
iFixFlakies: A Framework for Automatically Fixing
Order-Dependent Flaky Tests

August Shi

University of Illinois

Urbana, IL, USA

awshi2@illinois.edu

Wing Lam

University of Illinois

Urbana, IL, USA

winglam2@illinois.edu

Reed Oei

University of Illinois

Urbana, IL, USA

reedoei2@illinois.edu

Tao Xie

University of Illinois

Urbana, IL, USA

taoxie@illinois.edu

Darko Marinov

University of Illinois

Urbana, IL, USA

marinov@illinois.edu

ABSTRACT
Regression testing provides important pass or fail signals that devel-

opers use tomake decisions after code changes. However, flaky tests,

which pass or fail even when the code has not changed, can mislead

developers. A common kind of flaky tests are order-dependent tests,

which pass or fail depending on the order in which the tests are run.

Fixing order-dependent tests is often tedious and time-consuming.

We propose iFixFlakies, a framework for automatically fixing

order-dependent tests. The key insight in iFixFlakies is that test

suites often already have tests, which we call helpers, whose logic
resets or sets the states for order-dependent tests to pass. iFixFlakies

searches a test suite for helpers that make the order-dependent tests

pass and then recommends patches for the order-dependent tests

using code from these helpers. Our evaluation on 110 truly order-

dependent tests from a public dataset shows that 58 of them have

helpers, and iFixFlakies can fix all 58.We opened pull requests for 56

order-dependent tests (2 of 58 were already fixed), and developers

have already accepted pull requests for 21 of them, with all the

remaining ones still pending.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
flaky test, order-dependent test, patch generation, automated fixing

ACM Reference Format:
August Shi,Wing Lam, ReedOei, Tao Xie, andDarkoMarinov. 2019. iFixFlakies:

A Framework for Automatically Fixing Order-Dependent Flaky Tests. In

Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3338906.3338925

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00

https://doi.org/10.1145/3338906.3338925

1 INTRODUCTION
Regression testing is an important part of software development,

but it suffers from the problem of flaky tests. Developers run re-

gression tests when they make changes to ensure that the changes

do not break existing functionality. Flaky tests can pass or fail even

when run on the same code, without any changes. These tests are

problematic for software testing in general, and they are particularly

problematic for regression testing, because they provide misleading

signals to developers regarding the effects of their changes [27, 38].

Typically, when a test fails, the failure indicates a fault introduced

by a change, and the developers should debug the change. However,

with flaky tests, a test failure may not indicate a fault introduced

by a change, and developers can waste time trying to debug a fault

unrelated to recent changes [17]. Labuschagne et al. [32] found that

13% of the failed builds studied by them in open-source projects

using Travis CI are due to flaky tests. The software industry also

widely reports major problems with flaky tests [24, 27, 28, 40, 57],

e.g., Luo et al. [38] reported that at one point 73K of 1.6M test

failures per day at Google were due to flaky tests.

An important kind of flaky tests are order-dependent tests, which
pass or fail based solely on the order of the sequence in which

the tests run [33, 56]. Each order-dependent test has at least one

test order (a sequence of of tests in the test suite) where the order-

dependent test passes, and at least one other different test order

where the order-dependent test fails; if the two test orders do not dif-

fer, the test is not flaky solely due to the ordering. Prior work [38, 45]

showed that order-dependent tests are among the top three most

common kinds of flaky tests. As an example, a widely reported case

happened when Java projects updated from Java 6 to Java 7. Java 7

changed the implementation of reflection, which JUnit uses to deter-

mine the test order to run tests in. Many tests failed due to the tests

being run in a different test order from before, requiring developers

to manually fix their test suites [1–3]. Prior work, including ours,

developed automated techniques for detecting order-dependent

tests in test suites [20, 33, 56]. Furthermore, we released a dataset

of flaky tests [33], where about half are order-dependent.

In this paper, we propose a framework, iFixFlakies, that can
automatically fix many order-dependent tests. Our key insight is

that test suites often (but not always) already have tests, which

we call helpers, whose logic (re)sets the state required for order-

dependent tests to pass. We first identify that an order-dependent

545

https://doi.org/10.1145/3338906.3338925
https://doi.org/10.1145/3338906.3338925

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov

test can be classified into one of two types based on the result of

running the test in isolation from the other tests. One type is a

victim, an order-dependent test that passes when run in isolation

but fails when run with some other tests. The other type is a brittle1,
an order-dependent test that fails when run in isolation but passes

when run with some other test(s).

More specifically, our insight for iFixFlakies is that running

some helper(s) directly before victims and brittles makes these

order-dependent tests pass. Therefore, we can use the code from

these helpers to fix order-dependent tests so that they pass even

if helpers are not run (directly) before the order-dependent tests.

iFixFlakies searches for helpers and, when it can find them, uses

them to automatically recommend patches for order-dependent

tests. As inputs, iFixFlakies takes an order-dependent test, a test

order where the test passes, and a test order where the test fails. It

outputs a patch that can be applied to the order-dependent test to

make it pass even when run in the test order where it was failing

before. The code in the patch comes from a helper, and while simply

using all the code from the helper can create a patch, such a patch

would be complex and undesirable because helpers typically contain

many statements irrelevant to why the tests are order-dependent.

iFixFlakies produces effective patches by delta-debugging [55] the

helpers to produce the minimal patch for order-dependent tests.

We evaluate iFixFlakies on all 110 truly order-dependent tests

from a public dataset [33] that includes the order-dependent tests

and their corresponding passing and failing test orders. We find

that 100 tests are victims and 10 are brittles. We also find that 58 of

these 110 order-dependent tests have helpers, allowing iFixFlakies

to propose patches for all 58 of these tests (48 victims and 10 brittles).

These patches have, on average, only 24.6% of the statements of

the original helper, and 69.5% of these patches consist of only one
statement. The overall time that iFixFlakies takes to find the first

helper and to produce a patch using that helper is only 238 seconds

on average.When an order-dependent test has no helper, iFixFlakies

takes 341 seconds on average to determine that it cannot produce a

patch. These time results show that iFixFlakies is efficient.

We opened pull requests for 56 order-dependent tests with helpers

(2 of 58 were already fixed in the latest version of the code). While

all patches generated by iFixFlakies semantically fixed the flaky test,

not all patches were syntactically the most appropriate. For 28 tests,

we created the pull requests using exactly the patch recommended

by iFixFlakies, while the remaining ones involved some manual

changes, mostly refactorings to make the code more similar to the

style of the project. Developers have accepted our pull requests

fixing 21 order-dependent tests; the pull requests for the remaining

35 order-dependent tests are still under consideration but none

have been rejected.

This paper makes the following main contributions:

(1) Formalization. We formally define two different types of

order-dependent tests and three different roles of tests that

can help in the patching of order-dependent tests.

(2) Technique. We present a technique to fix order-dependent

tests using helpers. Our technique automatically generates a

patch for 58 out of 110 order-dependent tests.

1
The word “brittle” is commonly used as an adjective but can also be used as a noun.

(3) Framework.We implement our technique and make pub-

licly available a framework, iFixFlakies [7].

(4) Evaluation. We evaluate iFixFlakies on a dataset of 110

order-dependent tests. Using iFixFlakies, we break down the

order-dependent tests into 100 victims and 10 brittles, where

58 of these tests have helpers. Furthermore, iFixFlakies is

able to automatically fix all these 58 order-dependent tests.

2 FORMALIZATION OF TESTS
Order-dependent tests are flaky tests whose results can differ de-

pending on the order in which the tests run. An order-dependent

test consistently passes when run in one order but then consistently

fails when run in a different order [33, 56].

Let T be the set of all tests
2
in the test suite. A test order is a

sequence of a subset of tests from T . For a test order O that has a

test t ∈ T , let runt (O) be the result of the test t when run in the

test orderO ; the result can be either PASS or FAIL consistently; we

ignore other flaky tests that have results PASS and FAILwhen rerun
in the same test order due to other sources of non-determinism. We

use run(O) to refer to the result of the last test in O . We use [t] to
denote a test order consisting of just one test t , and use O +O ′ to
denote the concatenation of two test orders O and O ′.

