
A Comprehensive Study on Challenges in Deploying Deep
Learning Based Soware

Zhenpeng Chen
Key Lab of High-Condence Software
Technology, MoE (Peking University)

Beijing, China
czp@pku.edu.cn

Yanbin Cao
Key Lab of High-Condence Software
Technology, MoE (Peking University)

Beijing, China
caoyanbin@pku.edu.cn

Yuanqiang Liu
Key Lab of High-Condence Software
Technology, MoE (Peking University)

Beijing, China
yuanqiangliu@pku.edu.cn

Haoyu Wang
Beijing University of Posts and

Telecommunications
Beijing, China

haoyuwang@bupt.edu.cn

Tao Xie
Key Lab of High-Condence Software
Technology, MoE (Peking University)

Beijing, China
taoxie@pku.edu.cn

Xuanzhe Liu∗
Key Lab of High-Condence Software
Technology, MoE (Peking University)

Beijing, China
xzl@pku.edu.cn

ABSTRACT
Deep learning (DL) becomes increasingly pervasive, being used in
a wide range of software applications. These software applications,
named as DL based software (in short as DL software), integrate
DL models trained using a large data corpus with DL programs
written based on DL frameworks such as TensorFlow and Keras.
A DL program encodes the network structure of a desirable DL
model and the process by which the model is trained using the
training data. To help developers of DL software meet the new
challenges posed by DL, enormous research eorts in software
engineering have been devoted. Existing studies focus on the de-
velopment of DL software and extensively analyze faults in DL
programs. However, the deployment of DL software has not been
comprehensively studied. To ll this knowledge gap, this paper
presents a comprehensive study on understanding challenges in
deploying DL software. We mine and analyze 3,023 relevant posts
from Stack Overow, a popular Q&A website for developers, and
show the increasing popularity and high diculty of DL software
deployment among developers. We build a taxonomy of specic
challenges encountered by developers in the process of DL software
deployment through manual inspection of 769 sampled posts and
report a series of actionable implications for researchers, developers,
and DL framework vendors.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; • Computing methodologies → Articial intelli-
gence; • General and reference → Empirical studies.

∗Corresponding author: Xuanzhe Liu (xzl@pku.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409759

KEYWORDS
deep learning, software deployment, Stack Overow

ACM Reference Format:
Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, HaoyuWang, Tao Xie, and Xu-
anzhe Liu. 2020. A Comprehensive Study on Challenges in Deploying Deep
Learning Based Software. In Proceedings of the 28th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3368089.3409759

1 INTRODUCTION
Deep learning (DL) has been used in a wide range of software
applications from dierent domains, including natural language
processing [78], speech recognition [92], image processing [81],
disease diagnosis [82], autonomous driving [88], etc. These soft-
ware applications, named as DL based software (in short as DL
software), integrate DL models trained using a large data corpus
with DL programs. To implement DL programs, developers rely
on DL frameworks (e.g., TensorFlow [70] and Keras [62]), which
encode the structure of desirable DL models and the process by
which the models are trained using the training data.

The increasing dependence of current software applications on
DL (as in DL software) makes it a crucial topic in the software
engineering (SE) research community. Specically, many research
eorts [80, 84, 85, 106, 108] have been devoted to characterizing the
new challenges that DL poses to software development. To character-
ize the challenges that developers encounter in this process, various
studies [85, 106, 108] focus on analyzing faults in DL programs. For
instance, Islam et al. [85] have presented a comprehensive study
of faults in DL programs written based on TensorFlow (TF) [70],
Keras [62], PyTorch [63], Theano [73], and Cae [86] frameworks.

Recently, the great demand of deploying DL software to dierent
platforms for real usage [80, 91, 102] also poses new challenges
to software deployment, i.e., deploying DL software on a specic
platform. For example, a computation-intensive DL model in DL
software can be executed eciently on PC platforms with the GPU
support, but it cannot be directly deployed and executed on plat-
forms with limited computing power, such as mobile devices. To
facilitate this deployment process, some DL frameworks such as

750

https://doi.org/10.1145/3368089.3409759
https://doi.org/10.1145/3368089.3409759

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xuanzhe Liu

TF Lite [67] and Core ML [60] are rolled out by major vendors.
Furthermore, SE researchers and practitioners also begin to focus
on DL software deployment. For example, Guo et al. [83] have in-
vestigated the changes in prediction accuracy and performance
when DL models trained on PC platforms are deployed to mo-
bile devices and browsers, and unveiled that the deployment still
suers from compatibility and reliability issues. Additionally, DL
software deployment also poses some specic programming chal-
lenges to developers such as converting DL models to the formats
expected by the deployment platforms; these challenges are fre-
quently asked in developers’ Q&A forums [1–4]. Despite some
eorts made, to the best of our knowledge, a fundamental question
remains under-investigated: what specic challenges do developers
face when deploying DL software?

To bridge the knowledge gap, this paper presents the rst com-
prehensive empirical study on identifying challenges in deploying
DL software. Given surging interest in DL and the importance of
DL software deployment, this study can aid developers to avoid
common pitfalls and make researchers and DL framework ven-
dors1 better positioned to help software engineers perform the
deployment task in a more targeted way. Besides mobile devices
and browsers that have been considered in previous work [83], in
this work, we also take into account server/cloud platforms, where
a large number of DL software applications are deployed [80, 107].
To understand what struggles that developers face when they de-
ploy DL software, we analyze the relevant posts from a variety
of developers on Stack Overow (SO), which is one of the most
popular Q&A forums for developers. When developers have trou-
bles in solving programming issues that they meet, they often seek
technological advice from peers on SO [80]. Therefore, it has been a
common practice for researchers to understand the challenges that
developers encounter when dealingwith dierent engineering tasks
from SO posts, as shown in recent work [72, 74–76, 80, 96, 105, 106].

Our study collects and analyzes 3,023 SO posts regarding deploy-
ing DL software to server/cloud, mobile, and browser platforms.
Based on these posts, we focus our study on the following research
questions.

RQ1: Popularity trend. Through quantitative analysis, we nd
that DL software deployment is gaining increasing attention, and
nd evidence about the timeliness and urgency of our study.

RQ2: Diculty.We measure the diculty of DL software de-
ployment using well-adopted metrics in SE. Results show that the
deployment of DL software is more challenging compared to other
aspects related to DL software. This nding motivates us to further
unveil the specic challenges encountered by developers in DL
software deployment.

RQ3: Taxonomy of challenges. To identify specic challenges
in DL software deployment, we randomly sample a set of 769 rele-
vant SO posts for manual examination. For each post, we qualita-
tively extract the challenge behind it. Finally, we build a compre-
hensive taxonomy consisting of 72 categories, linked to challenges
in deploying DL software to server/cloud, mobile, and browser
platforms. The resulting taxonomy indicates that DL software de-
ployment faces a wide spectrum of challenges.

1Unless explicitly stated, framework vendors in this paper refer to vendors of deploy-
ment related frameworks such as TF Lite and Core ML.

Trained DL
Models

Train

ExportedModels for
Server/Cloud

ConvertedModels
for Mobile

ConvertedModels
for Browser

Training
Data

Server/Cloud Platforms

Mobile Platforms

Browser Platforms
DL Software Development DL Software Deployment

Figure 1: DL software development and deployment.

Furthermore, we discuss actionable implications (derived from
our results) for researchers, developers, and DL framework vendors.
In addition, this paper oers a dataset of posts related to DL soft-
ware deployment [66] as an additional contribution to the research
community for other researchers to replicate and build upon.

2 BACKGROUND
We rst briey describe the current practice of DL software devel-
opment and deployment. Figure 1 distinguishes the two processes.

DL software development. To integrate DL capabilities into
software applications, developers make use of state-of-the-art DL
frameworks (e.g., TF and Keras) in the software development pro-
cess. Specically, developers use these frameworks to create the
structure of DL models and specify run-time conguration (e.g.,
hyper-parameters). In a DL model, multiple layers of transforma-
tion functions are used to convert input to output, with each layer
learning successively higher level of abstractions in the data. Then
large-scale data (i.e., the training data) is used to train (i.e., adjust
the weights of) the multiple layers. Finally, validation data, which
is dierent from the training data, is used to tune the model. Due to
the space limit, we show only the model training phase in Figure 1.

DL software deployment. After DL software has been well
validated and tested, it is ready to be deployed to dierent plat-
forms for real usage. The deployment process focuses on platform
adaptations, i.e., adapting DL software for the deployment plat-
form. The most popular way is to deploy DL software on the server
or cloud platforms [107]. This way enables developers to invoke
services powered by DL techniques via simply calling an API end-
point. Some frameworks (e.g., TF Serving [68]) and platforms (e.g.,
Google Cloud ML Engine [61]) can facilitate this deployment. In
addition, there is a rising demand in deploying DL software to mo-
bile devices [102] and browsers [91]. For mobile platforms, due to
their limited computing power, memory size, and energy capac-
ity, models that are trained on PC platforms and used in the DL
software cannot be deployed directly to the mobile platforms in
some cases. Therefore, some lightweight DL frameworks, such as
TF Lite for Android and Core ML for iOS, are specically designed
for converting pre-trained DL models to the formats supported by
mobile platforms. In addition, it is a common practice to perform
model quantization before deploying DL models to mobile devices,
in order to reduce memory cost and computing overhead [83, 102].
For model quantization, TF Lite supports only converting model
weights from oating points to 8-bit integers, while Core ML allows
exible quantization modes, such as 32 bits to 16/8/4 bits [83]. For

751

A Comprehensive Study on Challenges in Deploying Deep Learning Based Soware ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Download Stack Overflow dataset

Identify relevant questions

Determine popularity trend

Determine difficulty

Construct taxonomy of challenges

1

2

3

4

5

RQ1

RQ2

RQ3

Figure 2: An overview of the methodology.

browsers, some solutions (e.g., TF.js [69]) are proposed for deploy-
ing DL models under Web environments.

Scope.We focus our analysis on DL software deployment. Specif-
ically, we analyze the challenges in deploying DL software to dif-
ferent platforms including server/cloud, mobile, and browser plat-
forms. Any issues related to this process are within our scope. How-
ever, challenges related to DL software development (e.g., model
training) are not considered in this study.

