
Inferring Project-Specific Bug Patterns

for Detecting Sibling Bugs
Guangtai Liang1, Qianxiang Wang1, Tao Xie2, Hong Mei1

1Institute of Software, School of Electronics Engineering and Computer Science
Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

Peking University, Beijing, 100871, China
{lianggt08, wqx, meih}@sei.pku.edu.cn

2Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
taoxie@illinois.edu

ABSTRACT

Lightweight static bug-detection tools such as FindBugs, PMD,

Jlint, and Lint4j detect bugs with the knowledge of generic bug

patterns (e.g., objects of java.io.InputStream are not closed in

time after used). Besides generic bug patterns, different projects

under analysis may have some project-specific bug patterns. For

example, in a revision of the Xerces project, the class field

“fDTDHandler” is dereferenced without proper null-checks, while

it could actually be null at runtime. We name such bug patterns

directly related to objects instantiated in specific projects as

Project-Specific Bug Patterns (PSBPs). Due to lack of such

PSBP knowledge, existing tools usually fail in effectively

detecting most of this kind of bugs. We name bugs belonging to

the same project and sharing the same PSBP as sibling bugs. If

some sibling bugs are fixed in a fix revision but some others

remain, we treat such fix as an incomplete fix. To address such

incomplete fixes, we propose a PSBP-based approach for

detecting sibling bugs and implement a tool called Sibling-Bug

Detector (SBD). Given a fix revision, SBD first infers the PSBPs

implied by the fix revision. Then, based on the inferred PSBPs,

SBD detects their related sibling bugs in the same project. To

evaluate SBD, we apply it to seven popular open-source projects.

Among the 108 warnings reported by SBD, 63 of them have been

confirmed as real bugs by the project developers, while two

existing popular static detectors (FindBugs and PMD) cannot

report most of them.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Software/Program Verification;

F.3.1 [Theory of Computation]: Specifying and Verifying and

Reasoning about Programs

General Terms

Languages, Reliability, Verification.

Keywords

Project-specific bug patterns, sibling-bug detection, incomplete

fixes.

1. INTRODUCTION
Lightweight static bug-detection tools such as FindBugs [4], PMD

[17], Jlint [7], and Lint4j [12] detect bugs with the knowledge of

generic bug patterns. For example, for Java projects under

analysis, there is a generic bug pattern: “objects of

java.io.InputStream are not closed in time after used”. As shown

in this example, most generic bug patterns are related to classes

provided by common third-party libraries (e.g., JDK for Java

projects), and are usually applicable for all projects based on the

same third-party libraries.

Besides generic bug patterns, different projects under analysis

may have various project-specific bug patterns. When writing

object-oriented code for a project, developers would define many

project-specific objects in their newly-written interfaces, classes,

or methods. Those user-defined objects may also need to be used

under some certain constraints. For example, in a revision of the

Xerces project, the object “fDTDHandler”, an object of the class

XMLDTDHandler (defined within Xerces), is dereferenced

without proper null-checks, while it could actually be null at

runtime. As another example, in a revision of the Tomcat project,

the local object “cometEvent”, an object of the class

CometEventImpl (defined within Tomcat), is not closed after used

in a certain method. We name such patterns directly related to

objects instantiated in specific projects as Project-Specific Bug

Patterns (PSBPs). Note that focused objects in PSBPs could also

be objects of classes defined in some third-party library. Existing

tools usually fail in detecting most of those bugs sharing PSBPs

due to the lack of related PSBP knowledge.

Bugs sharing the same PSBP are typically related, involved with

the same object of the same class. We name such bugs sharing the

same PSBP as sibling bugs in this paper. If some sibling bugs are

fixed in a fix revision but some others remain, such fix can be

considered as an incomplete fix. Recent studies have revealed that

incomplete bug fixes are common in bug-fixing processes. For

example, Kim et al. [9] identified that, among 26 (17) attempted

fixes, four (three) Null-Pointer-Exception (NPE) fixes are

incomplete in the ANT (Lucene) project.

Figure 1 shows an incomplete-fix example from the Xerces

project. The lines added by commits are in bold, underlined, and

labeled with the “+” symbols. In this example, the first fix

revision (Revision 318586) fixes an NPE bug on the class-field

object “fDTDHandler” in the method “setInputSource” of the

class XMLDTDScannerImpl. However, a sibling NPE bug on the

same object remains in the method “startEntity” of the same class.

Four months later, the remaining bug is finally fixed in a later

commit (Revision 318859).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ESEC/FSE'13, August 18–26, 2013, Saint Petersburg, Russia

Copyright 2013 ACM 978-1-4503-2237-9/13/08... $15.00.

Figure 1. An incomplete NPE fix from Xerces.

Based on such incomplete-fix phenomenon, we find that static-

analysis techniques actually could leverage existing fixes to infer

PSBPs and then detect their related remaining sibling bugs for the

projects under analysis. For example, based on the first fix shown

in Figure 1, we can infer a PSBP: “the class field ‘fDTDHandler’

could be null at runtime, but it is dereferenced without proper

null-checks”. Then, with the help of such inferred PSBP, we can

easily detect a sibling bug: “fDTDHandler” is still dereferenced

directly without a proper null-check in the method “startEntity”.

To automatically detect such remaining sibling bugs, in this paper,

we propose a PSBP-based approach and implement a static-

analysis tool called Sibling-Bug Detector (SBD). Given a fix

revision, SBD first leverages bug-pattern templates to effectively

identify its actually-fixed bugs, and then infers PSBPs based on

the identified bugs. After that, based on the inferred PSBPs, SBD

detects whether some other sibling bugs still remain. To evaluate

SBD, we apply SBD to seven popular well-maintained open-

source projects. SBD identifies 108 sibling bugs, and 63 of them

have been confirmed as real bugs by the project developers, while

two existing popular static bug-detection tools (FindBugs [4] and

PMD [17]) cannot report most of them.