Definition 1. A test t ∈ T has a passing test order or a failing
test order O if runt (O) = PASS or runt (O) = FAIL, respectively.

Definition 2. An order-dependent test t ∈ T has a passing test
order O and a failing test order O ′ , O .

We classify an order-dependent test into one of two types: victim

or brittle. We also classify other tests related to order-dependent

tests into three different roles: polluter, cleaner, and state-setter.

2.1 Victim
A victim is an order-dependent test that consistently passes when

run by itself in isolation from other tests.

Definition 3. An order-dependent test v ∈ T is a victim if
run([v]) = PASS .

The reason why a victim fails in a failing test order is that there is

at least one test that runs before the victim, and these tests “pollute”

the state (e.g., global variable, file system, network [56]) on which

the victim depends. We call such state-polluting tests polluters. Note
that a polluter can consist of multiple tests, where the combination

of running those tests in a certain order leads to the victim failing.

Definition 4. A test order (with one or more tests) P is a polluter
for a victim v if run(P + [v]) = FAIL.

Figure 1 shows an example (identified by iFixFlakies) of a victim

and a polluter from Elastic-Job [4]. The polluter is by itself the test

assertRemoveLocalInstancePath (or PT for short), because it starts

the instance (Line 8) but does not shut it down. The victim is the

test assertIsShutdownAlready (or VT for short) that fails on Line 4,

which checks whether an instance of a class variable has been shut

down. VT passes by itself or in test orders where a polluter like PT

is run after VT.

2
When we say test, for Java we mean test method as defined in JUnit.

546

iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

1 // Victim (in ShutdownListenerManagerTest class)

2 @Test public void assertIsShutdownAlready () {

3 shutdownListenerManager.new

InstanceShutdownStatusJobListener ().dataChanged("/test_job

/instances /127.0.0.1@-@0", Type.NODE_REMOVED , "");

4 verify(schedulerFacade , times (0)).shutdownInstance ();

5 }

6 // Polluter (also in ShutdownListenerManagerTest class)

7 @Test public void assertRemoveLocalInstancePath () {

8 JobRegistry.getInstance ().registerJob("test_job",

jobScheduleController , regCenter);

9 shutdownListenerManager.new

InstanceShutdownStatusJobListener ().dataChanged("/test_job

/instances /127.0.0.1@-@0", Type.NODE_REMOVED , "");

10 verify(schedulerFacade).shutdownInstance ();

11 }

12 // Cleaner (in FailoverServiceTest class)

13 @Test public void assertGetFailoverItems () {

14 JobRegistry.getInstance ().registerJob("test_job",

jobScheduleController , regCenter);

15 ... // 12 more lines

16 JobRegistry.getInstance ().shutdown("test_job");

17 }

Figure 1: Example victim, polluter, and cleaner from Elastic-Job.

A victim may not fail even when a polluter is run before it, as

long as a cleaner is run between the two. Intuitively, a cleaner is
a test order that resets the state polluted by a polluter; when the

cleaner is run after a polluter and before its victim, the victim passes.

Definition 5. A test order C is a cleaner for a polluter P and its
victim v if run(P +C + [v]) = PASS .

An example of a cleaner is also shown in Figure 1. The test

assertGetFailoverItems (or CT for short) is a cleaner for PT and VT,

because Line 16 of CT shuts down the instance that PT starts and VT

checks. Therefore, even if PT runs before VT, as long as CT’s Line 16

successfully executes before VT, VT passes. We can fix VT by inserting

the statement from this line of CT at the end of PT.

2.2 Brittle
In contrast to a victim, an order-dependent test is a brittle if the
test consistently fails when run by itself in isolation.

Definition 6. An order-dependent test b ∈ T is a brittle if
run([b]) = FAIL.

Intuitively, because a brittle fails in isolation and yet has a passing

test order, then its passing test order must contain one or more

tests that set up the state for the brittle to pass. We refer to a test

order that sets up the state for a brittle as a state-setter.

Definition 7. A test order S is a state-setter for a brittle b if
run(S + [b]) = PASS .

Figure 2 shows an example identified by iFixFlakies of a brittle

and its corresponding state-setter test from WildFly [11]. The test

testPermissions (or BT for short) is a brittle, because it fails when

run by itself, due to an AccessControlException. The test testBind

(or ST for short) is by itself a state-setter for BT, because running ST

and then BT is enough to make BT pass.

iFixFlakies finds that the store.lookup call of ST on Line 18 is

the only method call that BT needs in order to pass. store is a

test class variable initialized by the setup method of the test class.

When store.lookup is invoked before Line 11, BT passes. When we

proposed this fix to the developers ofWildFly, they quickly accepted

1 // Brittle (in WritableServiceBasedNamingStoreTestCase class)

2 @Test public void testPermissions() throws Exception {

3 ...

4 final String name = "a/b";

5 final Object value = new Object();

6 try {

7 ...

8 store.bind(new CompositeName(name), value);

9 }

10 ...

11 assertEquals(value, testActionWithPermission(JndiPermission.

ACTION_LOOKUP, permissions, namingContext, name));

12 }

13 // State-setter (also in WritableServiceBasedNamingStoreTestCase class)

14 @Test public void testBind() throws Exception {

15 final Name name = new CompositeName("test");

16 final Object value = new Object();

17 ... // 6 more lines

18 assertEquals(value, store.lookup(name));

19 }

Figure 2: Example brittle and state-setter fromWildFly.

1 def iFixFlakies(odtest, passingorder, failingorder):

2 odtype, polluters, cleaners = minimize(odtest, passingorder,

failingorder)

3 patches = []

4 if odtype == VICTIM:

5 for polluter in polluters:

6 for cleaner in cleaners[polluter]:

7 patches += [patch(polluter + [odtest], cleaner)]

8 else: # odtype == BRITTLE

9 for statesetter in polluters:

10 patches += [patch([odtest], statesetter)]

11 return patches

Figure 3: Pseudo-code for the overall process of iFixFlakies.

our fix and clarified that it works because the lookup call causes “the

WildFlySecurityManager.<clinit> to run” and running this class

constructor resolves the AccessControlException of BT [12].

Both cleaners (for victims) and state-setters (for brittles) help

make order-dependent tests pass when they run in certain test

orders. Hence, we refer to cleaners and state-setters as helpers. Our
insight is that these helpers already contain logic to set the state

for their corresponding order-dependent tests.

3 IFIXFLAKIES
We present iFixFlakies to automatically recommend patches for

order-dependent tests with helpers. Figure 3 shows the pseudo-

code for the overall process. iFixFlakies takes as input an order-

dependent test, a passing test order, and a failing test order. By

Definition 2, each order-dependent test has at least one passing

and one failing test order. Several automated approaches exist for

detecting order-dependent tests and their corresponding test or-

ders [20, 33, 56], which can provide all these inputs for iFixFlakies.

iFixFlakies has two main components: Minimizer and Patcher.

iFixFlakies first calls Minimizer (Line 2) to get the type of the

order-dependent test, the minimized polluters/state-setters, and

the minimized cleaners. Based on the type of the order-dependent

test, iFixFlakies then calls Patcher to create patches corresponding

to each helper for the order-dependent test (Lines 7 and 10).