3 METHODOLOGY
To understand the challenges in deploying DL software, we ana-
lyze the relevant questions posted on Stack Overow (SO), where
developers seek technological advice about unresolved issues. We
show an overview of the methodology of our study in Figure 2.
Step 1: Download Stack Overflow dataset. In the rst step of this
study, we download SO dataset from the ocial Stack Exchange
Data Dump [65] on December 2, 2019. The dataset covers the SO
posts generated from July 31, 2008 to December 1, 2019. The meta
data of each post includes its identier, post type (i.e., question or
answer), creation date, tags, title, body, identier of the accepted
answer if the post is a question, etc. Each question has one to ve
tags based on its topics. The developer who posted a question can
mark an answer as an accepted answer to indicate that it works for
the question. Among all the questions in the dataset (denoted as
the set A), 52.33% have an accepted answer.
Step 2: Identify relevant questions. In this study, we select three
representative deployment platforms of DL software for study, in-
cluding server/cloud, mobile, and browser platforms. Since ques-
tions related to DL software deployment may be contained in DL
related questions, we rst identify SO questions related to DL. Fol-
lowing previous work [84, 85], we extract questions tagged with at
least one of the top ve popular DL frameworks (i.e., TF, Keras, Py-
Torch, Theano, and Cae) from A and denote the extracted 70,669
questions as the set B. Then we identify the relevant questions for
each kind of platform, respectively.

Server/Cloud. We rst dene a vocabulary of words related to
server/cloud platforms (i.e., “cloud”, “server”, and “serving”). Then
we perform a case-insensitive search of the three terms within the
title and body (excluding code snippets) of each question in B and
denote the questions that contain at least one of the terms as the set
C. Since questions in C may contain some noise that is not related
to deployment (e.g., questions about training DL models on the
server), we lter out those that do not contain the word “deploy”

and nally 279 questions remain in C. To further complement C, we
extract questions tagged with TF Serving, Google Cloud ML Engine,
and Amazon SageMaker from A. TF Serving is a DL framework
that is specically designed for deploying DL software to servers;
Google Cloud ML Engine and Amazon SageMaker [59] are two
popular cloud platforms for training DL models and deploying DL
software. Since the two platforms are rolled out by two major cloud
service vendors, i.e., Google and Amazon, we believe that they are
representative. For questions tagged with the two platforms, we
lter out those that do not contain the word “deploy” as they also
support model training. Then we add the remaining questions as
well as all questions tagged with TF Serving into C and remove
the duplicate questions. Finally, we have 1,325 questions about DL
software deployment to server/cloud platforms in the set C.

Mobile. We dene a vocabulary of words related to mobile
devices (i.e., “mobile”, “android”, and “ios”) and extract the ques-
tions that contain at least one of the three words from B in a
case-insensitive way. We denote the extracted 486 questions as
the question set D. Then, following previous work [83], we also
consider two DL frameworks specically designed for DL software
deployment to mobile platforms (i.e., TF Lite and Core ML). We ex-
tract the questions tagged with at least one of the two frameworks
from A and then add these questions into D. Finally, we remove
the duplicate questions and have 1,533 questions about DL software
deployment to mobile platforms in the set D.

Browser. We extract questions that contain the word “browser”
from B in a case-insensitive way and denote the extracted 89 ques-
tions as the set E. In addition, following previous work [83], we also
take TF.js, which can be used for deploying DL models on browsers,
into consideration. Dierent from TF Lite, which supports only
deployment, TF.js also supports developing DL models. However,
since DL on browsers is still at dawn [91], questions tagged with
TF.js inA are too few, only 535. If we employ strict keyword match-
ing to lter out questions that do not contain “deploy” as above,
only 10 out of 535 questions can remain. To keep as many relevant
questions as possible, instead of keyword matching, we employ
manual inspection here. Specically, we add all the 535 questions
into E and exclude the duplicate questions. Then two authors of
this paper examine the remaining 576 questions independently and
determine whether or not each question is about DL software de-
ployment. The inter-rater agreement measured as Cohen’s Kappa
(𝜅) [79] is 0.894, which indicates almost perfect agreement. Then
the conicts are resolved through discussion, and the questions
considered as non-deployment issues are excluded from E. Finally,
we have 165 questions about DL software deployment to browser
platforms in the set E.

Step 3: Determine popularity trend. To illustrate the popularity
trend of DL software deployment, following previous work [74], we
calculate the number of users and questions related to the topic per
year. Specically, the metrics are calculated based on the question
sets C, D, and E, for each of the past ve years (i.e., from 2015 to
2019). Step 3 answers the research question RQ1.

Step 4: Determine diculty. We measure the diculty of de-
ploying DL software using two metrics widely adopted by previous
work [72, 74, 75], including the percentage of questions with no ac-
cepted answer (“%no acc.”) and the response time needed to receive

752

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xuanzhe Liu

an accepted answer. In this step, we use the questions related to
other aspects of DL software (in short as non-deployment questions)
as the baseline for comparison. To this end, we exclude the deploy-
ment related questions (i.e., questions in C, D, and E) from the
DL related questions (i.e., questions in B), and use the remaining
questions as the non-deployment questions. For the rst metric, we
employ proportion test [94] to ensure the statistical signicance
of comparison. This test is used for testing null hypothesis that
proportions in multiple groups are the same [64], and thus the test
is appropriate for the comparison in %no acc. For the second metric,
we select the questions that have received accepted answers and
then show the distribution and the median value of the response
time needed to receive an accept answer for both deployment and
non-deployment questions. Step 4 answers the research question
RQ2.

Step 5: Construct taxonomy of challenges. In this step, we man-
ually analyze the questions related to DL software deployment, in
order to construct the taxonomy of challenges. Following previous
work [106], to ensure a 95% condence level and a 5% condence
interval, we randomly sample 297 server/cloud related questions
from C and 307 mobile related questions from D. Since browser
related questions in E are not too many, we use all the 165 ques-
tions in it for manual analysis. In total, we get a dataset of 769
questions that are used for taxonomy construction. The size of this
dataset is comparable and even larger than those used in existing
studies [71, 77, 106, 108] that also require manual analysis of SO
posts. Next, we present our procedures of taxonomy construction.

Pilot construction. First, we randomly sample 30% of the 769
questions for a pilot construction of the taxonomy. The taxonomy
for each kind of platform is constructed individually based on its
corresponding samples.We follow an open coding procedure [97] to
inductively create the categories and subcategories of our taxonomy
in a bottom-up way by analyzing the sampled questions. The rst
two authors (named as inspectors), who both have four years of
DL experiences, jointly participate in the pilot construction. The
detailed procedure is described below.

The inspectors read and reread all the questions, in order to
be familiar with them. In this process, the inspectors take all the
elements of each question, including the title, body, code snippets,
comments, answers, tags, and even URLs mentioned by questioners
and answerers, for careful inspection. Questions not related to DL
software deployment are classied as False positives. For a relevant
question, if the inspectors cannot identify the specic challenge
behind it, they mark it as Unclear questions, which as well as False
positives are not included into the taxonomy. For the remaining
questions, the inspectors assign short phrases as initial codes to
indicate the challenges behind these questions. Specically, for
those questions that are raised without attempts (mainly in the
form of “how”, e.g., “how to process raw data in tf-serving” [5]),
the inspectors can often clearly identify the challenges from the
question descriptions; for those questions that describe the faults
or unexpected results that developers encounter in practice, the
inspectors identify their causes as the challenges. For example, if
a developer reports an error that she encounters when making
predictions and the inspectors can nd that the cause is the wrong
format of input data from the question descriptions, comments, or

answers, the inspectors consider setting the format of input data as
the challenge behind this question.

Then the inspectors proceed to group similar codes into cate-
gories and create a hierarchical taxonomy of challenges. The group-
ing process is iterative, in which the inspectors continuously go
back and forth between categories and questions to rene the tax-
onomy. A question is assigned to all related categories if it is related
to multiple challenges. All conicts are discussed and resolved by
introducing three arbitrators. The arbitrator for server/cloud de-
ployment is a practitioner who has four years of experience in
deploying DL software to servers/cloud platforms. The two arbitra-
tors for mobile and browser deployment are graduate students who
have two years of experience in deploying DL software to mobile
devices and browsers, respectively. Both of these arbitrators have
published papers related to DL software deployment in top-tier
conferences. The arbitrators nally approve all categories in the
taxonomy.

Reliability analysis and extended construction. Based on
the coding schema in the pilot construction, the rst two authors
then independently label the remaining 70% questions for reliability
analysis. Each question is labeled with False positives, Unclear ques-
tions, or the identied leaf categories in the taxonomy. Questions
that cannot be classied into the current taxonomy are added into
a new category named Pending. The inter-rater agreement during
the independent labeling is 0.816 measured by Cohen’s Kappa (𝜅),
indicating almost perfect agreement and demonstrating the reliabil-
ity of our coding schema and procedure. The conicts of labeling
are then discussed and resolved by the aforementioned three arbi-
trators. For the questions classied as Pending, the arbitrators help
further identify the challenges behind the questions and determine
whether new categories need to be added. Finally, 8 new leaf cate-
gories are added and all questions in Pending are assigned into the
taxonomy.

In summary, among the 769 sampled questions, 58 are marked as
False positives, and 130 as Unclear questions. In addition, there are 2
questions each of which is assigned into two categories. The remain-
ing 583 sampled questions (i.e., 227 for server/cloud deployment,
231 for mobile deployment, and 125 for browser deployment) are
all covered in the nal taxonomy. The entire manual construction
process takes about 450 man-hours. Step 5 answers the research
question RQ3.

4 RQ1: POPULARITY TREND
Figure 3 shows the popularity trend of deploying DL software in
terms of the number of users and questions on SO. The gure indi-
cates that this topic is gaining increasing attention, demonstrating
the timeliness and urgency of this study.

For deployingDL software on server/cloud platforms, we observe
that users and questions increase in a steady trend. In 2017, most
major vendors roll out their DL frameworks formobile devices [102].
As a result, we can observe that both the number of users and the
number of questions related to mobile deployment in 2017 increase
by more than 300% compared to 2016. For deploying DL software
on browsers, questions start to appear in 2018 due to the release of
TF.js in 2018. As found by Ma et al. [91], DL in browsers is still at

753

A Comprehensive Study on Challenges in Deploying Deep Learning Based Soware ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

(a) Trend of users (b) Trend of questions

Figure 3: The popularity trend of deploying DL software.

Figure 4: Time needed to receive an accepted answer.

dawn. Therefore, the users and questions related to DL are still not
so many, as shown in Figure 3.

5 RQ2: DIFFICULTY
For deployment and other aspects (in short of non-deployment)
of DL software, the percentages of relevant questions with no ac-
cepted answer (%no acc.) are 70.7% and 62.7%, respectively. The
signicance of this dierence is ensured by the result of propor-
tion test (𝜒2 = 78.153, df = 1, 𝑝-value < 2.2e-16), indicating that
questions related to DL software deployment are more dicult to
answer than those related to other aspects of DL software. More
specically, for server/cloud, mobile, and browser deployment, the
values of %no acc. are 69.8%, 71.6%, and 69.1%, respectively. In terms
of this metric, questions about deploying DL software are also more
dicult to resolve than other well-studied challenging topics in SE,
such as big data (%no acc. = 60.5% [75]), concurrency (%no acc. =
43.8% [72]), and mobile (%no acc. = 55.0% [96]).