This paper makes the following main contributions:

 The first to propose the concept of Project-Specific Bug

Patterns (PSBPs).

 An effective technique for inferring PSBPs based on bug-

pattern templates.

 A PSBP-based Sibling-Bug Detector (SBD), which applies

the inferred PSBPs to detect sibling bugs for the project

under analysis.

 Empirical evaluations on seven popular real-world open-

source projects to demonstrate the effectiveness of SBD.

2. APPROACH

This section presents the proposed approach. Figure 2 illustrates

the approach overview. Given a fix revision, our approach first

infers PSBPs based on its actual fix activities, and then applies the

inferred PSBPs to detect whether some other sibling bugs remain

in the project under analysis.

Section 2.1 describes the bug-pattern templates predefined for

different well-known bug types in our approach. Sections 2.2 and

2.3 describe the process of inferring project-specific bug patterns

and the process of detecting sibling bugs.

Figure 2. Approach Overview.

2.1 Defining Bug-Pattern Templates
Since directly inferring arbitrary PSBPs from a given fix revision

could be challenging, we leverage bug-pattern templates to help

infer PSBPs. In our approach, a bug-pattern template contains two

parts: featured statements and usage scenarios.

Featured statements are important statement changes (additions

and/or deletions) introduced by the given fix revision. Such

featured statements can provide strong hints to understand the

actually-fixed bug. Note that not all those statement changes

introduced by the fix revision are equally important to

characterize the actually-fixed bug. Usage scenarios are

characterized with Finite State Automata (FSA) to summarize

typical usage scenarios for the focused objects of a bug-pattern

template. Such usage scenarios can further help understand fix

revisions.

Figure 3 and Figure 4 visually illustrate the bug-pattern templates

currently implemented for our approach: the NPE template and

the resource-leak template. Their corresponding formal

specification files can be found on the project website1.

For the NPE template, its featured statements are the newly-added

null-check statements since developers typically introduce them

on the NPE-triggering objects to avoid NPE bugs. Meanwhile, its

usage scenarios summarize typical usage scenarios of NPE-

related objects. In usage scenarios, an expression between “[” and

“]” describes the precondition that the corresponding state-

transition event should satisfy, and a black-colored (gray-colored)

state represents a buggy (correct) state. The buggy usage scenario

for an NPE-related object “a” is that “a” is dereferenced directly

when “a” is null (from State 1 to State 4), while the correct usage

scenarios include (1) “a” is dereferenced when it is not null (from

State 1 to State 3); (2) “a” is first null-checked (from State 1 to

State 2) and then safely dereferenced (from State 2 to State 3).

For the resource-leak template, its featured statements include the

newly-added object-releasing method calls since developers

typically call such methods on resource objects to avoid leaks.

Meanwhile, its usage scenarios summarize the typical usage

scenarios of the leak-related objects. Its correct usage scenarios

include (1) the focused object “a” is first created by constructors

or other method calls (from State 1 to State 2), and then it is

safely released with a release method (from State 2 to State 3); (2)

“a” is first assigned and then returned as a return value (from

State 2 to State 3); (3) “a” is first assigned and then it will not be

closed since it is null (from State 2 to State 3). While its buggy

usage scenario is that after “a” is assigned, “a” is not closed and

also not returned when “a” is not null (from State 2 to State 4).

1 http://sa.seforge.org/SiblingBugDetetor

Figure 3. The bug-pattern template for NPE bugs.

Figure 4. The bug-pattern template for resource-leak bugs.

2.2 Inferring Project-Specific Bug Patterns
With the help of the predefined bug-pattern templates, we infer

PSBPs based on each given fix revision with three steps: featured-

statement identification (Section 2.2.1), focused-path extraction

(Section 2.2.2), and pattern generation (Section 2.2.3).

2.2.1 Featured-Statement Identification
Given a fix revision, the first step of our PSBP inference is to

identify its featured statements among its newly-added statements

(currently we do not handle fix revisions containing only

statement deletions, which we plan to support in future work). In

this step, we first retrieve all of its newly-added statements. Then,

we try to syntactically match them with the featured statements

defined in each template. Based on such matching, we treat the

matched statements as the featured statements of the given fix

revision.

Figure 5 shows another NPE fix example, which is from the fix

revision (Revision 657135) on the class file “ListLevel.java” in

the POI project. In Figure 5, the added/deleted lines are labeled

with the “+”/“-” symbols. For this example, we first identify its

newly-added statements: Lines 224-228 and 232. Then, we try to

match each of them with the predefined featured statements of

each bug-pattern template. Based on such matching, we identify

“if (_numberText == null)” (Line 224) as a featured statement

since it matches with the featured statement “if (a == null)” of

the NPE template. Meanwhile, we treat _numberText as its

focused object.

2.2.2 Focused-Path Extraction
In this step, guided by each featured statement (identified by the

previous step), we first extract a limited number of its covered

paths (e.g., up to the first five traversed paths that include the

featured statement), and then slice each of them based on the

variable corresponding to the focused object of the featured

statement. In this step, we treat such sliced paths covered by

featured statements as focused paths.

Figure 5. An NPE fix example from the fix revision (Revision

657135) on the file “ListLevel.java” in POI.

Algorithm 1 shows the algorithm for extracting focused paths. It

takes the revision number Rev of a fix revision under analysis and

the locations L of the featured statements of the fix revision as

inputs, and produces the extracted focused paths P as output.

In the algorithm, we first locate the methods where the featured

statements reside as the featured methods M (Line 1). For each

featured method m in M, we first generate its control-flow graph

(Line 3). After that, for each featured statement sf in m, we extract

up to the first five traversed paths of its covered paths as Pcovered

(Line 5), and then we get the focused object Os of sf (Line 6).