Prior to developing iFixFlakies, we attempted to manually fix

some order-dependent tests using just their passing and failing test

orders. In this manual process, we found it difficult to understand
why each test fails, let alone fix. However, as part of this process,

547

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov

1 def minimize(odtest, passingorder, failingorder):

2 isolation = run([odtest])

3 # Run in isolation multiple times to confirm it is order-dependent

4 for i in range(RERUN):

5 if not isolation == run([odtest]):

6 raise Exception('Incorrectly classified as order-dependent')

7

8 # Passing in isolation means victim, failing means brittle

9 if isolation == PASS:

10 odtype = VICTIM

11 startingorder = failingorder

12 expected = FAIL

13 else: # isolation == FAIL

14 odtype = BRITTLE

15 startingorder = passingorder

16 expected = PASS

17

18 polluters = set() # State-setters for brittles

19 cleaners = {} # Empty map from polluters to cleaners

20

21 # Get minimal test order that causes odtest to match expected result

22 prefix = startingorder[0:indexOf(odtest, startingorder)]

23 while run(prefix + [odtest]) == expected:

24 polluter = deltadebug(prefix, lambda o: run(o + [odtest]) == expected)

25 polluters.add(polluter)

26 if odtype == VICTIM:

27 cleaners[polluter] = findcleaners(odtest, polluter, passingorder,

failingorder)

28 # If not configured to find everything, stop

29 if not FIND_ALL:

30 break

31 prefix.remove(polluter)

32 return odtype, polluters, cleaners

Figure 4: Pseudo-code for finding minimal test orders.

we found ourselves manually searching for the polluter, cleaner,

and state-setter tests for order-dependent tests, which inspired

Minimizer. Once we realized the importance of the helpers and how

they can be used as the basis for patches, we developed Patcher.

Overall, we found that the manual steps that we undertook could

be automated by a tool, leading to iFixFlakies, and such automation

can save developers’ time for fixing order-dependent tests.

3.1 Minimizer
Minimizer aims to find the minimal subsequence

3
of tests, called

minimal test order, from a passing test order or a failing test order

to make the order-dependent test pass or fail, respectively. The

minimal test order is “1-minimal”, meaning removing any test from

the minimal test order will no longer satisfy the criterion [25, 55].

Figure 4 shows the pseudo-code for Minimizer. The input is an

order-dependent test and its two test orders. As shown in Lines 4-6,

Minimizer first checks whether the order-dependent test consis-

tently passes or fails by itself, rerunning the test RERUN number

of times (default is 10). If the test consistently passes or fails, it is

likely order-dependent. This check should not be needed when the

input test is correctly classified as order-dependent, but our evalu-

ation finds that we incorrectly classified one test in our previous

work [33]. If the test is truly order-dependent, the isolation result

determines whether it is a victim or a brittle (Lines 9-16).

Next, Minimizer proceeds to delta-debug [25, 55] the prefix to

find the minimal test order (Line 24). Delta debugging iteratively

splits a sequence of elements to find a smaller subsequence that

satisfies a criterion. Our general delta-debugging method takes two

3
The term “subsequence” refers to a potentially non-consecutive subset of elements in

relation to the original ordering.

1 def findcleaners(victim, polluter, passingorder, failingorder):

2 # Determine cleaner candidates from passing and failing orders

3 candidates = []

4 polluterpos = indexOf(polluter, passingorder)

5 victimpos = indexOf(victim, passingorder)

6 if polluterpos < victimpos:

7 candidates += [passingorder[polluterpos + 1:victimpos]]

8

9 polluterpos = indexOf(polluter, failingorder)

10 victimpos = indexOf(victim, failingorder)

11 candidates += [failingorder[0:polluterpos]]

12 candidates += [failingorder[victimpos + 1:len(failingorder)]]

13

14 # Add all tests as single candidates

15 candidates += [[c] for c in failingorder]

16

17 # Filter out candidates to find actual cleaners

18 cleaners = []

19 for c in candidates:

20 if run(polluter + c + [victim]) == PASS:

21 # If not configured to find everything, just return the first one

22 if not FIND_ALL:

23 return [deltadebug(c, lambda o: run(polluter + o + [victim]) ==

PASS)]

24 cleaners += [c]

25

26 # Minimize the cleaners, so <polluter, cleaner, victim> passes

27 return unique(map(lambda c: deltadebug(c, lambda o: run(polluter + o +

[victim]) == PASS), cleaners))

Figure 5: Pseudo-code for finding cleaners.

parameters: (1) the sequence to start delta debugging and (2) the cri-

terion (in the form of a function) to check the current subsequence

validity at each iteration. For Line 24, a subsequence is valid when

running it before the order-dependent test matches the expected

result for that test. The delta-debugging output is a minimal test

order representing a polluter for a victim or a state-setter for a

brittle; ideally the polluter or state-setter consists of only one test.

The search for finding a polluter or a state-setter is the same, so our

code assigns the final result to the variable named polluter, but it

is actually a state-setter if the order-dependent test is a brittle.

In practice, after Line 24, a developer would proceed to find a

cleaner for the polluter if the order-dependent test was a victim,

or proceed to Patcher if the order-dependent test was a brittle.

However, for the sake of our experimental evaluation, we introduce

the option to find all polluters or state-setters from these test orders.

If the FIND_ALL option is set (Line 29), Minimizer proceeds to find

more polluters or state-setters by first removing the found polluter

or state-setter and then continuing with the loop that calls delta

debugging again (Lines 23-31). The process stops when running

the prefix before the order-dependent test no longer matches the

expected result. Our evaluation (Section 5.2) shows that finding

more polluters or state-setters does not provide substantial benefits

in terms of patching order-dependent tests, so in practice one can

just use the first handful of found tests of each type.

3.1.1 Finding Cleaners. After finding a polluter for a victim, Mini-

mizer proceeds to find cleaners (Lines 26-27 of Figure 4). Figure 5

shows the findcleaners method. It takes as input a victim, a pol-

luter for the victim, a passing test order, and a failing test order. The

returned cleaners make the victim pass when they are run between

the polluter and the victim.

First, findcleaners determines cleaner candidates, which are test

orders that are potentially cleaners. findcleaners finds cleaner can-

didates using the passing and/or failing test order, depending on

548

iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

1 def patch(order, helpertests):

2 statements = []

3 # Grab statements from helper methods, including setups and teardowns

4 for h in helpertests:

5 statements += get_setup(h) + get_body(h) + get_teardown(h)

6

7 # Create a method within the last helper's class with these statements

8 patchmethod = insert_new_method(test_class(helpertests[-1]))

9

10 # Insert call to patchmethod at start of flaky test (last test in order)

11 insert_call_at_start(patchmethod, order[-1])

12

13 # Delta debug statements such that the order (that was failing) can pass

14 minimalstatements = deltadebug(statements, lambda s: patchmethod.

setbody(s).compile() and run(order) == PASS)

15

16 patchmethod.setbody(minimalstatements)

17 return patchmethod

Figure 6: Pseudo-code for finding a patch.

the index of the polluter and victim in these test orders. For the

passing test order, if the victim is run after the polluter, then a

cleaner must be among the tests that run between the polluter

and victim, so these tests in between become a cleaner candidate

(Lines 4-7). For the failing test order, a cleaner can be run before

the polluter or after the victim, so tests that run before the polluter

and after the victim both become cleaner candidates (Lines 9-12).

Finding a cleaner is crucial to enable automated search for a patch.

To maximize the chance to find at least one cleaner, findcleaners

also considers every individual test as a cleaner candidate, including

even both the polluter and the victim (Line 15).

By considering every test as a cleaner candidate, findcleaners

may even find a cleaner that JUnit would never run between the pol-

luter and the victim. More specifically, when a polluter and victim

are in the same class, findcleaners may find a cleaner consisting

of tests from a different class; JUnit will never run this cleaner be-

tween the polluter and victim. findcleaners still searches for such

cleaners, because their code can be used by Patcher.

For each cleaner candidate, findcleaners runs the polluter, the

cleaner candidate, and then the victim, checking whether the victim

passes in this test order. If the victim passes, then the cleaner can-

didate is an actual cleaner; findcleaners proceeds to delta-debug

the cleaner candidate to find the minimal test order (Line 23), with

the delta-debugging criterion being that running the polluter, the

subsequence from the cleaner, and the victim passes.

