 100 million traces are stored in
the database of GMTA. As Apache Druid [1] and Neo4j [7] used by
GMTA provide hot data cache, and repeated queries take much less
time than the first query, we record the performance of cold query
and hot query separately. In the experimental results described
below, “cold” indicates the time cost for the first-time query and
“hot” indicates the time cost for the subsequent queries. The overall
results for the six scenarios are shown in Table 3, where the unit is
millisecond and the timeout threshold is 5 minutes.

For S1, we query all spans of a trace by trace ID. The performance
of the three approaches is very close, because they all query the
trace from Apache Druid [1]. The time cost of GMTA and ATD-R is
slightly longer than that of OTD-R, because they involve additional
fields for the aggregation of spans.

For S2, we query the metrics of an operation within an hour. The
time cost of ATD-R and GMTA is 66% (cold) and 24% (hot) less than
that of OTD-R.

For S3 and S4, GMTA and ATD-R have their own advantages and
disadvantages in the performance of hot/cold query, but OTD-R
fails to return results within 5 minutes. As can be seen, aggregation
and analysis can improve query efficiency in certain scenarios, and
support more types of queries.

For S5, we study two different types of business flow generated
by either a single given operation (denoted as simple) or three
operations (denoted as complex). The query time range of the former
is 1 hour, and the latter is 5 minutes. GMTA outperforms ATD-R
36.0% (cold) and 87.1% (hot) in simple; and 54.2% (cold) and 52.0%
(hot) in complex. Thus, the query performance of GMTA is better
than that of ATD-R.

For S6, only GMTA can execute this kind of query. The result
shows that the graph-based GMTA can handle queries with higher
complexity than the non-graph-based ATD-R.

The experimental results show that GMTA provides efficient
query support through aggregation, analysis, and graph-based stor-
age. Based on the effective and efficient query interfaces provided
by GMTA, we can build applications to solve different practical
problems.

6 CASE STUDY
In order to assess the effectiveness of GMTA, we demonstrate and
validate GMTAwith the monitoring team and the SRE team of eBay.
After three training sessions are conducted at the beginning, GMTA
Explorer is used and validated by the teams during their day-to-day
work. There are 20 teammembers in total who participate in the val-
idation, including 7 developers, 10 SREs, and 3 architects. A month
later, we interview the team members and collect cases presented
in this section. In particular, the team members participate in three
major tasks:

1. 15 people use GMTA Explorer to understand architecture,
including 2 architects, 7 developers, and 6 SREs.

2. 12 people use GMTA Explorer to understand changes, in-
cluding 6 developers and 6 SREs.
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3. 11 people use GMTA Explorer to improve the efficiency of
problem diagnosis, including 2 developers and 9 SREs.

During the interview process, we discover and collect feedback
on GMTA Explorer with three major findings: (1) 13 out of 15
people who use GMTA Explorer agree that it could provide more
information to help them quickly understand the architecture and
business processes compared to a general trace visualization system;
(2) 8 out of 12 people believe that GMTA Explorer could help them
understand business changes; (3) 9 out of 11 people believe that the
EP chains in GMTA Explorer could indeed provide a reference for
problem diagnosis.

Based on the interview results, we next present some real cases
supported by GMTA. The cases are divided into two parts: the
first part includes cases in which users use GMTA Explorer to un-
derstand architecture, and the second part includes cases in which
users use GMTA Explorer to improve the efficiency of problem diag-
nosis. We remove some sensitive information such as service names
and performance metrics in the cases due to eBay’s confidentiality
requirement.

6.1 Architecture Understanding Cases
In eBay, there are over 3,000 services, each of which is developed by
an individual or a team. There are only a few people who can fully
understand their business processes and underlying architecture.
Even senior domain architects are mostly experienced with their
own domain; additionally, they do not know the details of every
business change. The following two real cases show how GMTA
Explorer helps users understand dependencies and changes.