Based on Os, we slice each of its covered paths as a focused path

pfeatured without considering control dependencies (Line 8):

starting with sf, we first slice backward the path portion preceding

sf and then slice forward the path portion succeeding sf; the

backward/forward slicing is based on Os. During the intra-

procedural slicing process, the statements irrelevant to Os (with

respect to the concept of slicing) are discarded, resulting in that

each focused path includes only the statements relevant to Os.

Finally, we save the extracted focused path pfeatured into P (Line 9).

Figure 6. The extracted focused path for the fix example

shown in Figure 5.

Figure 6 shows an example about the focused path extraction for

the fix revision shown in Figure 5. In it, one of the paths covered

by the featured statement “if (_numberText == null)” (Line 224)

is illustrated. The internal flow edges of the path are labeled with

numbers among the control-flow graph of the example method

“toByteArray”. Based on the focused object O_numberText of the

featured statement, we slice the covered path as a focused path.

The focused path includes only five statements (underlined in

Figure 6) and their line numbers are 224, 228, 230, 232, and 236

(the return statements would be forcedly kept during the slicing).

2.2.3 Pattern Generation
In this step, we first try to match each focused path with the

predefined usage scenarios of each bug-pattern template. Based

on such matching, we further confirm whether the given fix

revision fixes some real bug instance(s) conforming to some

certain bug-pattern template(s). Based on the confirmed bug

instances, we then generate project-specific bug patterns

correspondingly.

Algorithm 2 shows the pattern-generation algorithm. In the

algorithm, we take a focused path P and its included featured

statement Sf as inputs, and produce the generated project-specific

bug patterns PSBPs as output. In particular, we first load the

proper bug-pattern template based on the featured statement Sf

(Line 1). For example, if Sf is a null-check statement, we would

load the predefined NPE template as BPT since Sf is a featured

statement for NPE bugs. After that, guided by the usage scenarios

Sce of the loaded template BPT, we track the usage states of the

objects used in P (Lines 2-25). In the state-tracking process, we

set the initial state of each focused object as State 1, and then

update its states by visiting forward the statements in P.

For each statement s in P, we repeat the same analysis process as

follows. If statement sp preceding s tries but fails to create an

object o (the flow edge between these two statements in the CFG

is an exception-throwing edge), the effects of sp impacting

previously on the points-to information and the usage state of o

are actually invalid. In such case, we would roll back such invalid

effects (Lines 3-5). If s dereferences an object o, we use the

dereference event e and its current precondition to update the

usage state of o (Lines 6-8). In the algorithm, such state-updating

processes are all guided by Sce: we determine whether and how to

update the state of o by checking whether and how the

corresponding state of Sce is transited under the same certain

event and precondition. If s calls a method m on an object o, we

use the method-call event e and its current precondition to update

the usage state of o (Lines 9-11). If s makes an equality check (i.e.,

using operator “= =”) on an object o, we first check whether the

subsequent statement of s is located in the false branch of s. If yes,

we negate the equality operator of the if statement (Lines 12-15).

After that, we use the equality-check event e and its current

precondition to update the usage state of o (Lines 16). If s assigns

some value to an object o, we first update points-to information

according to s, and then use the assignment event e to update the

usage state of o (Lines 18-21). If s returns an object o, we use the

return event e and its current precondition to update the usage

state of o (Lines 22-24).

After analyzing the statements in P, for each focused object o, we

check whether it is in a “correct” usage state at the exit of P and

also whether its state-transition process involves at least one

featured statement (Lines 26-27). If yes, we affirm that a bug

instance on o conforming to BPT is really fixed in the given path.

Based on such identified real bug instance, we further generate a

project-specific bug pattern BSBP by concretizing BPT with o,

and save it into BSBPs.

Note that, when Sf calls a method m, we would also generate

project-specific bug patterns by concretizing BPT with the inner2

and outer2 objects of o that also define a method named as m. For

example, the typical featured statement for the resource-leak bugs

calls the method “close()”. If the given fix revision fixes a

resource-leak bug on a resource object ob, we generate project-

specific bug patterns not only for ob, but also for its inner and

outer objects that also define the same method (named as

“close()”). The reason is that once a resource object is closed, its

inner and outer resource objects usually should also be closed

safely (sharing the same bug pattern).

For the fix example shown in Figure 5, we would match its

focused path shown in Figure 6 with the usage scenarios of the

NPE template. The focused path includes five statements (Lines

224, 228, 230, 232, and 236). After visiting Line 224, we update

the usage state of the object O_numberText that the variable

_numberText points to as State 2 since O_numberText is null-checked

in the statement. After visiting Line 228, we update the usage

state of O_numberText as State 3 since O_numberText is dereferenced in

the statement. However, visiting the remaining statements does

not change the usage state of O_numberText further. Therefore,

O_numberText is finally in State 3, a “correct” usage state, at the exit

of the focused path. Therefore, we affirm that the fix example

fixes an NPE bug on O_numberText. Based on such bug instance, we

concretize the NPE template with O_numberText to generate a project-

specific bug pattern (shown in Figure 7): “the class field

2 When an object o is initiated, if another object o' is assigned to a

field of o, we say that o' is nested into o, o nests o', o' is an inner

object of o, and o is an outer object of o'.

‘_numberText' could be null at runtime and dereferencing it

without proper null-checks would lead to NPE bugs”.

2.3 Detecting Sibling Bugs
In this phase, based on the inferred PSBPs, we detect sibling bugs

remaining in the same project under analysis.

To collect basic program information for sibling-bug detection,

we first conduct some basic analyses: object-nesting analysis,

points-to analysis, and precondition analysis.