Figure 4 presents the boxplot of response time needed to receive
an accepted answer for deployment and non-deployment related
questions.We can observe that the time needed for non-deployment
questions is mostly concentrated below 600 minutes, while deploy-
ment questions have a wider spread. Furthermore, we nd that the
median response time for deployment questions (i.e., 404.9 minutes)
is about 3 times the time needed for non-deployment questions
(only 145.8 minutes). More specically, the median response time
for server/cloud, mobile, and browser related questions is 428.5,
405.2, and 180.9 minutes, respectively. In previous work [72, 75, 96],
researchers nd that the median response time needed for other
challenging topics, including big data, concurrency, and mobile, is
about 198 [75], 42 [72], and 55 minutes [96], respectively. In con-
trast, questions related to deploying DL software need longer time
to receive accepted answers.

In summary, we nd that questions related to DL software de-
ployment are dicult to resolve, partly demonstrating the nding

in previous work [74] that model deployment is the most challeng-
ing phase in the life cycle of machine learning (ML) and motivating
us to further identify the specic challenges behind deploying DL
software.

6 RQ3: TAXONOMY OF CHALLENGES
Figure 5 illustrates the hierarchical taxonomy of challenges in DL
software deployment. As shown in Figure 5, developers have di-
culty in a broad spectrum of issues. Note that although the identied
challenges are about deploying DL software to specic platforms,
not all relevant issues occur on corresponding platforms. For exam-
ple, to deploy DL software to mobile devices, the model conversion
task can be done on PC platforms.

We group the full taxonomy into three sub-taxonomies that cor-
respond to the challenges in deploying DL software to server/cloud,
mobile, and browser platforms, respectively. Each sub-taxonomy is
then organized into three-level categories, including the root cate-
gories (e.g., Server/Cloud), the inner categories (e.g., Model Export),
and the leaf categories (e.g., Model quantization). In total, we have
3 root categories, 25 inner categories, and 72 leaf categories. We
show the percentages for questions related to each category in the
parentheses. Then we describe and exemplify each inner category.

6.1 Common Challenges in Server/Cloud,
Mobile, and Browser

To avoid duplicate descriptions, we rst present the common inner
categories in Server/Cloud, Mobile, and Browser.

6.1.1 General estions. This category shows general challenges
that do not involve a specic step in the deployment process, and
contains several leaf categories as follows.

Entire procedure of deployment. This category refers to gen-
eral questions about the entire procedure of deployment, mainly
raised without practical attempts. These questions are mainly in
the form of “how”, such as “how can I use that model in android for
image classication” [6]. In such questions, developers often com-
plain about the documentation, e.g., “there is no documentation given
for this model” [7]. Answerers mainly handle these questions by
providing existing tutorials or documentation-like information that
does not appear elsewhere, or translate the jargon-heavy documen-
tation into case-specic guidance phrased in a developer-friendly
way. Compared to Server/Cloud (9.7%) and Mobile (13.4%), Browser
contains relatively fewer such questions (3.2%). A possible expla-
nation is that since DL in browsers is still in the early stage [91],
developers are mainly stuck in DL’s primary usage rather than
being eager to explore how to apply DL to various scenarios.

Conceptual questions. This category includes questions about
basic concepts or background knowledge related to DL software
deployment, such as “is there any dierence between these Neural
Network Classier and Neural Network in machine learning model
type used in iOS ” [8]. This category of questions is also observed
in previous work [72, 75, 98] that analyzes challenges faced by de-
velopers in other topics through SO questions. For Server/Cloud
and Mobile, this category accounts for 4.4% and 4.8%, respectively,
indicating that developers nd even the basics of DL software de-
ployment challenging. For Browser, this category is missing. Since
TF.js also supports model training, we lter out the conceptual

754

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xuanzhe Liu

Data Processing (19.8%)

Procedure
(1.3%)

Setting size /
shape of input
data (1.8%)

Setting format /
datatype of input

data (8.8%)

Parsing
output (4.8%)

Migrating pre-
processing

(3.1%)

Authenticating
client (1.8%)

Procedure
(0.4%)

Parsing
request
(1.3%)

Serving (13.2%)

Model
loading (3.1%)

Configuration
of batching

(2.6%)

Serving multiple
models simultaneously

(3.5%)

Bidirectional
streaming

(0.4%)

Server / Cloud (100%)

Model Update (2.6%)Environment (19.4%)

Installing /
building

frameworks (7.5%)

Avoiding version
incompatibility

(4.0%)

Configuration
of environment
variables (7.9%)

Limitations of
platforms /

frameworks (2.6%)

Model Export (15.0%)

Procedure
(4.4%)

Specification of
model

information (6.2%)

Export of
unsupported

models (3.1%)

Selection / usage
of APIs (0.9%)

Model
quantization

(0.4%)

Request (13.3%)

Procedure (0.9%)
Setting request
parameters /
body (8.4%)

Batching
request (2.2%)

General Questions (16.7%)

Entire procedure
of deployment

(9.7%)

Conceptual
questions

(4.4%)

Model Update (3.0%)

Data Extraction (1.7%)

General Questions (18.6%)

Entire procedure
of deployment

(13.4%)

Conceptual
questions

(4.8%)

Limitations of
frameworks

(0.4%)

Avoiding version
incompatibility

(1.7%)

Configuration of
input / output

information (8.2%)

DL Integration into Projects (21.2%)

Importing /
loading models

(4.3%)

Build
configuration

(3.9%)

Inference Speed (3.9%)

Model Conversion (26.5%)

Procedure
(3.9%)

Saving models
(1.3%)

Conversion of
unsupported

models (6.1%)

Model
quantization

(4.8%)

Specification of
model information

(8.2%)

Selection /
usage of APIs

(0.9%)

Parsing
converted

models (1.3%)

DL Library Compilation (7.8%)

Usage of
prebuilt

libraries (0.4%)

Register of
unsupported

operators (3.0%)

Build
configuration

(2.6%)
Procedure (1.7%)

Data Processing (16.9%)

Setting size /
shape of input

data (3.0%)

Setting format /
datatype of input

data (5.2%)

Parsing output
(2.2%)

Migrating pre-
processing (4.8%)

Mobile (100%)

Getting information
of exposed model

(1.8%)

Model Update (1.6%)

Data Extraction (3.2%)

Model Loading (24.0%)

Loading from
local storage

(8.0%)

Loading from a
Http endpoint

(2.4%)

Asynchronous
loading (5.6%)

Selection / usage
of APIs (2.4%)

Improving loading
speed (0.8%)

Procedure
(4.8%)

Inference Speed (7.2%)

Environment (19.2%)

Importing
libraries (10.4%)

Avoiding version
incompatibility

(8.8%)

Procedure
(3.2%)

Specification of
model information

(5.6%)

Conversion of
unsupported

models (4.0%)

Selection /
usage of APIs

(2.4%)

Saving models
(3.2%)

General Questions (5.6%)

Entire procedure
of deployment

(3.2%)

Limitations of
frameworks (2.4%)

Procedure (1.6%)

Data Processing (18.4%)

Setting size /
shape of input

data (5.6%)

Setting format /
datatype of input

data (4.8%)

Migrating pre-
processing

(2.4%)

Browser (100%)

Model Conversion (18.4%)

Procedure
(1.7%)

Thread
management

(2.2%)

Model Security (2.4%)

Model Security (0.4%)Procedure
(0.9%)

Data Loading
(4.0%)

Figure 5: Taxonomy of challenges in deploying DL software.

755

A Comprehensive Study on Challenges in Deploying Deep Learning Based Soware ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

questions about TF.js during manual inspection as we cannot dis-
cern whether these questions occur during training or deployment.
However, it does not mean that there is no conceptual questions
about browser deployment.

Limitations of platforms/frameworks.This category is about
limitations of relevant platforms or DL frameworks. For example, a
senior software engineer working on the Google Cloud ML Plat-
form team apologizes for the failure that a developer encounters,
admitting that the platform currently does not support batch pre-
diction [9]. Besides, some issues reect bugs in current deployment
related frameworks. For instance, an issue reveals a bug in the
TocoConvert.from_keras_model_le method of TF Lite [10].

6.1.2 Model Export and Model Conversion. Both categories cover
challenges in converting DL models in DL software into the for-
mats supported by deployment platforms. Model export directly
saves the trained model into the expected format, and it is a com-
mon way for deploying DL models to server/cloud platforms. In
contrast, model conversion needs two steps: (1) saving the trained
model into a format supported by the deployment frameworks;
(2) using these frameworks to convert the saved model into the
format supported by mobile devices or browsers. Considering the
similar functionalities of model export and model conversion, we
put them together for description. Model export represents 15.0%
of questions in Server/Cloud, while model conversion covers the
most encountered category of challenges in Mobile and the third
most encountered category of challenges in Browser, accounting
for 26.5% and 18.4%, respectively. We next present representative
leaf categories under the two categories.

Procedure.Dierent from Entire procedure of deployment, which
asks about the entire deployment process, questions in Procedure
are about the procedure of a specic step in the process. An example
question in Procedure under Model Conversion is “how can I convert
this le into a .coreml le” [1]. Due to page limit, we do not repeat
the descriptions of Procedure in other inner categories.

Export/conversion of unsupported models. The support of
DL on some platforms is still unedged. Some standard operators
and layers used in the trained model are not supported by deploy-
ment frameworks. For example, developers report that LSTM is not
supported by TF Lite [2] and that GaussianNoise is not supported
by TF.js [11]. Similarly, Guo et al. [83] report that they could not
deploy the RNN models (i.e., LSTM and GRU) to mobile platforms
due to the “unsupported operation” error. In addition, when devel-
opers attempt to export or convert models with custom operators
or layers, the developers also encounter diculties [3, 4].

Specication of model information.When exporting or con-
verting DL models to expected formats, developers need to specify
model information. For instance, TF Serving requires developers
to construct a signature to specify names of the input and output
tensors and the method of inference (i.e., regression, prediction,
or classication) [12]. Incorrect specication would result in er-
rors [13]. Sometimes, developers directly use o-the-shelf models
that have been well trained and released online for deployment, but
the developers have no idea about the models’ information (e.g.,
names of the input and output tensors [14]), making the model
export/conversion task challenging.

Selection/usage of APIs. There are so many APIs provided by
dierent frameworks for developers to export and convert models
to various formats. Therefore, it is challenging for developers to
select and use these APIs correctly according to their demand. For
example, a developer is confused about the “relationship between
tensorow saver, exporter and save model” [15] and says frankly that
she feels more confused after reading some tutorials. In addition,
the addition, deprecation, and upgrade of APIs caused by the update
of frameworks also make the selection and usage of APIs error-
prone [16].