If the FIND_ALL option is not set, then the first cleaner found is

returned. Otherwise, findcleaners checks the remaining cleaner

candidates, for the set of all unique cleaners. We use this option to

find all cleaners as part of our evaluation (Section 5); our results

suggest that finding just a few cleaners suffices.

Minimizer takes the returned cleaners from findcleaners and

adds them to a map from found polluters to found cleaners (Line 27

in Figure 4). The final return value for Minimizer is a tuple of (1) the

type of the order-dependent test (victim or brittle), (2) the polluters

or state-setters for the order-dependent test, and (3) the map from

polluters to cleaners (empty if the order-dependent test is a brittle).

3.2 Patcher
Patcher automatically recommends patches for fixing an order-

dependent test using code from helpers. Patcher takes as input

(1) the minimal test order where the order-dependent test fails:

1 // Victim (in ShutdownListenerManagerTest class)

2 @Test public void assertIsShutdownAlready () {

3 + // Call to patch method

4 + new FailoverServiceTest ().patch();

5 ...

6 }

7 + // Starting patch method (in FailoverServiceTest class)

8 + public void patch() {

9 + // statements from @BeforeClass or @Before

10 + ...

11 + // 13 statements from cleaner , assertGetFailoverItems

12 + ...

13 + JobRegistry.getInstance ().shutdown("test_job");

14 + // statements from @AfterClass or @After

15 + ...

16 + }

Figure 7: Starting code of Patcher for example in Figure 1.

1 // Victim (in ShutdownListenerManagerTest class)

2 @Test public void assertIsShutdownAlready () {

3 + // Call to patch method

4 + new FailoverServiceTest ().patch();

5 ...

6 }

7 + // Final patch method (in FailoverServiceTest class)

8 + public void patch() {

9 + JobRegistry.getInstance ().shutdown("test_job");

10 + }

Figure 8: Final code of Patcher for example in Figure 1.

for a victim, this order is the polluter followed by the victim, and

for a brittle, this order is just the brittle; and (2) a helper for the

order-dependent test (note that a helper can consist of multiple

tests). Figure 6 shows the pseudo-code for Patcher.

First, Patcher obtains all of the statements from the tests in the

helper (Line 5). These statements come from not just the body of the

tests themselves but also from all the setup and teardown methods

of these helper tests. We use JavaParser [8], a library for parsing

Java source code, to obtain these statements. Patcher keeps these

statements in the order that JUnit runs them in (i.e., statements in

@Before run first, then statements in the test, and lastly, statements

in @After). More specifically, get_setup obtains the statements from

the setup methods (annotated with @BeforeClass or @Before in the

test class or super-classes), get_body obtains all statements in the

helper test’s body, and get_teardown obtains statements from the

teardown methods (annotated with @AfterClass or @After in the

test class or super-classes). If the helper test has the annotation

expected [9], which indicates that the test expects a particular ex-

ception to be thrown for it to pass, then get_body also wraps the

statements from the test in an appropriate try-catch block.

Next, Patcher adds code to run the helper code before the order-

dependent test in two steps. First, Patcher creates an empty method,

referred to as the patch method, to store all of the statements from

the helper (Line 8). Second, Patcher inserts a call to the patchmethod

at the start of the order-dependent test (Line 11). The inserted code

creates an instance of the test class using the default constructor

and uses that instance to call patch. Note that the code shows

inserting this call at the start of the order-dependent test, but for a

victim, the call can also be inserted at the end of the polluter. Users

can configure Patcher to insert the patch at the beginning of the

order-dependent test, or at the end of the polluter for victims.

549

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov

Table 1: Breakdown of the 184 likely order-dependent tests from a
public dataset [6].

of tests Category
22 in a class with @FixMethodOrder

49 reuseForks is set to false in pom.xml

1 non-order-dependent test

2 out-of-memory when run with iFixFlakies

110 truly order-dependent tests

Figure 7 shows an example of the starting code to be mini-

mized by Patcher. This code is adapted from the example in Fig-

ure 1. Line 8 shows the declaration of the new patch method. The

body of the patch method contains all of the statements from

(1) the setup method of FailoverServiceTest, (2) the cleaner test

body (assertGetFailoverItems), and (3) the teardown method of

FailoverServiceTest. The inserted line (Line 4) calls patch using a

new instance of the helper’s test class.

Finally, Patcher delta-debugs the statements from the helper

to find the minimal list of statements that can make the order-

dependent test pass when run in the minimal test order (Line 14 of

Figure 6); the minimal list of statements is also “1-minimal”, and

the finest granularity is at the level of statements as defined by

JavaParser [8]. The delta-debugging method is the same general

one as in Minimizer, except this time it is minimizing the list of

statements from the helper tests instead of test orders. The delta-

debugging criterion for Patcher is that the patch method compiles,

and the inserted code makes the order-dependent test pass when

run in the minimal test order. Patcher returns the patch method

with the minimal list of statements for the order-dependent test

to pass. Figure 8 shows the final code after Patcher runs; the patch

method contains only one statement (Line 9).

While the order-dependent test can already be fixed by inserting

a call to the patch method at the start of the order-dependent test,

a developer using iFixFlakies can choose to inline the statements

from the patch method directly into the order-dependent test or

into the polluter. In some cases, it may be trivial to just inline

these statements into the order-dependent test body. However, in

general, a developer should decide whether it is best to inline the

statements of the helper into the order-dependent test or polluter,

or leave them in a separate method. Factors that may influence the

developer’s decision include the applicability of the patch method

to other tests and the data encapsulation of the patch method.

To further refine how statements invoked from helpers fix the

order-dependent test, Patcher could potentially minimize and in-

line the statements of methods (indirectly) invoked by the helper

tests. By minimizing those statements, the developer can be given

a patch that is much more specific to the cause of the flakiness.

However, it can be difficult to inline statements from code further

away from the helper tests. Also, the number of statements in the

final patch will likely increase. As such, Patcher currently does not

minimize the statements of these invoked methods, and we leave

such investigation for future work.

4 EVALUATION SETUP
We released a public dataset of flaky tests, including order-dependent

tests, as part of our prior work [33]. Our dataset is split into two

sets, comprehensive and extended. For our evaluation, we use the

comprehensive set. This set consists of 184 likely order-dependent

tests from 19 Maven modules; a Maven module consists of code

and tests from the project that the developers organized to be built

and run together. Our dataset also has at least one passing and one

failing test order for each order-dependent test.

We implement iFixFlakies as a plugin for Maven [10]. For each

module in the Maven project, iFixFlakies takes as input order-

dependent tests in the module to fix along with a passing test order

and failing one for each one. iFixFlakies uses a custom JUnit test run-

ner to run the tests, so iFixFlakies currently recommends patches

for only JUnit order-dependent tests in Maven-based projects.

Unfortunately, not all tests in the dataset are well suited for our

goal of submitting patches to developers. First, 22 tests are in test

classes annotated with @FixMethodOrder. This annotation tells JUnit

to run the tests within that test class in a fixed order. Since the

developers are already aware of the order-dependent tests in their

test suite and have taken measures to address them, we omit these

tests from our evaluation. Second, 49 tests from the dataset are

in modules that use the Maven Surefire parameter reuseForks to

run each test class isolated in its own JVM. Such isolation removes

many of the dependencies between tests and is another way used

by developers to accommodate order-dependent tests.

We run iFixFlakies on all the remaining 113 purported order-

dependent tests using the passing and failing test orders from our

dataset. Some order-dependent tests have more than one passing

test order and/or failing test order in the dataset, and we need only

one of each for iFixFlakies, so we arbitrarily choose one of each test

order to run iFixFlakies. We configure iFixFlakies to find all pol-
luters, cleaners, and state-setters for every order-dependent test. For

each order-dependent test, we run iFixFlakies on Microsoft Azure

with the virtual machine size Standard_D11_v2, which consists of 2

CPUs, 14GB of RAM, and 100GB of hard disk space.