The object-nesting analysis performs a forward intra-procedural

dataflow analysis to identify the information on nesting2

relationships between objects. The points-to analysis performs a

forward inter-procedural context-sensitive dataflow analysis to

identify the points-to information for all reference variables. The

points-to information of a variable provides the potential object(s)

that it may point to, its potential actual type(s), and its potential

aliases. The precondition analysis performs a forward intra-

procedural dataflow analysis to identify the execution

preconditions (i.e., groups of predicates) for each statement.

Sibling-bug detection performs a flow-sensitive inter-procedural

CFG-based dataflow analysis, whose algorithm is similar to the

defect-analysis algorithm described in our previous work [11]. By

matching CFG paths of the method under analysis with the usage

scenarios Sce of each inferred PSBP, we track the usage state of

each focused object at any path point, guided by Sce. If any

focused object is in a buggy state at the exit of a path, we treat the

path as a buggy one and then report a sibling-bug warning for the

focused object.

For each method under analysis, we use a forward worklist

algorithm [14] over its CFG blocks to iteratively compute a fixed

point over the usage states of all focused objects. In order to

flexibly control the precision-cost tradeoff, we define the

maximum depth of inter-procedural analysis as maxDepth (=3)

and the maximum number of intra-procedural iterations as

maxIter (=10). Before reaching the fixed point, we iteratively visit

CFG blocks in the reverse-post order until maxIter is reached.

For each block b of CFG, we update its inflow value Db
in, the

possible usage states of all focused objects at the inflow side of b,

by merging all the outflow values of its inflow blocks. However,

if some inflow block tries to create an object o but fails, we would

roll back its previous impact on the points-to information and the

usage state of o. After computing Db
in, we visit each statement s

in b forward to propagate their impacts on Db
in guided by Sce.

In this process, we propagate impacts for five types of statements:

the method-call statement, the equality-check statement, the

object-dereference statement, the assignment statement, and the

return statement. Moreover, we propagate the impact of a

statement only if its precondition does satisfy the required effect-

taking precondition. In our predefined templates, a state-transition

statement can be assigned with an effect-taking precondition, only

under which the statement takes effect. For example, in the

resource-leak bug-pattern template, the return statement takes

effect only when the focused object is null.

After the analysis for each method under analysis, we check

whether any focused object o is still in a buggy state at the exit of

the method. If yes, we report a sibling-bug warning for the

corresponding buggy path.

To improve the efficiency, we detect sibling bugs within proper

scopes: if the focused object ob of PSBP is a local object of a

specific method, we detect bugs only within the method; if it is a

private class field, we detect bugs within its belonging class file;

if it is a protected class field, we detect bugs within its belonging

package; if it is a public class field, we detect within the whole

project under analysis.

Figure 7. The inferred project-specific NPE bug pattern from

the fix revision shown in Figure 5.

3. EVALUATIONS
Based on the proposed approach, we implemented a PSBP-based

Sibling-Bug Detector (SBD) and conduct evaluations on it. This

section presents our evaluation setup and evaluation results on

SBD.

3.1 Evaluation Setup
We design our evaluations to address the following research

questions:

 RQ1 (detection effectiveness): Can SBD effectively detect

sibling bugs for real-world projects?

 RQ2 (tool complementarity): How high percentage of true

SBD warnings cannot be detected by traditional bug

detectors (e.g., FindBugs and PMD)?

 RQ3 (bug fixability): How difficult is it to fix SBD

warnings?

In our evaluations, we select seven projects including Lucene,

Tomcat, ANT, James, Maven, Xerces, and POI as the projects

under analysis. We choose these projects because they are

commonly used in the literature [8, 9, 10, 19, 27] and they are

relatively mature and well-maintained open-source projects under

the Apache Software Foundation.

To detect sibling bugs for these projects, we predefine two bug-

pattern templates in SBD: the NPE bug-pattern template and the

resource-leak bug-pattern template (shown in Section 2.1).

We predefine these two bug-pattern templates for two reasons.

First, these two types of bugs tend to introduce multiple fixes [30].

For a resource-leak or NPE bug, its focused object can potentially

leak or be null-dereferenced in many code locations, resulting in

many sibling bugs. Therefore, fixing a resource-leak or NPE bug

completely usually needs to handle all of its sibling bugs.

However, developers can easily miss fixing some sibling bugs,

resulting in submitting incomplete fix revisions. Second,

traditional bug detectors are usually ineffective in detecting

resource-leak or NPE bugs. Theoretically, all kinds of objects

(resource objects) instantiated in any method under analysis may

throw null-pointer exceptions (lead to resource leaks). However,

in real-world projects, only a certain subset of objects (resource

objects) should be null-checked (released). Without such concrete

knowledge, traditional bug detectors usually produce too many

false negatives (shown in Section 3.3) as well as false positives.

3.2 Detection Effectiveness
In this section, we evaluate the detection effectiveness of SBD by

measuring the number of sibling bugs that SBD can effectively

detect.

Figure 8 shows the evaluation methodology. Guided by the fix

revisions whose log messages contain the keyword “NPE” or

“resource leak”, we randomly select 50 NPE fix revisions and 50

resource-leak fix revisions from the source-code repositories of

the subjects (during this process, if a fix revision involves

multiple changed files, we treat each file change as a standalone

fix revision). Based on the selected fix revisions, we run SBD to

detect sibling bugs within proper scopes. Then we manually

verify the reported sibling-bug warnings based on the following

process. We first check whether they have been fixed in

subsequent historical revisions. If some warning has been fixed,

we treat it as a true warning. If some warning has not been fixed

and remains in the head revision, we report it as a new bug issue

to the project community. If a reported warning is confirmed or

fixed by developers, we also treat it as a true warning.