Case 1: Developer 𝐷𝑒𝑣𝐴 receives a change request to modify
the operation logic of a service, but 𝐷𝑒𝑣𝐴 did not participate in the
development of this service before, so she does not understand the
logic of the service. The main developer of the service has left the
company, and there is no relevant documentation. Therefore, it is
difficult for 𝐷𝑒𝑣𝐴 to assess the risk and impact of the change. If she
wants to implement the change requirement, she has to look at a
lot of code to understand the scope of the change. However, after
inputting “serviceName” and “operationName” to GMTA Explorer,
𝐷𝑒𝑣𝐴 can intuitively see the upstream and downstream services
of the target operation, and confirm the scope of change impact
to modify the logic of the service. Using the views provided by
GMTA Explorer, 𝐷𝑒𝑣𝐴 can see the operation-related information
such as traffic, latency, and error rate, so she can quickly establish a
clear understanding of the operation. By one more click, 𝐷𝑒𝑣𝐴 can
get the paths and business flows containing the operation. GMTA
Explorer shows that a total of 5 services depend on the operation
to be modified, and 𝐷𝑒𝑣𝐴 finally decides to postpone the change
due to potential risks.

Case 2: A service that developer 𝐷𝑒𝑣𝐵 is responsible for de-
pends on a service from team C, so every time team C releases a
change, 𝐷𝑒𝑣𝐵 needs to immediately figure out this specific change
to determine whether the change will affect the service that she is
responsible for. However, the service from team C is relatively new,
so service releases are very frequent, and team C does not provide a
change specification document. 𝐷𝑒𝑣𝐵 often needs to communicate
with members of team C to obtain detailed information, which

brings very high communication costs. Now 𝐷𝑒𝑣𝐵 can use GMTA
Explorer to check the business flow of team C at any time, and
understand the details of business changes by 𝐷𝑒𝑣𝐵 through the
comparison of different time periods. Figure 10 shows an example
from two different input time ranges. The presence of dark red and
dark green squares in the red box indicates that the business flow
of team C has changed: the traffic is switched from red operations
to green operations. 𝐷𝑒𝑣𝐵 clicks on the corresponding operations
to get more detailed indicators about this change, and confirms that
this change will not affect the service that 𝐷𝑒𝑣𝐵 is responsible for.

In the preceding case, 𝐷𝑒𝑣𝐵 quickly notices and understands the
change through GMTA Explorer, and avoids the communication
overhead with team C.

6.2 Problem Diagnosis Cases
Root cause analysis and incident recovery are critical for busi-
ness. During an incident, metrics, alerts, traces, logs, and events
are collected and used for incident troubleshooting. However, this
information is overwhelming for a large-scale system. The follow-
ing three cases show how users use GMTA Explorer to speed up
problem diagnosis.

Case 3: As shown in Figure 11, the incident under diagnosis is
observed by a “markdown” alert from “ServiceA” to “ServiceB”,
indicating that “ServiceA” fails to call “ServiceB” or the invocation
latency is too high. 𝑆𝑅𝐸𝐷 needs to locate the root cause as soon as
possible. However, because there are too many types of different
traces, 𝑆𝑅𝐸𝐷 checks several traces and still cannot obtain actionable
insights related to the incident.

𝑆𝑅𝐸𝐷 runs GMTA Explorer on her laptop, so she switches to
GMTA Explorer and inputs the two services’ names. GMTA Ex-
plorer shows dependencies between different operations with their
key performance metrics (e.g., error rate, latency, and traffic). 𝑆𝑅𝐸𝐷
could quickly focus on the scope of the root cause. Then she discov-
ers that themetrics of operations c and d of “ServiceC” are abnormal.
Finally 𝑆𝑅𝐸𝐷 discovers the root cause of the incident: the new code
deployment for “ServiceC”. Through the query interface and UI
provided by GMTA Explorer, 𝑆𝑅𝐸𝐷 resolves the incident within a
few minutes.