Overall, we find 110 truly order-dependent tests. 1 test is mis-

classified as order-dependent (found to be non-order-dependent

through our reruns) and, due to the large number of polluters and

cleaners, 2 tests encounter out-of-memory errors from iFixFlakies.

Table 1 shows the summary breakdown of the tests from the dataset.

5 EVALUATION
To evaluate the effectiveness and efficiency of iFixFlakies, we ad-

dress the following research questions:

RQ1: What are the numbers of victims, brittles, polluters, cleaners,

and state-setters found by iFixFlakies among test suites with order-

dependent tests? How many tests can iFixFlakies fix?

RQ2: What are the characteristics (e.g., size, uniqueness) of the

patches generated by iFixFlakies?

RQ3: How much time does iFixFlakies take to find polluters, clean-

ers, state-setters, and patches?

We address RQ1 primarily to inform researchers and tool devel-

opers on which types of order-dependent tests and roles of tests

are the most common so that they can be prioritized appropriately.

With the main insight of iFixFlakies being to use helpers to propose

patches for order-dependent tests, RQ1 also evaluates the frequency

of tests that have helpers and therefore the applicability of our in-

sight on order-dependent tests. We address RQ2 to evaluate the

effectiveness in terms of size and accepted pull requests concern-

ing the patches proposed by iFixFlakies, and RQ3 to evaluate the

550

iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 2: Characteristics of the order-dependent tests (OD) in the projects used in our study.

Number of Average number of
victims w/ polluters cleaners state-setters

ID Project Name - Module tests OD victims brittles cleaners per victim per victim per brittle
M1 alibaba/fastjson 178 11 4 7 1 1.8 69.8 51.6

M2 apache/incubator-dubbo - m1 110 4 4 0 4 2.5 6.8 n/a

M3 - m2 65 4 3 1 3 5.3 152.0 2.0

M4 - m3 21 1 1 0 1 1.0 2.0 n/a

M5 - m4 40 3 3 0 0 1.0 0.0 n/a

M6 apache/jackrabbit-oak 3,178 2 1 1 0 1.0 0.0 1.0

M7 apache/struts 61 4 4 0 4 1.0 16.0 n/a

M8 dropwizard/dropwizard 80 1 1 0 1 2.0 16.0 n/a

M9 elasticjob/elastic-job-lite 511 6 6 0 5 1.0 29.8 n/a

M10 jfree/jfreechart 2,176 1 1 0 0 1.0 0.0 n/a

M11 kevinsawicki/http-request 163 28 28 0 28 1.0 1.0 n/a

M12 undertow-io/undertow 79 1 1 0 1 4.0 12.0 n/a

M13 wildfly/wildfly 82 44 43 1 0 1.0 0.0 36.0

Total/Average per test 6,744 110 100 10 48 1.3 10.6 40.0

efficiency of iFixFlakies and thus how it could be integrated into a

practical software development process.

5.1 RQ1: Characteristics of Tests
Table 2 shows some summary information about the projects and

modules that contain at least one order-dependent test. For each

module, the table lists the total number of tests, the number of

order-dependent tests, and the breakdown of the number of victims

and brittles among those order-dependent tests. Overall, we find

that out of 110 order-dependent tests, 100 tests are victims and 10

tests are brittles, so most order-dependent tests are victims.

Table 2 also shows the average number of polluters per victim,

cleaners per victim (that have cleaners), and state-setters per brittle

that iFixFlakies finds. Each victim has at least one polluter. In the

final row for averages, we show the averages computed per test

(not per module). On average, we find 1.3 polluters per victim, with

a total of 126 polluters for the 100 victims. Note that our search

does not exhaustively find all polluters for a victim; the polluters

that it finds depend on the position of the victim in the failing test

order. On average across all victims, the position of a victim in

its failing test order is 54.5% (i.e., a victim is just over the halfway

position in the failing test order). 91 of the victims have just one

polluter, while 9 victims have more than one polluter; the max

number of polluters per victim is 6, and the median is 4 polluters

per victim. While a polluter can consist of multiple tests that only

when run together before the victim lead to it failing (Section 2),

we find that only 3 polluters consist of more than one test. Because

most polluters consist of only one test, it is practical to assume only

one test pollutes the state for a victim, and future work on finding

polluters may benefit from focusing on individual tests.

We hypothesized the existence of cleaners among the order-

dependent tests in our prior work [33], and using iFixFlakies we

find and show the actual number of cleaners per victim and pol-

luter; different polluters for the same victim may have cleaners in

common, but we report each cleaner separately per polluter for the

same victim, because each one indicates a potential different patch

for that victim. We find that 48 victims of the total 100 victims have

at least one cleaner, so almost half of all victims can be fixed using

the code from their corresponding cleaners. Of these 48 victims, 29

have just one cleaner, while the remaining 19 have more than one

cleaner. The average number of cleaners per victim with at least

one cleaner is 10.6, and the median number of cleaners per victim is

16 cleaners. In total, we find 1,063 cleaners for all these 48 victims,

where each cleaner consists of only one test. As described in Sec-

tion 3.1.1, when iFixFlakies searches for cleaners, it considers every
test as a potential cleaner, even when JUnit would not run such a

test in between the polluter and victim. From the 48 victims with

cleaners, we find 6 with cleaners that JUnit would not run between

the polluter and the victim. Interestingly, two of the cleaners are

actually the polluters of a victim as well!

We also find that 8 victims have more than one polluter with

cleaners. Interestingly, all polluters of these victims have exactly

the same cleaners. Based on these results, a developer should use

iFixFlakies to search for cleaners in just one polluter to know

whether a victim contains a cleaner or not. Different cleaners can

produce different patches, but we find that the numbers of state-

ments produced by different cleaners are similar (Section 5.2).

Concerning state-setters, each brittle must have at least one

state-setter, and we find a brittle has on average 40.0 state-setters,

and the median number of state-setters is 47. The 10 brittles have a

total of 400 state-setters. Because all 10 brittles can be fixed using

code from one of their state-setters, and 48 victims have cleaners,

iFixFlakies can recommend patches for a total number of 58 tests,

over half of the 110 truly order-dependent tests. In total, iFixFlakies

finds 1,463 helpers to use to recommend patches for the 58 tests.

5.2 RQ2: Characteristics of Patches
Table 3 shows the characteristics of the patches that iFixFlakies

recommends, with one patch per helper; we do not show rows for

modules with no helpers, namely M5 and M10. For each module,

we show the average number of patches per order-dependent test.

We also show the average number of unique patches, based on

statements, for each order-dependent test per module. For example,

M7 (apache/struts) has 16.0 patches per order-dependent test, but

551

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov

Table 3: Characteristics of patches proposed by iFixFlakies; for each module, averages per order-dependent test are shown.

First Patch All Patches
Unique # Unique Avg. % Stmts Avg. % Stmts

ID # Patches Patches Patch Sizes Avg. # Stmts from Original Avg. # Stmts from Original
M1 80.0 8.9 1.9 1.1 21.4% 2.0 40.4%

M2 6.8 2.2 1.0 7.0 65.8% 5.4 38.6%

M3 114.5 3.5 1.0 1.5 12.6% 1.0 8.2%

M4 2.0 2.0 2.0 5.0 71.4% 4.5 69.0%

M6 1.0 1.0 1.0 2.0 28.6% 2.0 28.6%

M7 16.0 2.0 2.0 2.0 13.3% 4.1 8.0%

M8 16.0 8.0 4.0 2.0 25.0% 4.5 32.6%

M9 35.8 5.8 2.8 1.2 15.0% 1.5 15.3%

M11 1.0 1.0 1.0 1.0 16.7% 1.0 16.7%

M12 12.0 9.0 4.0 1.0 20.0% 2.7 32.5%

M13 36.0 8.0 4.0 13.0 86.7% 1.9 14.4%

Average 25.2 3.2 1.5 1.9 22.6% 1.8 24.6%

only 2.0 unique patches per order-dependent test. Overall, while

iFixFlakies recommends, on average, 25.2 patches for each order-

dependent test across all modules, only 3.2 are actually unique. The

overall average in the final row is the average per test across all

modules, not the (unweighted) average of averages per module.