Figure 8. Evaluation methodology.

Table 1. The result summary for the SBD warnings on the 100

selected fix revisions on NPE or resource-leak bugs.

Bug Type
Sibling-Bug Warnings

All Already-Fixed Reported Confirmed

NPE 41 8 26 7

Resource

Leak
67 11 48 37

All 108 19 74 44

Table 1 summarizes the SBD warnings on the subjects. For each

bug type, Columns “All”, “Already-Fixed”, “Reported”, and

“Confirmed” represent the total number of the related warnings,

the number of the related warnings that have been already fixed

by subsequent historical revisions in source-code repositories, the

number of the related warnings that are reported as new bug

issues, and the number of the related newly-reported warnings

that have been confirmed or fixed by developers, respectively.

SBD totally reports 41 NPE warnings. Through manual

verification, we confirm that eight of them have already been

fixed in subsequent historical revisions. We report 26 warnings

remaining in head revisions as new bug issues to the related

project issue-tracking systems. So far, 7 of the 26 newly-reported

issues have been confirmed or fixed by developers. Similarly,

SBD reports 67 resource-leak warnings. We confirm that 11 of

these 67 warnings have already been fixed in subsequent revisions.

We report 48 warnings remaining in head revisions as new issues.

Among the 48 newly-reported warnings, 37 of them have been

confirmed or fixed by their developers.

Table 2 shows the details of the already-fixed warnings. Columns

“Bug Type”, “Subject”, and “Fixed Location” present the fixed

bug type, the project name, and the fixed location of each fix

revision under analysis, respectively. Column “# of SBD

Warnings” presents the number of the warnings that are reported

by SBD on each fix revision. Column “Already Fixed in” shows

information about the subsequent revision(s) that the

corresponding warnings were fixed in. For example, the revision

886113 of the POI project fixed an NPE bug in the method

“toString” of the class “LbsDataSubRecord”. Based on such

revision, SBD reports one NPE warning, and the warning has

been fixed by a subsequent revision (Revision 892461).

Table 3 shows the details of the 42 bug issues that we newly

report for the 74 SBD warnings (note that we may report several

warnings in an issue) and their resolution statuses. For each

subject, Column “#W” presents the number of the SBD warnings

that still exist in the head revision, Column “Reported-Issue ID”

presents the ID information of the issue that we report for the

corresponding warnings, and Column “Status” presents the

resolution status of the related issue.

Table 2. The 19 already-fixed SBD sibling-bug warnings.

Fix Revision # of SBD

Warning

s

Already Fixed in
Bug Type Subject Fixed Location

Null

Pointer

Exception

(NPE)

POI-886113 LbsDataSubRecord::toString 1 rev892461

POI-657135 ListLevel::getSizeInBytes 1 rev1022456

Xerces-318356 AbstractDOMParser::startDocument 2 rev318567

Xerces-318586 XMLDTDScannerImpl::setInputSource 1 rev318859

Lucene-476359 SegmentInfos::run 2 rev602055

Maven-562710 AbstractJavadocMojo::getSourcePaths 1 rev562714

Resource

Leak

Xerces-319282 XIncludeHandler::handleIncludeElement 1 rev319304

Tomcat-423920 WebappClassLoader::findResourceInternal 1 rev915581

Tomcat-423920 StandardServer::await 1 rev1066310

Maven-740164 LatexBookRenderer::writeSection 1 rev1003021

James-107920 MimeMessageJDBCSource::getInputStream 2 rev107975

ANT-269449 FixCRLF::execute 1 rev269909

ANT-269827 Replace::processFile 2 rev269961

ANT-270637 ReplaceRegExp::doReplace 2 rev272826,905179

Table 3. The 74 newly-reported SBD sibling-bug warnings (reported in 42 bug issues).

Fix Revision
#W Reported-Issue ID Status

Bug Type Subject Fixed Location

Null

Pointer

Exception

(NPE)

POI-1142762 CharacterRun::getFontName 1 52662 Fixed[rev1243907]

POI-1171628 MAPIMessage::set7BitEncoding 1 52664 Fixed[rev1244449]

POI-1179452 ZipFileZipEntrySource::close 2 52665 Fixed[rev1244450]

Xerces-319317 XSWildcardDecl::getNsConstraintList 1 XERCESJ-1551 Need Test Case

Xerces-928735 RangeToken::dumpRanges 3 XERCESJ-1552 Need Test Case

Xerces-320527 IdentityConstraint::getSelectorStr 1 XERCESJ-1554 Confirmed (Already Avoided)

Lucene-219387 MultipleTermPositions::skipTo 3 LUCENE-3779 In Progress

Lucene-407851 ParallelReader::getTermFreqVector 1 LUCENE-3780 In Progress

Lucene-407851 ParallelReader::next,read,skipTo,close 2 LUCENE-3781 In Progress

Lucene-499089 Directory::clearLock 1 LUCENE-3782 In Progress

Lucene-698487 NearSpansUnordered::isPayloadAvailable 7 LUCENE-3783 In Progress

Maven-554202 AbstractJavadocMojo::getSourcePaths 2 MJAVADOC-342 Fixed[rev1385200]

Maven-712569 WebappStructure::getDependencies 1 MWAR-275 In Progress

Resource

Leak

ANT-272185 XMLResultAggregator::writeDOMTree 1 52738 Fixed[rev1294340]

ANT-272583 Javadoc::execute 1 52740 Fixed[rev1294345]

ANT-269827 Replace::execute 4 52742 Fixed[rev1294360]

ANT-270637 ReplaceRegExp::doReplace 1 52743 Fixed[rev1294780,rev1297127]