Model quantization.Model quantization reduces precision rep-
resentations of model weights, in order to reduce memory cost and
computing overhead of DL models [17]. It is mainly used for de-
ployment to mobile devices, due to their limitations of computing
power, memory size, and energy capacity. For this technique, devel-
opers have diculty in conguration of relevant parameters [18].
In addition, developers call for support of more quantization op-
tions. For instance, TF Lite supports only 8-bit quantization (i.e.,
converting model weights from oating points to 8-bit integers),
but developers may need more bits for quantization [19].

6.1.3 Data Processing. This category covers challenges in convert-
ing raw data into the input format needed by DL models in DL
software (i.e., pre-processing) and converting the model output into
expected formats (i.e., post-processing). This category accounts for
the most questions (19.8%) in Server/Cloud. For Mobile and Browser,
it covers 16.9% and 18.4% of questions, respectively. We next de-
scribe the representative leaf categories under Data Processing.

Setting size/shape/format/datatype of input data. It is a
common challenge in data pre-processing to set the size/shape
and format/datatype of data. A faulty behavior manifests when
the input data has an unexpected size/shape (e.g., a 224×224 image
instead of a 227×227 image [20]), format (e.g., encoding an image in
the Base64 format instead of converting it to a list [21]), or datatype
(e.g., oat instead of int [22]).

Migrating pre-processing. When ML/DL models are devel-
oped, data pre-processing is often considered as an individual
phase [74] and thus may not be included inside the model structure.
In this case, code for data pre-processing needs to be migrated dur-
ing the deployment process, in order to keep consistent behaviors
of software before and after deployment. For instance, when devel-
opers deploy a DL application with pre-processing implemented
with Python and out of the DL model to an Android device, the
developers may need to re-implement pre-processing using a new
language (e.g., Java or C/C++). Forgetting to re-implement pre-
processing [23] or re-implementing it incorrectly [24] can lead
to faulty behaviors. In addition, an alternative to keep data pre-
processing consistent is to add it into the structure of DL models.
For this option, developers face challenges such as “how to add
layers before the input layer of model restored from a .pb le [...] to
decode jpeg encoded strings and feed the result into the current input
tensor” [25].

Parsing output. This category includes challenges in convert-
ing the output of DL models to expected or human-readable results,
such as parsing the output array [26] or tensor [27] to get the actual
predicted class.

756

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xuanzhe Liu

6.1.4 Model Update. Once DL software is deployed for real usage,
the DL software can receive feedback (e.g., bad cases) from users.
The feedback can be used to update weights of the DL model in DL
software for further performance improvement. Many challenges,
such as periodical automated model update on clouds [28] and
model update (or re-training) on mobile devices [29], emerge from
the eorts to achieve this goal. This category covers 2.6%, 3.0%, and
1.6% of questions in Server/Cloud, Mobile, and Browser, respectively.

6.1.5 Model Security. DL models in DL software are often stored
in unencrypted formats, resulting in a risk that competitors may
disassemble and reuse the models. To alleviate this risk and en-
sure model security, developers attempt multiple approaches, such
as obfuscating code [30] or libraries [31]. Any challenges related
to model security are included in this category. This category is
observed only in Mobile and Browser, since models deployed to
these platforms are easier to obtain. In contrast, models deployed
on server/cloud platforms are hidden behind API calls.

6.2 Common Challenges in Mobile and
Browser

6.2.1 Data Extraction. To deploy DL software successfully, devel-
opers need to consider any stage that may aect the nal perfor-
mance, including data extraction. This category is observed only
in Mobile and Browser, accounting for 1.7% and 3.2% of questions,
respectively. This nding indicates the diculty of extracting data
in mobile devices and browsers.

6.2.2 Inference Speed. Compared to server/cloud platforms, mobile
and browser platforms have weaker computing power. As a result,
the inference speed of the deployed software has been a challenge
in mobile devices (3.9%) and browsers (7.2%).

6.3 Common Challenges in Server/Cloud and
Browser

Environment. This category includes challenges in setting up the en-
vironment for DL software deployment, and accounts for 19.4% and
19.2% of questions in Server/Cloud and Browser, respectively. For
Mobile, its environment related questions are mainly distributed
in DL Library Compilation and DL Integration into Projects cate-
gories that will be introduced later. When deploying DL software
to server/cloud platforms, developers need to congure various en-
vironment variables, whose diverse options make the conguration
task challenging. In addition, for the server deployment, developers
also need to install or build necessary frameworks such as TF Serv-
ing. Issues that occur in this phase are included in Installing/building
frameworks. Similarly, when deploying DL software to browsers,
some developers have diculty in Importing libraries, e.g., “I am de-
veloping a chrome extension, where I use my trained keras model. For
this I need to import a library tensorow.js. How should I do that” [32].
Besides these challenges, the rapid evolution of DL frameworks
makes the version compatibility of frameworks/libraries challeng-
ing for developers. For instance, an error reported on SO is caused
by that the TF used to train and save the model has an incompatible
version with TF Serving used for deployment [33]. Similarly, Hum-
batova et al. [84] mention that version incompatibility between

dierent libraries and frameworks is one of the main concerns of
practitioners in developing DL software.

6.4 Remaining Challenges in Server/Cloud
6.4.1 Request. This category covers challenges in making requests
in the client and accounts for 13.3% of questions in Server/Cloud.
For Request, developers have diculty in conguring the request
body [34], sending multiple requests at a single time (i.e., batching
request) [35], getting information of servingmodels via request [36],
etc.

6.4.2 Serving. This category concerns challenges related to serv-
ing DL software on the server/cloud platforms and accounts for
13.2% of questions. To make a DL model in DL software servable,
developers rst need to load the DL model, where issues such as
loading time [37] and memory usage [38] may emerge. In addi-
tion, many developers encounter diculties in authenticating the
client [39] and parsing the request [40]. Sometimes, developers need
to serve multiple dierent models to provide diverse services or
serve dierent versions of one model at the same time [41], but the
developers nd that the implementation is not such easy (account-
ing for 3.5% of questions). Similarly, Zhang et al. [107] demonstrate
that multiple-model maintenance is one of the main challenges in
DL software deployment andmaintenance in the server side. Finally,
we want to mention a specic conguration issue in this category,
i.e., Conguration of batching. To process requests in batches, devel-
opers need to congure relevant parameters manually. We observe
this issue in 2.6% of questions, e.g., “I know that the batch.cong le
needs to be ne-tuned a bunch by hand, and I have messed with it a
lot and tuned numbers around, but nothing seems to actually eect
runtimes” [42].

6.5 Remaining Challenges in Mobile
6.5.1 DL Library Compilation. This category includes challenges
in compiling DL libraries for target mobile devices and covers 7.8%
of questions in Mobile. Since Core ML is well supported by iOS, de-
velopers can use Core ML directly without installing or building it.
For TF Lite, pre-built libraries are ocially provided for developers’
convenience. However, developers still need to compile TF Lite from
source code by themselves in some cases (e.g., deploying models
containing unsupported operators). Since the operators supported
by TF Lite are still insucient to meet developers’ demand [43],
developers sometimes need to register unsupported operators man-
ually to add them into the run-time library. It may be challenging
for developers who are unfamiliar with TF Lite. In addition, for
compilation, developers need to congure build command lines and
edit conguration les (i.e., Build conguration). Wrong congura-
tions [44] can result in build failure or library incompatibility with
target platforms.

6.5.2 DL Integration into Projects. This category includes chal-
lenges in integrating DL libraries and models into mobile software
projects. It accounts for 21.2% in Mobile. To integrate DL libraries
and build projects, developers need to edit build conguration les
(i.e., Build conguration), being a common challenge (3.9%) for both
Android and iOS developers. To integrate DL models into projects,
developers face challenges in importing and loading models (4.3%).

757

A Comprehensive Study on Challenges in Deploying Deep Learning Based Soware ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

For example, in an Xcode project for iOS, developers can drag a
model into the project navigator, and then Xcode can parse and
import the model automatically [45]. However, some developers
encounter errors during this process [46, 47]. When it comes to
an Android project, the importing process is more complicated.
For instance, if developers load a TF Lite model with C++ or Java,
they need to set the information (e.g., datatype and size) of input
and output tensors manually (8.2%), but some developers fail in
this conguration [48]. In addition, developers have diculty in
the thread management (2.2%) when integrating DL models into
projects, e.g., “I am building an Android application that has three
threads running three dierent models, would it be possible to still
enable inter_op_parallelism_threads and set to 4 for a quad-core de-
vice” [49].

6.6 Remaining Challenges in Browser
Model Loading. This category includes challenges in loading DL
models in browsers, being the most common challenges in browser
deployment (accounting for 24.0% of questions). For browsers, TF.js
provides a tf.loadLayersModel method to support loading models
from local storage, Http endpoints, and IndexedDB. Among the
three ways, we observe that the main challenge lies in loading from
local storage (8.0%). In the ocial document of TF.js [50], “local
storage” refers to the browser’s local storage, which is interpreted
in a hyperlink [51] contained in the document as that “the stored
data is saved across browser sessions.” However, nearly all bad cases
in Loading from local storage attempt to load models from local
le systems. In fact, tf.loadLayersModel uses the fetch method [52]
under the hood. Fetch is used to get a le served by a server and
cannot be used directly with local les. To work with local les,
developers rst need to serve them on a server. In addition, many
developers do not have a good grasp of the asynchronous loading
(5.6%). In a scenario, when a developer loads a DL model in Chrome
and then uses the model to make predictions, she receives “loaded-
Model.predict is not a function error” since the model has not been
successfully loaded [53]. Since model loading is an asynchronous
process in TF.js, developers need to either use await or .then to wait
for the model to be completely loaded before using it for further
actions.

6.7 Unclear Questions
Although unclear questions are not included in our taxonomy, we
also manually examine them to seek for some insights. All unclear
questions have no accepted answers and do not have informative
discussions or question descriptions to help us determine the chal-
lenges behind the questions. Among these unclear questions, 53%
report unexpected results [54] or errors [55] when making predic-
tions using the deployed models. However, no anomalies occur at
any phase before the phase of making predictions, making it rather
dicult to discover the underlying challenges. In fact, various is-
sues can result in the errors or unexpected results in this phase.
Take the server deployment as an example. During the manual
inspection, we nd that errors occurring in making predictions can
be attributed to the improper handling of various challenges, such
as version incompatibility between libraries used for training and
deployment [56] (i.e., Environment), wrong specication of model

information [57] (i.e., Model Export), mismatched format of input
data [58] (i.e., Data Processing), etc.