Table 3 also shows the average number of unique patch sizes

among all patches for each order-dependent test per module; several

patches with different statements can have the same number of

statements. If the patch size is the most important for a good patch,

then it suffices to find just one patch of a certain size instead of

finding all the different patches of that size. With only 1.5 unique

patch sizes per order-dependent test on average, many patches

actually have the same size.

Table 3 also shows some statistics about the sizes of patches

for only the first patch (from iFixFlakies trying the first cleaner

of the first polluter or the first state-setter) and across all patches.

The table shows the average number of statements and the aver-

age percentage of the number of statements w.r.t. the number of

statements in the original helper (Section 3.2). Across all patches,

iFixFlakies recommends a patch with only 1.8 statements on aver-

age, and these statements comprise only 24.6% of the statements

in the original patch method. In fact, of the 1,463 total patches,

1,013 (69.5%) contain just one statement! When we look into the

spread of the patch sizes per order-dependent test, we find that, on

average, each order-dependent test has around 90% of their patches

with the same size, most often being the smallest size. For example,

the average number of statements in the first patch (1.9) is almost

equal to the average number of statements across all patches (1.8).

Overall, the results suggest that iFixFlakies should search for a few

helpers, but not all of them, because the majority of the helpers

lead to the same size of patches.

5.2.1 Submitted Patches. We submitted pull requests for 56 of the

58 order-dependent tests with helpers; 2 of the 58 had already been

fixed before we submitted pull requests. Table 4 shows the break-

down of the tests corresponding to our pull requests. Developers

already accepted pull requests for 21 tests.

While all our pull requests are based on the patches generated

by iFixFlakies, we sent patches for half of the tests (28) exactly as

iFixFlakies recommended, and the remaining half required small,

Table 4: Number of tests addressed by pull requests (PRs) based on
iFixFlakies patches.

of Test Fixed by
ID Pending PRs Accepted PRs Patcher
M1 1 7 8

M2 0 2 2

M3 0 4 4

M4 0 1 1

M6 1 0 1

M7 0 4 4

M8 0 1 1

M9 5 0 5

M11 28 0 28

M12 0 1 1

M13 0 1 1

Total 35 21 56

manual changes. When we had to make changes to the patch for the

pull requests, the effort was roughly 1-3 minutes per patch, mostly

refactorings or simple changes to match the style of the existing

code. Existing techniques and tools [13, 14, 46, 49] could help with

such manual effort. We believe that developers using iFixFlakies

could use such tools for more automation but still examine the

patches and manually apply small changes if necessary. We make

available the patches that iFixFlakies generates, a more detailed

breakdown describing the changes that we made to the patches,

and links to the corresponding pull requests on our website [7].

Because iFixFlakies fixes an order-dependent test using state-

ments from a helper, the recommended patches may reduce the

order-dependent test’s fault-detection capability, i.e., make the test

miss a fault. However, if a patch does reduce an order-dependent

test’s fault-detection capability, then the passing test order in which

iFixFlakies (may have) found the helper could likely miss the fault

as well. iFixFlakies assumes that each passing test order is correct,

and the failing test order indicates a fault in the test code, not a fault

in the code under test. We do not believe that the scenario where

the failing test order indicates a fault in the code under test actually

occurred in our evaluation, particularly because developers did not

reject our pull requests to fix the order-dependent tests.

552

iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 5: Average time in seconds that iFixFlakies takes; ‘*’ denotes that the time includes finding some test(s) with no cleaner.

Test suite Avg. time to find first Avg. time to find all
ID time polluter cleaner state-setter patch polluters cleaners state-setters patches
M1 203 92 *523 42 299 113 *1,443 1,748 25,424

M2 8 22 52 n/a 294 48 465 n/a 2,473

M3 206 143 178 21 130 389 7,089 39 54,856

M4 1 2 4 n/a 395 2 25 n/a 572

M5 3 19 *104 n/a n/a 19 *104 n/a n/a

M6 189 218 *5,710 50 416 218 *5,710 50 416

M7 4 13 11 n/a 411 13 159 n/a 14,478

M8 7 36 16 n/a 714 57 589 n/a 4,960

M9 24 45 *293 n/a 258 45 *1,434 n/a 11,854

M10 22 16 *1,695 n/a n/a 16 *1,695 n/a n/a

M11 2 15 5 n/a 56 15 227 n/a 56

M12 17 32 79 n/a 232 109 1,025 n/a 2,617

M13 3 21 *114 19 463 21 *114 186 4,749

Average 35 29 176 37 186 39 592 1,154 9,737

It should be noted that for M13 (wildfly/wildfly), iFixFlakies

actually helps fix victims without cleaners as well! None of the 43
victims had a cleaner. However, they all share the same polluter,

and that polluter is itself the single brittle found. When we apply a

recommended patch for the brittle, not only is the brittle fixed, but

all of the victims are also fixed. This example showcases one of the

complexities of order-dependent tests and how iFixFlakies can even

help fix order-dependent tests that do not have helpers themselves.

We do not count these 43 tests as fixed in our evaluation, because

iFixFlakies fixes these tests indirectly.

5.3 RQ3: Performance
Table 5 shows the time that it takes for iFixFlakies to find polluters,

cleaners, and state-setters, along with the time to create patches.

The table shows for each module the average time (across all order-

dependent tests in the module) that iFixFlakies takes to find/create

(1) the first polluter, cleaner, state-setter, and patch; and (2) all

polluters, cleaners, state-setters, and patches. The time to create

patches assumes that a helper has been found and does not include
the time to find the helper. As a reference for the time taken by

iFixFlakies, the table shows the time to run each module’s test suite.

Effective use of iFixFlakies would only require finding the first

polluter and cleaner (for a victim) or state-setter (for a brittle) so that

iFixFlakies can recommend a patch (Section 5.2). If the victim has

more than one polluter, then the time for the first cleaner is for the

first cleaner of the first polluter. Similarly, the time to the first patch

for such a victim is then the patch created from the first cleaner

for the first polluter. If the victim has no cleaners, the table reports

the time taken by iFixFlakies to search for cleaners for that first

polluter, eventually not finding any; we mark such time with a ‘*’ in

the table. The overall average time to find the first polluter, cleaner,

state-setter, and patch is 29, 176, 37, and 186 seconds, respectively.

Once again, the overall averages are over all order-dependent tests,

not over modules. Likewise, the overall average for running all

tests in a module is “weighted” by the number of tests as well, so

modules with more than one order-dependent test have their test

suite time counted multiple times, once per each order-dependent

test. Compared to this weighted average time to run all the tests,

the time to find the first polluter, cleaner, state-setter, and patch is

about 0.8x, 5.0x, 1.0x, and 5.3x the time to run all tests, respectively.

On average, iFixFlakies takes 39, 592, 1,154, and 9,737 seconds

to find/create all polluters, cleaners, state-setters, and patches, re-

spectively; once again, ‘*’ denotes time that includes searching for

cleaners where there are none. Compared to the time to find/create

just the first corresponding test/patch, the time is 1.3x, 3.4x, 31.2x,

and 52.3x larger. The average time for finding all state-setters is

particularly larger than the time for finding the first state-setter

due to the large number of state-setters in M1 (alibaba/fastjson).

The average time for creating all patches is also particularly larger

due to the large number of helpers (one per patch).

Note that iFixFlakies performance can be improved, e.g., Patcher

could modify the bytecode of the patch code in-memory [23, 35] to

avoid compilation during delta debugging, or could instrument the

code to allow turning statements on or off during delta debugging

similar to metamutants [31, 50]. In general, considering the large

amount of time to create all patches and there being fewer unique

patches than all patches, we do not recommend developers to use

iFixFlakies to create all patches using all helpers for each order-

dependent test; obtaining just a few appears to suffice.