Case 4: 𝑆𝑅𝐸𝐸 receives an alert from the monitoring system: the
number of errors on the “createLabel” operation of the “label” ser-
vice increases significantly. 𝑆𝑅𝐸𝐸 cannot determine whether the
errors are caused by “createLabel” itself or caused by downstream
operations. 𝑆𝑅𝐸𝐸 queries the EP chains of the “createLabel” opera-
tion. The results displayed by the EP chains show that all EP chains
start from the operation itself. 𝑆𝑅𝐸𝐸 judges that the root cause of
the alert is in “createLabel”, and then resolves the incident through
further investigation on the raw logs.

Case 5: 𝑆𝑅𝐸𝐹 receives an alert from the business metrics: the
success rate of the payment process drops significantly. In this
case, there are many soft error chains, so the overall errors do
not spike and the machine learning models for the error spike has
not detected any anomaly. 𝑆𝑅𝐸𝐹 struggles to find the root cause
so she tries the EP chains. 𝑆𝑅𝐸𝐹 selects the time period that the
business failure occurs as from 2:34 pm to 2:35 pm on March 4,
2020, an hour before the incident. GMTA Explorer returns four
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Figure 10: Path Change Example

Figure 11: Problem Diagnosis Example

new EP chains that are newly added or increased in number during
the business failure. 𝑆𝑅𝐸𝐹 directly identifies two of the four EP
chains for further investigation, and finally resolves the incident
within 4 minutes.

The cases in this section show that GMTA Explorer can help
developers, SREs, and architects to understand runtime architec-
ture and diagnose problems of large-scale industrial microservice
systems. Users with different roles may focus on different function-
alities of GMTA Explorer, but all of these users agree that GMTA
Explorer is effective and helpful for their purposes.

7 RELATEDWORK
Distributed tracing systems such as Zipkin [8], Jaeger [6], HTrace [5],
and Pinpoint [10] have been widely used in industrial microser-
vice systems. These distributed tracing systems provide a reusable
framework to generate and collect trace data for distributed sys-
tems. Most of these distributed tracing systems are designed to
be generic and simple to use for microservice systems of mid to
small size. For example, Zipkin [8] and Jaeger [6] directly store the
original trace information, and provide visualization for a single
trace. As the number of services increases, the number of traces
grows accordingly. It is difficult for these systems to provide a clear
global view for monitoring a business scenario. Developers have to
query a specific trace to make decisions based on their own business

knowledge. There is no additional support to extract insights such
as extracting critical flow via flow-based monitoring for large-scale
services.

Distributed tracing is often used for problem diagnosis [11–
13, 16, 17, 21, 22] and architecture understanding [9, 14, 18]. For
example, Canopy [14] aggregates trace data and introduces feature
extraction as a step in aggregate analysis, but the analysis of the
tracing data stays at the visualization level. Chen et al. [11] pro-
pose a path-based trace aggregation scheme. Neither work supports
the discovery of EP chains or higher-level abstraction to support
flow-based analysis or user-case monitoring. Sambasivan et al. [17]
compare request flows to diagnose performance changes but do
not conduct comparison at the aggregate levels. Hence their work
cannot provide users with useful information such as the error rate
and traffic. In contrast, GMTA Explorer compares aggregated data
to display additional useful information.

Based on our experiences, the preceding previous work faces
different difficulties to be applied in eBay’s production environ-
ments due to performance challenges or our advanced use cases. In
eBay, there were a few previous efforts [19, 20] based on graphs,
but the graphs are not generated from the distributed tracing data.
Therefore, we build from scratch a new system to overcome the
challenges and to be adopted for architecture understanding and
problem diagnosis.

8 CONCLUSION
In this paper, we have proposed and designed a graph-based ap-
proach of microservice trace analysis, named GMTA, for architec-
ture understanding and problem diagnosis. Built on a graph-based
representation, GMTA includes efficient processing of traces pro-
duced on the fly and an efficient storage and access mechanism
by combining a graph database and a real-time analytics database.
Extended from GMTA, we have implemented GMTA Explorer and
applied it in eBay. The results from our experimental study and case
study have confirmed its effectiveness and efficiency in supporting
architecture understanding and problem diagnosis in industrial-
scale microservice systems.
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