7 IMPLICATIONS
Based on the preceding derived ndings, we next discuss our in-
sights and some practical implications for developers, researchers,
and DL framework vendors.

7.1 Researchers
As demonstrated in our study, DL software deployment is gaining
increasing attention from developers, but developers encounter
a spectrum of challenges and various unresolved issues. These
ndings encourage researchers to develop technology to help devel-
opers meet these deployment challenges. Here, we briey discuss
some potential opportunities to the research communities based
on our results. (1) Automated fault localization. In Section 6.7,
we nd that 53% of unclear questions report errors when making
predictions and that various faults in dierent phases can result
in such errors. This nding indicates the diculty in manually
locating faults and highlights the needs for researchers to propose
automated fault localization tools for DL software deployment.
Similarly, proactive alerting techniques can be proposed to inform
developers about potential errors during the deployment process.
However, monitoring and troubleshooting the deployment process
is quite dicult, because of myriad potential issues, including hard-
ware and software failures, miscongurations, input data, even
simply unrealistic user expectations, etc. Therefore, we encourage
researchers to conduct a systematic study to characterize the major
types and root causes of faults occurring during deployment of DL
software before developing the aforementioned automated tools. (2)
Automated conguration. In our taxonomy, many challenges are
related to conguration (e.g., Specication of model information and
Conguration of environment variables). This observation motivates
researchers to propose automated conguration techniques to sim-
plify some deployment tasks for developers, especially non-experts.
In addition, automated conguration checkers can be proposed to
detect and diagnose miscongurations, based on analyzing the con-
guration logic, requirements, and constraints. (3) Implications
for other communities. Our results reveal some emerging needs
of developers and can provide implications for other research com-
munities, such as systems and AI. For example, some developers call
for more quantization options (see Model quantization) in model
conversion. To help improve current frameworks, researchers from
the AI community should propose more eective and ecient tech-
niques for model quantization. In addition, to update models on
mobile devices (see Model Update), system researchers need to pro-
pose eective techniques to support model update (i.e., re-training)
on the devices with limited computation power.

7.2 Developers
(1) Targeted learning of required skills. DL software deploy-
ment lies in the interaction between DL and SE. Therefore, DL
software deployment requires developers with solid knowledge of
both elds, making this task quite challenging. Our taxonomy can
serve as a checklist for developers with varying backgrounds, moti-
vating the developers to learn necessary knowledge before really

758

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xuanzhe Liu

deploying DL software. For instance, an Android developer needs to
learn necessary knowledge about DL before deploying DL software
to mobile devices. Otherwise, she may fail in the specication of in-
formation about DL models (see Specication of model information)
trained by DL developers or data scientists. Similarly, when a DL
developer who is not skillful in JavaScript deploys DL models on
browsers, she may directly load models from local le systems due
to the misunderstanding of browsers’ local storage (see Section 6.6).
(2) Avoiding common pitfalls. Our study identies some com-
mon pitfalls in DL software deployment. Developers should pay
attention to these pitfalls and avoid them accordingly. For instance,
when deploying DL software to target platforms, developers should
remember to migrate the pre-processing code and pay attention
to version compatibility. (3) Better project management. Our
taxonomy presents the distribution of dierent categories, indi-
cating which challenges developers have encountered more. In a
project that involves DL software deployment, the project man-
ager can use our taxonomy to assign a task where developers often
have challenges (e.g., model conversion) to a more knowledgeable
developer.

7.3 Framework Vendors
(1) Improving the usability of documentation.As shown in our
results, many developers even have diculty in the entire procedure
of deployment (i.e., how to deploy DL software). For instance, such
questions account for 13.4% in mobile deployment. As described
earlier, developers often complain about the poor documentation in
these questions, revealing that the usability [71] of relevant docu-
mentation should be improved. Specically, DL framework vendors
can provide better detailed documentation and tutorials for devel-
opers’ reference. In addition, confused information organization,
such as hiding explanations of important concepts behind hyper-
links (see Section 6.6), may result in developers’ misuse and thus
should be avoided. (2) Improving the completeness of docu-
mentation. The prevalence of the “Conceptual questions” category
suggests that framework vendors should improve the complete-
ness [71, 109] of the documentation, especially considering that DL
software deployment requires a wide set of background knowledge
and skills. Indeed, basic information that might look clear from
the vendors’ perspective may not be easy to digest by the users
(i.e., the developers) [71]. The vendors should involve the users in
the review of documentation, in order to supplement necessary
explanations of basic knowledge in the documentation. This way
might help in minimizing developers’ learning curve and avoid-
ing misunderstanding. (3) Improving the design of APIs. The
quality of APIs heavily inuences the development experience of
developers and even correlates with the success of applications that
make use of the APIs [100]. Our study reveals some APIs’ issues that
need the attention of DL framework vendors. For one functionality,
framework vendors may provide similar APIs for various options
(see Selection/usage of APIs), making some developers confused in
practice. To mitigate this issue, framework vendors should better
distinguish these APIs and clarify their use cases more clearly. (4)
Improving functionalities as needed.We observe that many de-
velopers suer from conversion and export of unsupported models
in the deployment process. For instance, in mobile deployment,

6.1% of questions are about this challenge. Since it is impractical
for framework vendors to support all possible operators at once,
we suggest that framework vendors can mine SO and GitHub to
collect related issues reported by developers and then rst meet
those most urgent operators and models.

8 THREATS TO VALIDITY
In this section, we discuss some threats to the validity of our study.

Selection of tags and keywords.Our automated identication
of relevant questions is based on pre-selected tags and keyword-
matching mechanisms, and thus may result in potential research
bias. For tags, we mainly follow previous related work [83–85]
to determine which ones to choose. Moreover, all tags that we
use are about popular frameworks or platforms, promising the
representativeness of the questions used in this study. However, it is
still possible that in other contexts developers discuss issues that we
do not encounter. In addition, the keyword-matching identication
may result in the retrieval of false positives and the loss of posts that
do not contain explicit keywords. The false positives are discarded
during our manual examination of data for R3, so false positives
do not aect the precision of our nal taxonomy. However, due to
the large amount of data used for R1 and R2, we do not employ
similar manual examination to remove false positives for the two
research questions, and thus may cause the results of R1 and R2 to
be biased. Furthermore, although our identied posts with explicit
keywords are more representative compared to the implicit posts,
loss of implicit posts may introduce bias in our results.

Selection of data source. Similar to previous studies [72, 74,
75, 90, 96, 98, 105, 106], our work uses SO as the only data source
to study the challenges that developers encounter. As a result, we
may overlook valuable insights from other sources. In future work,
we plan to extend our study to diverse data sources and conduct
in-depth interviews with researchers and practitioners to further
validate our results. However, since SO contains both novices’ and
experts’ posts [108], we believe that our results are still valid.

Subjectivity of inspection. The manual analysis in this study
presents threats to the validity of our taxonomy. To minimize this
threat, two authors are involved in inspecting cases and nally
reach agreement with the help of three experienced arbitrators
through discussions. The inter-rater agreement is relatively high,
demonstrating the reliability of the coding schema and procedure.

9 RELATEDWORK
In this section, we summarize related studies to position our work
within the literature.

Challenges that ML/DL poses for SE. The rapid development
of ML technologies poses new challenges for software developers.
To characterize these challenges, Thung et al. [99] collect and an-
alyze bugs in ML systems to study bug severity, eorts needed to
x bugs, and bug impacts. Alshangiti et al. [74] demonstrate that
ML questions are more dicult to answer than other questions on
SO and that model deployment is most challenging across all ML
phases. In addition, Alshangiti et al. [74] nd that DL related topics
are most popular among the ML related questions. In recent years,
several studies focus on the challenges in DL. By inspecting DL
related posts on SO, Zhang et al. [106] nd that program crashes,

759

A Comprehensive Study on Challenges in Deploying Deep Learning Based Soware ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

model deployment, and implementation questions are the top three
most frequently asked questions. Besides, several studies character-
ize faults in software that makes use of DL frameworks. Zhang et
al. [108] collect bugs in TF programs from SO and GitHub. By man-
ual examination, Zhang et al. [108] categorize the symptoms and
root causes of these bugs and propose strategies to detect and locate
DL bugs. Following this work, Islam et al. [85] and Humbatova et
al. [84] extend the scope to the bugs in programs written based
on the top ve popular DL frameworks to present more compre-
hensive results. Inspired by these previous studies, we also aim to
investigate the challenges that DL poses for SE. However, dierent
from these previous studies, our study focuses on the deployment
process of DL software.

DL software deployment. To make DL software really acces-
sible for users, developers need to deploy DL software to dierent
platforms according to various application scenarios. A popular way
is to deploy DL software to server/cloud platforms, and then the
DL functionality can be accessed as services. For this deployment
way, Cummaudo et al. [80] analyze pain points that developers face
when using these services. In other words, Cummaudo et al. [80]
focus on challenges that occur after the deployment of DL software.
Dierent from this work, our study focuses on challenges in the
deployment process. In addition, mobile devices have created great
opportunities for DL software. Researchers have built numerous DL
software applications on mobile devices [93, 95, 103] and proposed
various optimization techniques (e.g., model compression [89, 101]
and cloud ooading [87, 104]) for deploying DL software to mo-
bile platforms. To bridge the knowledge gap between research and
practice, Xu et al. [102] conduct the rst empirical study on large-
scale Android apps to demystify how DL techniques are adopted in
the wild. In addition, in recent years, various JavaScript-based DL
frameworks have been published to enable DL-powered Web appli-
cations in browsers. To investigate what and how well we can do
with these frameworks, Ma et al. [91] select seven JavaScript-based
frameworks and measure their performance gap when running dif-
ferent DL tasks on Chrome. The ndings show that DL in browsers
is still at dawn. Recently, Guo et al. [83] put attention on DL soft-
ware deployment across dierent platforms, and investigate the
performance gap when the trained DL models are migrated from
PC to mobile devices and Web browsers. The ndings unveil that
the deployment still suers from compatibility and reliability issues.
Despite these previous eorts, specic challenges in deploying DL
software are still under-investigated and thus our study aims to ll
this knowledge gap.

10 CONCLUSION
Based on SO posts related to DL software deployment, in this paper,
we have presented study ndings to show that this task is becom-
ing increasingly popular among software engineers. Furthermore,
our ndings demonstrate that DL software deployment is more
challenging than other aspects of DL software and even other chal-
lenging topics in SE such as big data and concurrency, motivating
us to identify the specic challenges behind DL software deploy-
ment. To this end, we manually inspect 769 sampled SO posts to
derive a taxonomy of 72 challenges encountered by developers
in DL software deployment. Finally, we qualitatively discuss our

ndings and infer implications for researchers, developers, and DL
framework vendors, with the goal of highlighting good practices
and valuable research avenues in deploying DL software.