Overall, the average end-to-end time for iFixFlakies to try to

create a patch for an order-dependent test is 287 seconds; the end-

to-end includes the time to find the first helper (including the time

to find the first polluter for victims) and then to create the corre-

sponding patch. This end-to-end time also includes the cases where

an order-dependent test has no cleaner, and iFixFlakies spends time

looking for it. If we split the order-dependent tests between those

with and without helpers, the time to create a patch for an order-

dependent test with a helper is 238 seconds, while the time to fail

to create a patch for one without a helper is 341 seconds.

6 THREATS TO VALIDITY
The results of our study concerning the frequency of victims, brit-

tles, polluters, cleaners, and state-setters may not generalize to

other projects. We attempt to mitigate this threat by using a dataset

of popular and diverse projects from our prior work [33]. We gen-

erated this dataset of order-dependent tests using 13 projects from

553

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov

earlier work on flaky tests [17, 45], and 150 Java projects deemed

the most popular on GitHub [5] based on the number of stars that

the projects have. Furthermore, iFixFlakies itself or tools that it

uses (e.g., JavaParser [8]) may have faults that could have affected

our results. We used extensive logging in iFixFlakies, and at least

two authors reviewed iFixFlakies’s code and logs.

The metrics that we use to evaluate the patches that iFixFlakies

creates, e.g., patch size and uniqueness, may not be the most im-

portant metrics for determining the quality of patches. Other im-

portant metrics include the time taken to run the patched-in code.

The patches that iFixFlakies recommends may also not lead the

order-dependent test to pass for test orders other than the failing

test orders that iFixFlakies checks. To mitigate these two threats,

we submitted pull requests for the patches that iFixFlakies recom-

mends. So far, developers have already accepted pull requests for 21

order-dependent tests, and the rest are pending with none rejected.

7 RELATEDWORK
Luo et al. [38] reported the first extensive academic study of flaky

tests; they categorized flaky tests by studying historical commits of

fixes for flaky tests and found order-dependent tests to be among

the top three most common categories. Palomba and Zaidman [45]

also studied flaky tests and categorized the ones that they found,

with order-dependent tests claimed to similarly be in the top three

categories. Gao et al. [22] studied flaky GUI tests, and they found

tests that change the configurations for later-run tests, resulting

in GUI order-dependent tests. We recently released a dataset [6] of

flaky tests that we found by rerunning test suites while randomizing

their test orders [33]; almost half of the flaky tests found are order-

dependent tests, and we evaluate iFixFlakies using these tests.

Zhang et al. [56] proposed discovering order-dependent tests

through randomizing the test orders. Huo and Clause [30] studied

tests whose assertions depend on input data not controlled by the

tests themselves. They called these assertions “brittle”, inspiring

our naming of brittles as tests with similar kinds of assertions
4
.

The difference is that their brittle assertions may fail due to the

tests using wrong input data that they do not control, while our

brittles are tests that always fail when run in isolation (without

a state-setter running before them). Gyori et al. [26] proposed a

technique, PolDet, for detecting tests that change shared state so the

state at the end of their run differs from the state at the start of their

run. They call these tests “polluters”, and our polluters are similar

in nature. The difference is that their polluters may pollute the

state so other tests (potentially future ones) fail, while our polluters

always pollute the state for some existing victims. Bell et al. [16]

proposed a technique, ElectricTest, to detect data dependencies

between existing tests in a test suite, and Gambi et al. [20] followed

up on ElectricTest with PraDet, which detects when dependencies

between tests can actually lead to tests failing in different orders.

In this paper, instead of detecting order-dependent tests, our goal

is to automatically fix order-dependent tests.

Bell and Kaiser [15] proposed VMVM, a technique to tolerate

order-dependent tests by restoring the state of the heap between

test runs. VMVM adds instrumentation that re-initializes static

4
The term “brittle” or “fragile” test was also used to describe GUI tests that fail due to

changes in the interface [29, 48, 53].

fields shared between tests to isolate tests from one another with

regards to their heap state when run in the same JVM. Muşlu et

al. [43] proposed an even more extreme technique for isolation in

that each test should not only run in a separate JVM but also in

a fresh environment, e.g., a fresh file system. Bell et al. [17] also

evaluated how various forms of isolation can help in test reruns to

detect which test failures are due to flaky tests. However, all forms

of isolation add extra overhead on top of executing tests. In this

paper, we use code from helpers that are already in the test suite to

(re)set the state for order-dependent tests to pass even when not
run in isolation but together with the other tests.

Automatic patch generation is a well-studied topic [34, 36, 37,

39, 42, 44, 51, 52]. The goal is to automatically patch faults in the

code, exposed by failing tests. These techniques generate patches

using a variety of mechanisms such as systematically mutating

code, learning from example patches, and symbolic execution. To

validate the success of the patches, most of the techniques rely on

the outcomes of tests. In this paper, we aim to patch tests as opposed
to the code under test. We create these patches by searching for

helpers among the existing tests, which have code that can be used

to make order-dependent tests pass in their respective failing test

orders. Daniel et al. [18, 19], Mirzaaghaei et al. [41], and Yang et

al. [54] also fixed test code, while Gao et al. [21] and Stocco et

al. [47] fixed test scripts for GUI. However, they all fixed tests that

become broken due to code evolution, not flaky tests.

8 CONCLUSION
Flaky tests provide misleading signals to developers during re-

gression testing. Prior work has found order-dependent tests to

be among the top three common kinds of flaky tests. We present

iFixFlakies, a framework for automated fixing of order-dependent

tests. Our main insight for iFixFlakies is that test suites already

have helper tests whose code can help fix order-dependent tests.

iFixFlakies searches for helpers and uses their code to propose rel-

atively small patches for order-dependent tests. Our evaluation

on 110 order-dependent tests from a public dataset shows that

iFixFlakies can automatically recommend patches for 58 of 110

tests. The recommended patches are effective, with 69.5% of them

having just one statement. Also, iFixFlakies is efficient, requiring

only 238 seconds on average to produce the first patch for an order-

dependent test with a helper. The effectiveness and efficiency of

iFixFlakies show promise that it may be integrated into a practical

software development process. We used patches recommended by

iFixFlakies to open pull requests for 56 order-dependent tests (2 of

the 58 had already been fixed); developers have already accepted

pull requests for 21 tests, and the remaining ones are pending.

ACKNOWLEDGMENTS
We thankAngello Astorga, Owolabi Legunsen, and Lingming Zhang

for discussions about flaky tests and their comments on this pa-

per. This work was partially supported by NSF grant nos. CCF-

1421503, CNS-1513939, CNS-1564274, CNS-1646305, CNS-1740916,

CCF-1763788, CCF-1816615, and OAC-1839010. We acknowledge

support for research on flaky tests and test quality from Facebook,

Futurewei, Google, and Microsoft.

554

iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] 2012. JUnit and Java 7. http://intellijava.blogspot.com/2012/05/junit-and-java-

7.html.

[2] 2013. JUnit test method ordering. http://www.java-allandsundry.com/2013/01/.

[3] 2013. Maintaining the order of JUnit3 tests with JDK 1.7. https://coderanch.com/

t/600985/engineering/Maintaining-order-JUnit-tests-JDK.

[4] 2019. Elastic-Job. https://github.com/elasticjob/elastic-job-lite.

[5] 2019. GitHub. https://github.com.

[6] 2019. iDFlakies: Flaky Test Dataset. https://sites.google.com/view/

flakytestdataset.

[7] 2019. iFixFlakies Framework. https://sites.google.com/view/ifixflakies.

[8] 2019. JavaParser. http://javaparser.org/.

[9] 2019. JUnit expected annotation. https://junit.org/junit4/javadoc/4.12/org/junit/

Test.html.

[10] 2019. Maven. https://maven.apache.org.

[11] 2019. WildFly Application Server. https://github.com/wildfly/wildfly.

[12] 2019. WildFly Bug Report. https://issues.jboss.org/browse/WFLY-11323.