James-108172 NNTPHandler::handleConnection 3 JAMES-1381 Confirmed

James-108172 POP3Handler::handleConnection 2 JAMES-1382 Confirmed

James-108172 RemoteManagerHandler::handleConnection 3 JAMES-1383 Confirmed

James-108172 SMTPHandler::handleConnection 5 JAMES-1384 Confirmed

Tomcat-730178 Catalina::stopServer,load 4 52724 Fixed[rev1297209]

Tomcat-423920 MemoryUserDatabase::open 1 52726 Fixed[rev1297717]

Tomcat-423920 HostCong::deployWAR 1 52727 Fixed[rev1297722]

Tomcat-640273 CometConnectionManagerValve::lifecycleEven

t

1 52729 Fixed[rev1297729]

Tomcat-1043157 JDTCompiler::getContents 1 52731 Fixed[rev1297769]

Tomcat-1043157 ExpressionFactory::getClassNameServices 1 52732 Fixed[rev1297768]

Tomcat-424429 NioEndpoint::run 1 52718 In Progress

Tomcat-423920 WebappClassLoader::validateJarFile 1 52719 Fixed[r1298140, r1304483]

Tomcat-777567 ManagerBase::run,setRandomFile 2 52720 Confirmed

Tomcat-423920 StandardContext::cacheContext 1 52721 No Need to Fix (Unused code now)

Tomcat-412780 HTMLManagerServlet::cacheContext 1 52722 Invalid

Tomcat-907502 StandardManager::doUnload 2 52723 Fixed[rev1299036]

Xerces-319937 ObjectFactory::findJarServiceProvider 1 XERCESJ-1556 In Progress

Maven-935344 PmdReport::execute 1 MPMD-144 Fixed[rev1341161]

Maven-729532 PmdReportTest::readFile 1 MPMD-145 Fixed[rev1340576]

Maven-730089 CpdReport::writeNonHtml 1 MPMD-146 Fixed[rev1340575]

Maven-1134539 Verifier::loadFile,displayLogFile 2 MVERIFIER-12 In Progress

Maven-740164 LatexBookRenderer::writeSection 2 DOXIA-461 In Progress

Maven-1003021 XdocBookRenderer::renderSection 1 DOXIA-464 In Progress

Maven-740164 XHtmlBookRenderer::renderBook 1 DOXIA-462 In Progress

Maven-1085807 TestUtils::readFile 1 MPLUGINTESTING-20 In Progress

For example, for the fix revision (Revision 1171628) of the POI

project, there is one SBD warning that still exists in the head

revision. We report it as a new issue with ID as 52664. Based on

the issue, a POI developer fixes it with a new fix revision

(Revision 1244449) and also expresses his appreciation to us on

reporting the issue. For the warnings in Xerces-320527 and

Tomcat-777567, the developers reply that the warnings have

already been avoided by historical code changes, so there is no

need to fix them in the head revisions.

However, some warnings are not confirmed. For Xerces-319317,

we report one warning but the Xerces developers require us to

Table 4. Detection-effectiveness results of FindBugs and PMD on the SBD warnings already fixed or confirmed by developers.

Fix Revision SBD FindBugs PMD
Bug Type Subject Fixed Location

Null

Pointer

Exception

(NPE)

POI-886113 LbsDataSubRecord::toString 1

POI-657135 ListLevel::getSizeInBytes 1

POI-1142762 CharacterRun::getFontName 1

POI-1171628 MAPIMessage::set7BitEncoding 1

POI-1179452 ZipFileZipEntrySource::close 2

Xerces-318356 AbstractDOMParser::startDocument 2

Xerces-318586 XMLDTDScannerImpl::setInputSource 1 1

Xerces-320527 IdentityConstraint::getSelectorStr 1

Lucene-476359 SegmentInfos::run 2

Maven-562710 AbstractJavadocMojo::getSourcePaths 1

Maven-554202 AbstractJavadocMojo::getSourcePaths 2

Resource

Leak

ANT-269449 FixCRLF::execute 1

ANT-269827 Replace::processFile 6

ANT-270637 ReplaceRegExp::doReplace 3 2

ANT-272185 XMLResultAggregator::writeDOMTree 1

ANT-272583 Javadoc::execute 1

Xerces-319282 XIncludeHandler::handleIncludeElement 1

Tomcat-423920 WebappClassLoader::findResourceInternal 1

Tomcat-423920 StandardServer::await 1

Tomcat-423920 WebappClassLoader::validateJarFile 1

Tomcat-423920 StandardContext::cacheContext 1 1

Tomcat-423920 MemoryUserDatabase::open 1 1

Tomcat-777567 ManagerBase::run,setRandomFile 2

Tomcat-907502 StandardManager::doUnload 2 2

Tomcat-730178 Catalina::stopServer,load 4 2 1

Tomcat-640273 CometConnectionManagerValve ::lifecycleEvent 1

Tomcat-1043157 JDTCompiler::getContents 1

Tomcat-1043157 ExpressionFactory::getClassNameServices 1

Maven-740164 LatexBookRenderer::writeSection 1

Maven-935344 PmdReport::execute 1 1

Maven-729532 PmdReportTest::readFile 1

Maven-730089 CpdReport::writeNonHtml 1 1

James-107920 MimeMessageJDBCSource::getInputStream 2 1

James-108172 NNTPHandler::handleConnection 3

James-108172 POP3Handler::handleConnection 2

James-108172 RemoteManagerHandler::handleConnection 3

James-108172 SMTPHandler::handleConnection 5

Total # of detected SBD warnings already fixed or confirmed 63 5 8

provide test cases to demonstrate the related bug’s existence at

runtime. For the warning in Tomcat-412780, a Tomcat developer

resolves it as invalid because he considers that the corresponding

resource leak would never happen at runtime. Other warnings are

still in process and have not been resolved by their developers yet.