ACKNOWLEDGMENTS
This work was partially supported by the Key-Area Research and
Development Program of Guangdong Province under the grant
number 2020B010164002, the National Natural Science Founda-
tion of China under the grant number 61725201, and the Beijing
Outstanding Young Scientist Program under the grant number
BJJWZYJH01201910001004. Haoyu Wang’s work was supported by
the National Natural Science Foundation of China under the grant
number 61702045.

REFERENCES
[1] [n.d.]. https://stackoverow.com/questions/58076574/can-i-convert-a-py-or-

ipynb-model-le-created-on-google-colabs-tensoro. Retrieved on February
13, 2020.

[2] [n.d.]. https://stackoverow.com/questions/56250999/load-and-use-keras-
model-built-using-lstm-network-in-c-or-deploy-that-model-in. Retrieved
on February 13, 2020.

[3] [n.d.]. https://stackoverow.com/questions/57164341/cannot-save-keras-
model-with-custom-layers-to-tf-lite-le. Retrieved on February 13, 2020.

[4] [n.d.]. https://stackoverow.com/questions/55293484/saving-a-custom-tf-
estimator-trained-model-for-tensorow-serving. Retrieved on February 13,
2020.

[5] [n.d.]. https://stackoverow.com/questions/54734446/how-to-process-raw-
data-in-tf-serving. Retrieved on February 13, 2020.

[6] [n.d.]. https://stackoverow.com/questions/45874245/keras-deep-learning-
model-to-android. Retrieved on February 13, 2020.

[7] [n.d.]. https://stackoverow.com/questions/38781865/syntaxnet-porting-guide-
to-android-native. Retrieved on February 13, 2020.

[8] [n.d.]. https://stackoverow.com/questions/53469382/neural-network-
classier-vs-neural-network-in-machine-learning-model-type. Retrieved on
February 13, 2020.

[9] [n.d.]. https://stackoverow.com/questions/54333689/batch-prediction-for-
object-detection-fails-on-google-cloud-platform. Retrieved on February 13,
2020.

[10] [n.d.]. https://stackoverow.com/questions/51557691/tensorow-lite-model-is-
giving-wrong-output. Retrieved on February 13, 2020.

[11] [n.d.]. https://stackoverow.com/questions/55007059/tensorow-js-error-
unknown-layer-gaussiannoise. Retrieved on February 13, 2020.

[12] [n.d.]. https://www.tensorow.org/tfx/serving/serving_basic. Retrieved on
February 13, 2020.

[13] [n.d.]. https://stackoverow.com/questions/46269491/tensorow-serving-of-
saved-model-ssd-mobilenet-v1-coco. Retrieved on February 13, 2020.

[14] [n.d.]. https://stackoverow.com/questions/55803971/how-to-convert-an-
object-detection-model-in-its-frozen-graph-to-a-tite-wi. Retrieved on Febru-
ary 13, 2020.

[15] [n.d.]. https://stackoverow.com/questions/45208587/relationship-between-
tensorow-saver-exporter-and-save-model. Retrieved on February 13, 2020.

[16] [n.d.]. https://stackoverow.com/questions/53680660/attributeerror-module-
tensorow-has-no-attribute-lite-in-keras-model-to-te. Retrieved on February
13, 2020.

[17] [n.d.]. https://www.tensorow.org/lite/performance/model_optimization. Re-
trieved on February 13, 2020.

[18] [n.d.]. https://stackoverow.com/questions/54830869/understanding-tf-contrib-
lite-titeconverter-quantization-parameters. Retrieved on February 13, 2020.

[19] [n.d.]. https://stackoverow.com/questions/48001331/how-to-quantize-
tensorow-lite-model-to-16-bit. Retrieved on February 13, 2020.

[20] [n.d.]. https://stackoverow.com/questions/49885857/coreml-failure-verifying-
inputs-image-is-not-valid. Retrieved on February 13, 2020.

[21] [n.d.]. https://stackoverow.com/questions/58172536/tensorow-serving-type-
object-is-not-of-expected-type-uint8. Retrieved on February 13, 2020.

[22] [n.d.]. https://stackoverow.com/questions/56237836/tensorow-serving-
online-predictions-how-to-build-a-signature-def-that-accept. Retrieved on
February 13, 2020.

[23] [n.d.]. https://stackoverow.com/questions/49474467/export-keras-model-to-
pb-le-and-optimize-for-inference-gives-random-guess-on. Retrieved on
February 13, 2020.

[24] [n.d.]. https://stackoverow.com/questions/55216142/tensorow-js-model-is-
not-predicting-correctly. Retrieved on February 13, 2020.

760

https://stackoverflow.com/questions/58076574/can-i-convert-a-py-or-ipynb-model-file-created-on-google-colabs-tensorflo
https://stackoverflow.com/questions/58076574/can-i-convert-a-py-or-ipynb-model-file-created-on-google-colabs-tensorflo
https://stackoverflow.com/questions/56250999/load-and-use-keras-model-built-using-lstm-network-in-c-or-deploy-that-model-in
https://stackoverflow.com/questions/56250999/load-and-use-keras-model-built-using-lstm-network-in-c-or-deploy-that-model-in
https://stackoverflow.com/questions/57164341/cannot-save-keras-model-with-custom-layers-to-tf-lite-file
https://stackoverflow.com/questions/57164341/cannot-save-keras-model-with-custom-layers-to-tf-lite-file
https://stackoverflow.com/questions/55293484/saving-a-custom-tf-estimator-trained-model-for-tensorflow-serving
https://stackoverflow.com/questions/55293484/saving-a-custom-tf-estimator-trained-model-for-tensorflow-serving
https://stackoverflow.com/questions/54734446/how-to-process-raw-data-in-tf-serving
https://stackoverflow.com/questions/54734446/how-to-process-raw-data-in-tf-serving
https://stackoverflow.com/questions/45874245/keras-deep-learning-model-to-android
https://stackoverflow.com/questions/45874245/keras-deep-learning-model-to-android
https://stackoverflow.com/questions/38781865/syntaxnet-porting-guide-to-android-native
https://stackoverflow.com/questions/38781865/syntaxnet-porting-guide-to-android-native
https://stackoverflow.com/questions/53469382/neural-network-classifier-vs-neural-network-in-machine-learning-model-type
https://stackoverflow.com/questions/53469382/neural-network-classifier-vs-neural-network-in-machine-learning-model-type
https://stackoverflow.com/questions/54333689/batch-prediction-for-object-detection-fails-on-google-cloud-platform
https://stackoverflow.com/questions/54333689/batch-prediction-for-object-detection-fails-on-google-cloud-platform
https://stackoverflow.com/questions/51557691/tensorflow-lite-model-is-giving-wrong-output
https://stackoverflow.com/questions/51557691/tensorflow-lite-model-is-giving-wrong-output
https://stackoverflow.com/questions/55007059/tensorflow-js-error-unknown-layer-gaussiannoise
https://stackoverflow.com/questions/55007059/tensorflow-js-error-unknown-layer-gaussiannoise
https://www.tensorflow.org/tfx/serving/serving_basic
https://stackoverflow.com/questions/46269491/tensorflow-serving-of-saved-model-ssd-mobilenet-v1-coco
https://stackoverflow.com/questions/46269491/tensorflow-serving-of-saved-model-ssd-mobilenet-v1-coco
https://stackoverflow.com/questions/55803971/how-to-convert-an-object-detection-model-in-its-frozen-graph-to-a-tflite-wi
https://stackoverflow.com/questions/55803971/how-to-convert-an-object-detection-model-in-its-frozen-graph-to-a-tflite-wi
https://stackoverflow.com/questions/45208587/relationship-between-tensorflow-saver-exporter-and-save-model
https://stackoverflow.com/questions/45208587/relationship-between-tensorflow-saver-exporter-and-save-model
https://stackoverflow.com/questions/53680660/attributeerror-module-tensorflow-has-no-attribute-lite-in-keras-model-to-te
https://stackoverflow.com/questions/53680660/attributeerror-module-tensorflow-has-no-attribute-lite-in-keras-model-to-te
https://www.tensorflow.org/lite/performance/model_optimization
https://stackoverflow.com/questions/54830869/understanding-tf-contrib-lite-tfliteconverter-quantization-parameters
https://stackoverflow.com/questions/54830869/understanding-tf-contrib-lite-tfliteconverter-quantization-parameters
https://stackoverflow.com/questions/48001331/how-to-quantize-tensorflow-lite-model-to-16-bit
https://stackoverflow.com/questions/48001331/how-to-quantize-tensorflow-lite-model-to-16-bit
https://stackoverflow.com/questions/49885857/coreml-failure-verifying-inputs-image-is-not-valid
https://stackoverflow.com/questions/49885857/coreml-failure-verifying-inputs-image-is-not-valid
https://stackoverflow.com/questions/58172536/tensorflow-serving-type-object-is-not-of-expected-type-uint8
https://stackoverflow.com/questions/58172536/tensorflow-serving-type-object-is-not-of-expected-type-uint8
https://stackoverflow.com/questions/56237836/tensorflow-serving-online-predictions-how-to-build-a-signature-def-that-accept
https://stackoverflow.com/questions/56237836/tensorflow-serving-online-predictions-how-to-build-a-signature-def-that-accept
https://stackoverflow.com/questions/49474467/export-keras-model-to-pb-file-and-optimize-for-inference-gives-random-guess-on
https://stackoverflow.com/questions/49474467/export-keras-model-to-pb-file-and-optimize-for-inference-gives-random-guess-on
https://stackoverflow.com/questions/55216142/tensorflow-js-model-is-not-predicting-correctly
https://stackoverflow.com/questions/55216142/tensorflow-js-model-is-not-predicting-correctly

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xuanzhe Liu

[25] [n.d.]. https://stackoverow.com/questions/47921268/how-to-add-layers-
before-the-input-layer-of-model-restored-from-a-pb-le. Retrieved on Febru-
ary 13, 2020.

[26] [n.d.]. https://stackoverow.com/questions/57497453/how-to-decode-
predictions-in-tensorow-serving-of-predictions. Retrieved on February 13,
2020.

[27] [n.d.]. https://stackoverow.com/questions/54517399/how-to-get-class-name-
directly-as-a-output-from-yolo-tf-serving. Retrieved on February 13, 2020.

[28] [n.d.]. https://stackoverow.com/questions/51672455/how-to-periodically-
train-and-deploy-new-machine-learning-models-on-google-cloud. Retrieved
on February 13, 2020.

[29] [n.d.]. https://stackoverow.com/questions/50069775/is-it-possible-to-train-a-
coreml-model-on-device-as-the-app-runs. Retrieved on February 13, 2020.

[30] [n.d.]. https://stackoverow.com/questions/56919400/how-to-protect-
obfuscate-drm-trained-model-weights-in-tensorow-js. Retrieved on
February 13, 2020.