[13] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing natural coding conventions. In FSE. Hong Kong, China, 281–293.
[14] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.

2015. Automated software transplantation. In ISSTA. Baltimore, MD, USA, 257–

269.

[15] Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In ICSE.
Hyderabad, India, 550–561.

[16] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient

dependency detection for safe Java test acceleration. In ESEC/FSE. Bergamo, Italy,

770–781.

[17] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,

and Darko Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In ICSE.
Gothenburg, Sweden, 433–444.

[18] Brett Daniel, Tihomir Gvero, and Darko Marinov. 2010. On test repair using

symbolic execution. In ISSTA. Trento, Italy, 207–218.
[19] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. 2009. ReAssert:

Suggesting repairs for broken unit tests. In ASE. Auckland, New Zealand, 433–

444.

[20] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test dependency

detection. In ICST. Vasteras, Sweden, 1–11.
[21] Zebao Gao, Zhenyu Chen, Yunxiao Zou, and Atif M. Memon. 2016. SITAR: GUI

test script repair. TSE 42, 2 (2016), 170–186.

[22] Zebao Gao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. 2015.

Making system user interactive tests repeatable: When and what should we

control?. In ICSE. Florence, Italy, 55–65.
[23] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program

repair via bytecode mutation. In ISSTA. Beijing, China. to-appear.
[24] Google. 2008. Avoiding Flakey Tests. http://googletesting.blogspot.com/2008/04/

tott-avoiding-flakey-tests.html.

[25] Alex Groce, Amin Alipour, Chaoqiang Zhang, Yang Chen, and John Regehr. 2014.

Cause reduction for quick testing. In ICST. Cleveland, OH, USA, 243–252.
[26] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing:

Detecting state-polluting tests to prevent test dependency. In ISSTA. Baltimore,

MD, USA, 223–233.

[27] Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Opportu-

nities and open problems for static and dynamic program analysis. In SCAM.

Madrid, Spain, 1–23.

[28] Kim Herzig and Nachiappan Nagappan. 2015. Empirically detecting false test

alarms using association rules. In ICSE. Florence, Italy, 39–48.
[29] Clint Hoagland. 2014. Fixing the brittleness problem with GUI tests. https:

//www.stickyminds.com/articles/fixing-brittleness-problem-gui-tests.

[30] Chen Huo and James Clause. 2014. Improving oracle quality by detecting brittle

assertions and unused inputs in tests. In FSE. Hong Kong, 621–631.
[31] René Just. 2014. The Major mutation framework: Efficient and scalable mutation

analysis for Java. In ISSTA. San Jose, CA, USA, 433–436.

[32] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the

cost of regression testing in practice: A study of Java projects using continuous

integration. In ESEC/FSE. Paderborn, Germany, 821–830.

[33] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:

A framework for detecting and partially classifying flaky tests. In ICST. Xi’an,
China, 312–322.

[34] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.

2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs

for $8 each. In ICSE. Zürich, Switzerland, 3–13.
[35] Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem

for fault localization. In OOPSLA. Vancouver, 92:1–92:30.
[36] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code

transforms for patch generation. In ESEC/FSE. Paderborn, Germany, 727–739.

[37] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning

correct code. In POPL. St. Petersburg, Florida, 298–312.
[38] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An

empirical analysis of flaky tests. In FSE. Hong Kong, 643–653.
[39] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable

multiline program patch synthesis via symbolic analysis. In ICSE. Austin, TX,
USA, 691–701.

[40] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-

borski, and John Micco. 2017. Taming Google-scale continuous testing. In ICSE.
Buenos Aires, Argentina, 233–242.

[41] Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzè. 2012. Supporting test

suite evolution through test case adaptation. In ICST. Montreal, QC, Canada,

231–240.

[42] Martin Monperrus. 2018. Automatic software repair: A bibliography. ACM
Comput. Surv. 51, 1 (Jan. 2018), 17:1–17:24.

[43] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. 2011. Finding bugs by isolating

unit tests. In ESEC/FSE. Szeged, Hungary, 496–499.
[44] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-

dra. 2013. SemFix: Program repair via semantic analysis. In ICSE. San Francisco,

CA, USA, 772–781.

[45] Fabio Palomba and Andy Zaidman. 2017. Does refactoring of test smells induce

fixing flaky tests?. In ICSME. Shanghai, China, 1–12.
[46] Danilo Silva, Ricardo Terra, and Marco Tulio Valente. 2014. Recommending

automated extract method refactorings. In ICPC. Hyderabad, India, 146–156.
[47] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual web test

repair. In ESEC/FSE. Lake Buena Vista, FL, USA, 503–514.
[48] Suresh Thummalapenta, Pranavadatta Devaki, Saurabh Sinha, Satish Chandra,

Sivagami Gnanasundaram, Deepa D. Nagaraj, and Sampathkumar Sathishkumar.

2013. Efficient and change-resilient test automation: An industrial case study. In

ICSE. San Francisco, CA, USA, 1002–1011.

[49] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of move

method refactoring opportunities. TSE 35, 3 (2009), 347–367.

[50] Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. 1993. Mutation

analysis using mutant schemata. In ISSTA. Cambridge, MA, USA, 139–148.

[51] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer,

and Andreas Zeller. 2010. Automated fixing of programs with contracts. In ISSTA.
Trento, Italy, 61–72.

[52] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.

Automatically finding patches using genetic programming. In ICSE. Vancouver,
BC, Canada, 364–374.

[53] Rahulkrishna Yandrapally, Suresh Thummalapenta, Saurabh Sinha, and Satish

Chandra. 2014. Robust test automation using contextual clues. In ISSTA. San Jose,

CA, USA, 304–314.

[54] Guowei Yang, Sarfraz Khurshid, and Miryung Kim. 2012. Specification-based

test repair using a lightweight formal method. In FM. Paris, France, 455–470.

[55] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-

inducing input. TSE 28, 2 (2002), 183–200.

[56] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.

Ernst, and David Notkin. 2014. Empirically revisiting the test independence

assumption. In ISSTA. San Jose, CA, USA, 385–396.

[57] Celal Ziftci and Jim Reardon. 2017. Who broke the build?: Automatically identi-

fying changes that induce test failures in continuous integration at Google scale.

In ICSE. Buenos Aires, Argentina, 113–122.

555

http://intellijava.blogspot.com/2012/05/junit-and-java-7.html
http://intellijava.blogspot.com/2012/05/junit-and-java-7.html
http://www.java-allandsundry.com/2013/01/
https://coderanch.com/t/600985/engineering/Maintaining-order-JUnit-tests-JDK
https://coderanch.com/t/600985/engineering/Maintaining-order-JUnit-tests-JDK
https://github.com/elasticjob/elastic-job-lite
https://github.com
https://sites.google.com/view/flakytestdataset
https://sites.google.com/view/flakytestdataset
https://sites.google.com/view/ifixflakies
http://javaparser.org/
https://junit.org/junit4/javadoc/4.12/org/junit/Test.html
https://junit.org/junit4/javadoc/4.12/org/junit/Test.html
https://maven.apache.org
https://github.com/wildfly/wildfly
https://issues.jboss.org/browse/WFLY-11323
http://googletesting.blogspot.com/2008/04/tott-avoiding-flakey-tests.html
http://googletesting.blogspot.com/2008/04/tott-avoiding-flakey-tests.html
https://www.stickyminds.com/articles/fixing-brittleness-problem-gui-tests
https://www.stickyminds.com/articles/fixing-brittleness-problem-gui-tests

	Abstract
	1 Introduction
	2 Formalization of Tests
	2.1 Victim
	2.2 Brittle

	3 iFixFlakies
	3.1 Minimizer
	3.2 Patcher

	4 Evaluation Setup
	5 Evaluation
	5.1 RQ1: Characteristics of Tests
	5.2 RQ2: Characteristics of Patches
	5.3 RQ3: Performance

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