In summary, as shown in Table 1, SBD reports a total of 108

sibling-bug warnings for all subjects. Among these 108 warnings,

19 warnings have already been fixed in their subsequent historical

revisions. Such result directly confirms that these warnings are

true. In addition, 44 of the 74 newly-reported SBD warnings have

also been confirmed or fixed by their developers. Note that

although open-source projects are usually well maintained, SBD

reports 44 new real bugs in their head revisions. Overall, at least

58.3% ((19+44)/108) of the SBD warnings are true. Table 2-3

indicate that the remaining sibling bugs are common for the two

well-known bug types, and SBD can effectively locate remaining

sibling bugs for these well-known bug types. Table 3 shows that

28 SBD warnings have been fixed by community developers with

new fix revisions (i.e., the warnings shown in the rows with

Column “Status” as “Fixed[revision_no]”; note that a row,

representing a newly-reported issue, may correspond to multiple

warnings), 16 warnings have been confirmed as real bugs (i.e., the

warnings shown in the rows with Column “Status” as

“Confirmed”), and 13 issues are still in progress of being

investigated (i.e., the issues shown in the rows with Column

“Status” as “In Progress”). Such result indicates that at least

59.5% ((28+16)/74) of the newly-reported warnings are true.

Among the true warnings, about 63.6% (28/(28+16)) of them

have been fixed by community developers.

The evaluation results show that SBD can effectively locate

sibling bugs for real-world projects based on their existing fix

revisions. With the help of SBD, developers can fix bugs more

comprehensively and systematically.

3.3 Tool Complementarity
Section 3.2 shows that SBD can effectively detect NPE and

resource-leak sibling bugs. In this section, we investigate how

well SBD complements two existing widely-used tools FindBugs

and PMD by measuring how high percentage of true SBD

warnings cannot be detected by these two existing bug detectors.

In this evaluation, we first run FindBugs and PMD on the subjects

to collect their reported NPE and resource-leak warnings. Then,

we manually check whether each of the true SBD warnings is also

reported by FindBugs or PMD. During this process, we consider

only the already-fixed or confirmed SBD warnings (shown in

Tables 2 and 3) as true SBD warnings.

Table 4 summarizes the number of the true SBD warnings for

each related fix revision, and also the number of the true SBD

warnings that FindBugs or PMD also reports for the related fix

revision (when the number is 0, we leave the table cell as empty).

For example, for James-107920, SBD reports 2 true NPE

warnings for the class file “MimeMessageJDBCSource.java”.

However, FindBugs reports none of the 2 true warnings, and

PMD reports only 1 of the 2 true warnings. For Tomcat-730178,

SBD reports 4 true resource-leak warnings, while FindBugs

reports only 2 of the 4 true warnings and PMD reports only 1 of

the 4 true warnings.

In total, FindBugs and PMD report only 13 (5+8) of the 63 true

SBD warnings. Among the true SBD warnings, FindBugs cannot

report 92.1% ((63-5)/63) of them and PMD cannot report 87.3%

((63-8)/63) of them. Such result shows that SBD is

complementary with these existing tools since most of the true

warnings that SBD reports cannot be detected by these existing

tools.

3.4 Bug Fixability

In this section, we investigate the difficulty to fix SBD warnings.

The difficulty of fixing bugs is indeed case by case. However, we

believe that fixing SBD warnings would not be difficult, since

these warnings are detected based on existing fixes, which can

provide good references to fix these warnings.

This section uses two examples of actual fixes to show the

simplicity of the fixing process for SBD warnings. For the

example from the POI project, Figure 9 shows the first fix

revision, the sibling bug identified by SBD, and the second fix

revision. The added lines of each revision are in bold and labeled

with the “+” symbols while the deleted lines are labeled with the

“-” symbols. The first fix revision fixes an NPE bug on the class

field “nameIdChunks” in the method “set7BitEncoding”. Such fix

indicates that “nameIdChunks” could be null at runtime and

should be null-checked before dereferenced. However, it is still

dereferenced directly without a null-check in the method

“has7BitEncodingStrings”. Based on such fix revision, SBD

reports an NPE warning on the “nameIdChunks” field. After we

report the warning as a new issue for the POI project, a POI

developer fixes it with a new fix revision by simply committing

the same fix activities as the first fix. Figure 10 shows another

example from Tomcat. The first fix revision fixed a resource-leak

bug on the local object “cometEvent” in the method

“lifeCycleEvent”. However, when the statements in the TRY

block (e.g., commetEvent.setEvent Type(…)) throw exceptions,

the statement “cometEvent.close()” would have no chance to be

executed. In such cases, the “cometEvent” object would leak.

Based on such fix revision, SBD reports a resource-leak warning

on “cometEvent”. After we report the warning as a new issue for

the Tomcat project, a Tomcat developer fixes it by just simply

closing the resource object “cometEvent” in the FINALLY block

instead of the TRY.

These two examples of actual fixes show that the fixing process

on a SBD warning would not be difficult: to fix a SBD warning,

developers tend to easily imitate one of its related existing fixes,

by simply replicating it or making a similar fix around the

reported location(s).

Figure 9. An example of actual fixes from the POI project on

an NPE sibling-bug warning reported by SBD.

Figure 10. An example of actual fixes from the Tomcat project

on a resource-leak sibling-bug warning reported by SBD.

4. THREATS TO VALIDITY
In this section, we summarize main threats to external, internal,

and construct validity of our evaluations. There are two main

threats to external validity. The first one is about the

representativeness of the subject projects that we select in the

evaluations. The results of our evaluations may be specific only to

these projects. To reduce this threat, we choose different types of

projects as subjects and evaluate SBD on multiple subjects. The

second one is about the extendability of SBD on other bug types.