[31] [n.d.]. https://stackoverow.com/questions/57391830/pro-guard-rules-for-
tensor-ow-lite-module. Retrieved on February 13, 2020.

[32] [n.d.]. https://stackoverow.com/questions/56618633/cant-import-tensorow-
js-in-chrome-extension. Retrieved on February 13, 2020.

[33] [n.d.]. https://stackoverow.com/questions/57306304/nodedef-mentions-attr-
batch-dims-not-in-op-in-tensorow-serving. Retrieved on February 13, 2020.

[34] [n.d.]. https://stackoverow.com/questions/58674843/making-a-postman-
request-to-tensorow-serving-predict-rest-api. Retrieved on February 13,
2020.

[35] [n.d.]. https://stackoverow.com/questions/42519010/how-to-do-batching-in-
tensorow-serving. Retrieved on February 13, 2020.

[36] [n.d.]. https://stackoverow.com/questions/48113444/get-info-of-exposed-
models-in-tensorow-serving. Retrieved on February 13, 2020.

[37] [n.d.]. https://stackoverow.com/questions/57050219/how-to-reduce-the-load-
time-of-tensorow-text-classication-model. Retrieved on February 13, 2020.

[38] [n.d.]. https://stackoverow.com/questions/56398869/tensorow-serving-ram-
usage. Retrieved on February 13, 2020.

[39] [n.d.]. https://stackoverow.com/questions/58323306/production-ready-tf-
serving-client-and-server-authentication. Retrieved on February 13, 2020.

[40] [n.d.]. https://stackoverow.com/questions/54832078/using-trained-keras-
model-in-google-ml-engine. Retrieved on February 13, 2020.

[41] [n.d.]. https://stackoverow.com/questions/49422065/aws-sagemaker-hosting-
multiple-models-on-the-same-machine-ml-compute-instance. Retrieved on
February 13, 2020.

[42] [n.d.]. https://stackoverow.com/questions/55653060/batching-w-tf-serving-
has-nearly-zero-eect. Retrieved on February 13, 2020.

[43] [n.d.]. https://www.tensorow.org/lite/guide/ops_select. Retrieved on February
13, 2020.

[44] [n.d.]. https://stackoverow.com/questions/41487069/build-error-with-
tensorow-android-demo. Retrieved on February 13, 2020.

[45] [n.d.]. https://developer.apple.com/documentation/coreml/integrating_a_core_
ml_model_into_your_app. Retrieved on February 13, 2020.

[46] [n.d.]. https://stackoverow.com/questions/46247611/coreml-model-class-has-
not-been-generated-yet. Retrieved on February 13, 2020.

[47] [n.d.]. https://stackoverow.com/questions/49340021/how-to-get-coreml-in-
pure-playground-les. Retrieved on February 13, 2020.

[48] [n.d.]. https://stackoverow.com/questions/58745286/custom-tensorow-
model-in-android. Retrieved on February 13, 2020.

[49] [n.d.]. https://stackoverow.com/questions/53511949/tensorow-android-ops-
can-be-multi-threaded-but-with-multi-threaded-applicati. Retrieved on Feb-
ruary 13, 2020.

[50] [n.d.]. https://www.tensorow.org/js/guide/save_load. Retrieved on February
13, 2020.

[51] [n.d.]. https://developer.mozilla.org/en-US/docs/Web/API/Window/
localStorage. Retrieved on February 13, 2020.

[52] [n.d.]. https://developer.mozilla.org/en-US/docs/Web/API/
WindowOrWorkerGlobalScope/fetch. Retrieved on February 13, 2020.

[53] [n.d.]. https://stackoverow.com/questions/57083612/tensorowjs-tf-
loadlayersmodel-not-working. Retrieved on February 13, 2020.

[54] [n.d.]. https://stackoverow.com/questions/55093418/tensorow-lite-model-
not-detecting-objects-and-crashing-sometimes. Retrieved on February 13,
2020.

[55] [n.d.]. https://stackoverow.com/questions/54762245/tensorow-tf-lite-
android-app-crashing-after-detection. Retrieved on February 13, 2020.

[56] [n.d.]. https://stackoverow.com/questions/57306304/nodedef-mentions-attr-
batch-dims-not-in-op-in-tensorow-serving. Retrieved on February 13, 2020.

[57] [n.d.]. https://stackoverow.com/questions/47561603/client-request-for-
tensorow-serving-gives-error-attempting-to-use-uninitializ. Retrieved on
February 13, 2020.

[58] [n.d.]. https://stackoverow.com/questions/58374877/deploy-keras-model-use-
tensorow-serving-got-501-server-error-not-implemented. Retrieved on Feb-
ruary 13, 2020.

[59] [n.d.]. Amazon SageMaker. https://aws.amazon.com/cn/sagemaker/. Retrieved
on February 13, 2020.

[60] [n.d.]. Core ML. https://developer.apple.com/documentation/coreml. Retrieved
on February 13, 2020.

[61] [n.d.]. Google Cloud ML Engine. https://cloud.google.com/ai-platform. Re-
trieved on February 13, 2020.

[62] [n.d.]. Keras. https://github.com/keras-team/keras. Retrieved on February 13,
2020.

[63] [n.d.]. PyTorch. https://pytorch.org. Retrieved on February 13, 2020.
[64] [n.d.]. R documentation. https://www.rdocumentation.org/packages/stats/

versions/3.6.2/topics/prop.test. Retrieved on February 13, 2020.
[65] [n.d.]. Stack Exchange Data Dump. https://archive.org/details/stackexchange.

Retrieved on February 13, 2019.
[66] [n.d.]. Supplemental materials. https://github.com/chenzhenpeng18/fse2020.
[67] [n.d.]. TensorFlow Lite. https://www.tensorow.org/mobile/tite. Retrieved on

February 13, 2020.
[68] [n.d.]. TensorFlow Serving. https://github.com/tensorow/serving. Retrieved

on February 13, 2020.
[69] [n.d.]. TensorFlow.js. https://www.tensorow.org/js. Retrieved on February 13,

2020.
[70] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Georey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gor-
don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: a system for
large-scale machine learning. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016. 265–283.

[71] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-
Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software
documentation issues unveiled. In Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019. 1199–1210.

[72] Syed Ahmed and Mehdi Bagherzadeh. 2018. What do concurrency developers
ask about?: A large-scale study using Stack Overow. In Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM 2018. 30:1–30:10.

[73] Rami Al-Rfou, Guillaume Alain, and Amjad Almahairi et al. 2016. Theano: a
Python framework for fast computation of mathematical expressions. CoRR
abs/1605.02688 (2016).

[74] Moayad Alshangiti, Hitesh Sapkota, Pradeep K. Murukannaiah, Xumin Liu, and
Qi Yu. 2019. Why is developing machine learning applications challenging? A
study on Stack Overow posts. In Proceedings of 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 2019.
1–11.

[75] Mehdi Bagherzadeh and Ra Khatchadourian. 2019. Going big: a large-scale
study on what big data developers ask. In Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2019. 432–442.

[76] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2014. Mining questions
asked by Web developers. In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014. 112–121.

[77] Stefanie Beyer, Christian Macho, Martin Pinzger, and Massimiliano Di Penta.
2018. Automatically classifying posts into question categories on Stack Over-
ow. In Proceedings of the 26th IEEE/ACM International Conference on Program
Comprehension, ICPC 2018. 211–221.

[78] Zhenpeng Chen, Sheng Shen, Ziniu Hu, Xuan Lu, Qiaozhu Mei, and Xuanzhe
Liu. 2019. Emoji-powered representation learning for cross-lingual sentiment
classication. In Proceedings of the World Wide Web Conference, WWW 2019.
251–262.

[79] Jacob Cohen. 1960. A coecient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46.

[80] Alex Cummaudo, Rajesh Vasa, Scott Barnett, John Grundy, and Mohamed Ab-
delrazek. 2020. Interpreting cloud computer vision pain-points: a mining study
of Stack Overow. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2020. 1584–1596.

[81] Ryosuke Furuta, Naoto Inoue, and Toshihiko Yamasaki. 2019. Fully convolu-
tional network with multi-step reinforcement learning for image processing. In
Proceedings of the Thirty-Third AAAI Conference on Articial Intelligence, AAAI
2019. 3598–3605.

[82] Jingyue Gao, Xiting Wang, Yasha Wang, Zhao Yang, Junyi Gao, Jiangtao Wang,
Wen Tang, and Xing Xie. 2019. CAMP: co-attention memory networks for
diagnosis prediction in healthcare. In Proceedings of the 2019 IEEE International
Conference on Data Mining, ICDM 2019. 1036–1041.

[83] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,
Jianjun Zhao, and Xiaohong Li. 2019. An empirical study towards characterizing
deep learning development and deployment across dierent frameworks and
platforms. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2019. 810–822.

761

https://stackoverflow.com/questions/47921268/how-to-add-layers-before-the-input-layer-of-model-restored-from-a-pb-file
https://stackoverflow.com/questions/47921268/how-to-add-layers-before-the-input-layer-of-model-restored-from-a-pb-file
https://stackoverflow.com/questions/57497453/how-to-decode-predictions-in-tensorflow-serving-of-predictions
https://stackoverflow.com/questions/57497453/how-to-decode-predictions-in-tensorflow-serving-of-predictions
https://stackoverflow.com/questions/54517399/how-to-get-class-name-directly-as-a-output-from-yolo-tf-serving
https://stackoverflow.com/questions/54517399/how-to-get-class-name-directly-as-a-output-from-yolo-tf-serving
https://stackoverflow.com/questions/51672455/how-to-periodically-train-and-deploy-new-machine-learning-models-on-google-cloud
https://stackoverflow.com/questions/51672455/how-to-periodically-train-and-deploy-new-machine-learning-models-on-google-cloud
https://stackoverflow.com/questions/50069775/is-it-possible-to-train-a-coreml-model-on-device-as-the-app-runs
https://stackoverflow.com/questions/50069775/is-it-possible-to-train-a-coreml-model-on-device-as-the-app-runs
https://stackoverflow.com/questions/56919400/how-to-protect-obfuscate-drm-trained-model-weights-in-tensorflow-js
https://stackoverflow.com/questions/56919400/how-to-protect-obfuscate-drm-trained-model-weights-in-tensorflow-js
https://stackoverflow.com/questions/57391830/pro-guard-rules-for-tensor-flow-lite-module
https://stackoverflow.com/questions/57391830/pro-guard-rules-for-tensor-flow-lite-module
https://stackoverflow.com/questions/56618633/cant-import-tensorflow-js-in-chrome-extension
https://stackoverflow.com/questions/56618633/cant-import-tensorflow-js-in-chrome-extension
https://stackoverflow.com/questions/57306304/nodedef-mentions-attr-batch-dims-not-in-op-in-tensorflow-serving
https://stackoverflow.com/questions/57306304/nodedef-mentions-attr-batch-dims-not-in-op-in-tensorflow-serving
https://stackoverflow.com/questions/58674843/making-a-postman-request-to-tensorflow-serving-predict-rest-api
https://stackoverflow.com/questions/58674843/making-a-postman-request-to-tensorflow-serving-predict-rest-api
https://stackoverflow.com/questions/42519010/how-to-do-batching-in-tensorflow-serving
https://stackoverflow.com/questions/42519010/how-to-do-batching-in-tensorflow-serving
https://stackoverflow.com/questions/48113444/get-info-of-exposed-models-in-tensorflow-serving
https://stackoverflow.com/questions/48113444/get-info-of-exposed-models-in-tensorflow-serving
https://stackoverflow.com/questions/57050219/how-to-reduce-the-load-time-of-tensorflow-text-classification-model
https://stackoverflow.com/questions/57050219/how-to-reduce-the-load-time-of-tensorflow-text-classification-model
https://stackoverflow.com/questions/56398869/tensorflow-serving-ram-usage
https://stackoverflow.com/questions/56398869/tensorflow-serving-ram-usage
https://stackoverflow.com/questions/58323306/production-ready-tf-serving-client-and-server-authentication
https://stackoverflow.com/questions/58323306/production-ready-tf-serving-client-and-server-authentication
https://stackoverflow.com/questions/54832078/using-trained-keras-model-in-google-ml-engine
https://stackoverflow.com/questions/54832078/using-trained-keras-model-in-google-ml-engine
https://stackoverflow.com/questions/49422065/aws-sagemaker-hosting-multiple-models-on-the-same-machine-ml-compute-instance
https://stackoverflow.com/questions/49422065/aws-sagemaker-hosting-multiple-models-on-the-same-machine-ml-compute-instance
https://stackoverflow.com/questions/55653060/batching-w-tf-serving-has-nearly-zero-effect
https://stackoverflow.com/questions/55653060/batching-w-tf-serving-has-nearly-zero-effect
https://www.tensorflow.org/lite/guide/ops_select
https://stackoverflow.com/questions/41487069/build-error-with-tensorflow-android-demo
https://stackoverflow.com/questions/41487069/build-error-with-tensorflow-android-demo
https://developer.apple.com/documentation/coreml/integrating_a_core_ml_model_into_your_app
https://developer.apple.com/documentation/coreml/integrating_a_core_ml_model_into_your_app
https://stackoverflow.com/questions/46247611/coreml-model-class-has-not-been-generated-yet
https://stackoverflow.com/questions/46247611/coreml-model-class-has-not-been-generated-yet
https://stackoverflow.com/questions/49340021/how-to-get-coreml-in-pure-playground-files
https://stackoverflow.com/questions/49340021/how-to-get-coreml-in-pure-playground-files
https://stackoverflow.com/questions/58745286/custom-tensorflow-model-in-android
https://stackoverflow.com/questions/58745286/custom-tensorflow-model-in-android
https://stackoverflow.com/questions/53511949/tensorflow-android-ops-can-be-multi-threaded-but-with-multi-threaded-applicati
https://stackoverflow.com/questions/53511949/tensorflow-android-ops-can-be-multi-threaded-but-with-multi-threaded-applicati
https://www.tensorflow.org/js/guide/save_load
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/fetch
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/fetch
https://stackoverflow.com/questions/57083612/tensorflowjs-tf-loadlayersmodel-not-working
https://stackoverflow.com/questions/57083612/tensorflowjs-tf-loadlayersmodel-not-working
https://stackoverflow.com/questions/55093418/tensorflow-lite-model-not-detecting-objects-and-crashing-sometimes
https://stackoverflow.com/questions/55093418/tensorflow-lite-model-not-detecting-objects-and-crashing-sometimes
https://stackoverflow.com/questions/54762245/tensorflow-tf-lite-android-app-crashing-after-detection
https://stackoverflow.com/questions/54762245/tensorflow-tf-lite-android-app-crashing-after-detection
https://stackoverflow.com/questions/57306304/nodedef-mentions-attr-batch-dims-not-in-op-in-tensorflow-serving
https://stackoverflow.com/questions/57306304/nodedef-mentions-attr-batch-dims-not-in-op-in-tensorflow-serving
https://stackoverflow.com/questions/47561603/client-request-for-tensorflow-serving-gives-error-attempting-to-use-uninitializ
https://stackoverflow.com/questions/47561603/client-request-for-tensorflow-serving-gives-error-attempting-to-use-uninitializ
https://stackoverflow.com/questions/58374877/deploy-keras-model-use-tensorflow-serving-got-501-server-error-not-implemented
https://stackoverflow.com/questions/58374877/deploy-keras-model-use-tensorflow-serving-got-501-server-error-not-implemented
https://aws.amazon.com/cn/sagemaker/
https://developer.apple.com/documentation/coreml
https://cloud.google.com/ai-platform
https://github.com/keras-team/keras
https://pytorch.org
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prop.test
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prop.test
https://archive.org/details/stackexchange
https://github.com/chenzhenpeng18/fse2020
https://www.tensorflow.org/mobile/tflite
https://github.com/tensorflow/serving
https://www.tensorflow.org/js

A Comprehensive Study on Challenges in Deploying Deep Learning Based Soware ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

[84] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, An-
drea Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning
systems. In Proceedings of the 41st International Conference on Software Engi-
neering, ICSE 2020. 1110–1121.

[85] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study on deep learning bug characteristics. In Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019. 510–520.

[86] Yangqing Jia, Evan Shelhamer, Je Donahue, Sergey Karayev, Jonathan Long,
Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Cae: con-
volutional architecture for fast feature embedding. In Proceedings of the ACM
International Conference on Multimedia, MM 2014. 675–678.

[87] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor N. Mudge,
Jason Mars, and Lingjia Tang. 2017. Neurosurgeon: collaborative intelligence
between the cloud and mobile edge. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2017. 615–629.

[88] Peiliang Li, Xiaozhi Chen, and Shaojie Shen. 2019. Stereo R-CNN based 3D
object detection for autonomous driving. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019. 7644–7652.

[89] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du.
2018. On-demand deep model compression for mobile devices: a usage-driven
model selection framework. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys 2018. 389–400.

[90] Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang. 2020. Un-
derstanding build issue resolution in practice: symptoms and x patterns. In
Proceedings of the ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020.

[91] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deyu Tian, and Xuanzhe Liu. 2019.
Moving deep learning into Web browser: how far can we go?. In Proceedings of
the World Wide Web Conference, WWW 2019. 1234–1244.

[92] Brian McMahan and Delip Rao. 2018. Listening to the world improves speech
command recognition. In Proceedings of the Thirty-Second AAAI Conference on
Articial Intelligence, AAAI 2018. 378–385.

[93] Gaurav Mittal, Kaushal B. Yagnik, Mohit Garg, and Narayanan C. Krishnan.
2016. SpotGarbage: smartphone app to detect garbage using deep learning. In
Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp 2016. 940–945.

[94] Robert G. Newcombe. 1998. Interval estimation for the dierence between
independent proportions: comparison of eleven methods. Statistics in Medicine
17, 8 (1998), 873–890.

[95] Valentin Radu, Nicholas D. Lane, Sourav Bhattacharya, Cecilia Mascolo, Ma-
hesh K. Marina, and Fahim Kawsar. 2016. Towards multimodal deep learning
for activity recognition on mobile devices. In Proceedings of the 2016 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
Adjunct 2016. 185–188.

[96] Christoer Rosen and Emad Shihab. 2016. What are mobile developers asking
about? A large scale study using Stack Overow. Empirical Software Engineering

21, 3 (2016), 1192–1223.
[97] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software

engineering. IEEE Transactions on Software Engineering 25, 4 (1999), 557–572.
[98] Mohammad Tahaei, Kami Vaniea, and Naomi Saphra. 2020. Understanding

privacy-related questions on Stack Overow. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, CHI 2020. 1–14.

[99] Ferdian Thung, ShaoweiWang, David Lo, and Lingxiao Jiang. 2012. An empirical
study of bugs in machine learning systems. In Proceedings of the 23rd IEEE
International Symposium on Software Reliability Engineering, ISSRE 2012. 271–
280.

[100] Mario Linares Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimil-
iano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API change and
fault proneness: a threat to the success of Android apps. In Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2013. 477–487.

[101] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016.
Quantized convolutional neural networks for mobile devices. In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016.
4820–4828.

[102] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and
Xuanzhe Liu. 2019. A rst look at deep learning apps on smartphones. In
Proceedings of the World Wide Web Conference, WWW 2019. 2125–2136.

[103] Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. 2018.
DeepType: on-device deep learning for input personalization service with mini-
mal privacy concern. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, IMWUT 2, 4 (2018), 197:1–197:26.

[104] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu.
2018. DeepCache: principled cache for mobile deep vision. In Proceedings of
the 24th Annual International Conference on Mobile Computing and Networking,
MobiCom 2018. 129–144.

[105] Xinli Yang, David Lo, Xin Xia, Zhiyuan Wan, and Jian-Ling Sun. 2016. What
security questions do developers ask? A large-scale study of Stack Overow
posts. Journal of Computer Science and Technology 31, 5 (2016), 910–924.

[106] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael R. Lyu, and Miryung Kim. 2019. An
empirical study of common challenges in developing deep learning applications.
In Proceedings of the 30th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2019. 104–115.

[107] Xufan Zhang, Yilin Yang, Yang Feng, and Zhenyu Chen. 2019. Software en-
gineering practice in the development of deep learning applications. CoRR
abs/1910.03156 (2019).

[108] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An empirical study on TensorFlow program bugs. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018. 129–140.

[109] Junji Zhi, Vahid Garousi-Yusifoglu, Bo Sun, Golara Garousi, S. M. Shahnewaz,
and Günther Ruhe. 2015. Cost, benets and quality of software development
documentation: a systematic mapping. Journal of Systems and Software 99 (2015),
175–198.

762

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 RQ1: Popularity Trend
	5 RQ2: Difficulty
	6 RQ3: Taxonomy of Challenges
	6.1 Common Challenges in Server/Cloud, Mobile, and Browser
	6.2 Common Challenges in Mobile and Browser
	6.3 Common Challenges in Server/Cloud and Browser
	6.4 Remaining Challenges in Server/Cloud
	6.5 Remaining Challenges in Mobile
	6.6 Remaining Challenges in Browser
	6.7 Unclear Questions

	7 Implications
	7.1 Researchers
	7.2 Developers
	7.3 Framework Vendors

	8 Threats to Validity
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