In the evaluations, we show that SBD can effectively detect

sibling bugs for NPE bugs and resource-leak bugs. However, SBD

may not be applied easily for other bug types. To reduce this

threat, we separate the specification process of bug-pattern

templates for different bug types from the detection-logic

implementation in SBD. We also propose a specification notation

for bug-pattern templates, and such notation is applicable or can

be easily extended to support other bug types (e.g., array index

out-of-bounds, uninitialized variable reads, and unmatched

lock/unlock pairs). Based on the notation, we define a bug-pattern

template for each bug type with a standalone XML file in SBD.

The main threat to internal validity is about the predefined bug-

pattern templates for NPE and resource-leak bugs. In the

evaluations, we manually summarize the featured statements and

the usage scenarios for the two well-known bug types. However,

our summarization may not be complete or accurate enough. To

reduce this threat, we carry out the summarization by studying

plenty of actual fix revisions for NPE and resource-leak bugs. The

main threat to construct validity is that, in the evaluations, we

treat a warning as a true one if a real developer commits an actual

fix on it. However, since typical fixes for some warnings are quite

simple (e.g., adding a guarding if statement or invoking a

resource-releasing method on a resource object in a finally block)

and harmless, developers may choose to “fix” these warnings

conservatively even if the “fixes” could be redundant or

unnecessary. In such cases, the related warnings would be

mistreated as true ones.

5. RELATED WORK

Identification of Incomplete Fixes. Kim et al. [9] propose an

approach to identify incomplete fixes for exception bugs (e.g.,

null-pointer-exception bugs), with the concept of “bug

neighborhood”. A bug neighborhood refers to a set of related

flows of invalid values [9]. Their approach requires external users

to pinpoint concrete statement pairs that can introduce bugs in a

program under analysis. Based on each statement pair, their

approach detects whether the statement pair has been fixed in the

modified version of the program. In contrast, our approach does

not require users to manually pinpoint anything, and our approach

can systematically detect remaining sibling bugs for subject

programs. In addition, our approach is general-purpose and

extensible for various well-known bug types.

Mining of Generic Bug Patterns. Various specification-mining

approaches [28, 29, 31] have been proposed in the literature.

Specifications mined by these approaches can be used to guide

the bug-pattern extraction: each violation to a specification can be

treated as a bug pattern. Existing approaches mine specifications

for API libraries mainly from three kinds of sources: API client

programs, API library source code and historical revisions, and

API library documents. However, the specifications that these

approaches can produce are mainly about the usage rules of

classes defined in third-party libraries. Specifications that are

mined by these approaches on a certain library would be

applicable for all programs relying on the same library. Therefore,

these approaches are suitable for mining generic bug patterns. In

contrast, our PSBP-inference process aims to infer project-

specific bug patterns, which are directly related to objects

instantiated in specific projects under analysis.

Static Detection of NPEs and Resource Leaks. Most existing

static bug-detection tools (e.g., ESC/Java [3], FindBugs [4], PMD

[17], JLint [7], and Lint4J [12]) also provide NPE and resource-

leak detectors. Among them, ESC/Java is a specification-based

violation checker, which requires specifications to be manually

provided by developers. ESC/Java tries to find all violations to a

specified null/non-null annotation, and usually produces too many

false positives. Other tools use typical static-analysis techniques

to detect NPE or resource-leak warnings based on generic defect

patterns. These tools usually report too many false positives or

negatives. Besides these popular tools, various research

approaches on detecting NPE and resource-leak bugs have been

proposed. Spoto et al. [23] propose a technique for inferring non-

null annotations to improve the precision of their null-pointer

analysis. Their inference of non-null annotations is based on some

heuristics (e.g., the initialized instances or static fields are treated

as always non-null). Hovemeyer et al. [6] propose an approach

based on non-standard NPE analysis. In their approach, they also

use annotations as a convenient lightweight mechanism to

improve the precision of their analysis. Weimer and Necula [27]

propose an approach for detecting system resource-leak problems

(in Java programs) resulted from incorrect exception handlings.

Their approach includes an unsound but simple path-sensitive

intra-procedural static analysis to find resource leaks. Shaham et

al. [20] propose a conservative static analysis based on canonical

abstraction to verify the safety of the synthesized free operations

for dynamically-allocated objects. Their analysis could be used to

automatically insert resource-releasing operations to prevent

resource leaks. Charem and Rugina [1] propose a similar

approach with a less-expensive analysis. Dillig et al. [2] propose

the CLOSER approach to perform a modular and flow-sensitive

analysis to determine “live” system resources at each program

point. Torlak et al. [25] propose a scalable flow-sensitive context-

sensitive inter-procedural resource-leak analysis, which relies on

less-expensive alias abstractions. Compared with these

approaches, our approach infers PSBPs from actual fix revisions,

and then applies the inferred PSBPs to detect the remaining

sibling bugs.

6. CONCLUSION
In this paper, we have proposed a general-purpose approach for

detecting sibling bugs for various bug types, and implemented a

tool called Sibling-Bug Detector (SBD). Based on existing fix

revisions, our approach first automatically infers Project-Specific

Bug Patterns (PSBPs) hidden and reflected by the fix revisions,

and then applies the inferred PSBPs to detect their related

remaining sibling bugs for the projects under analysis. Through

evaluations, we have shown that SBD effectively reports 63 true

sibling-bug warnings for seven real-world open-source projects,

while two existing popular static bug detectors (FindBugs and

PMD) cannot report most of them.

Although our approach has been shown to be effective, the

approach still has some limitations. First, our proposed

specification notation for bug-pattern templates is general-purpose

for bug types involving only one single object. Currently, for each

bug type, we use a Finite State Automaton (FSA) to summarize

the typical usage scenarios of its focused object. However, once a

bug type involves multiple interacting objects (e.g., an array list

of java.util.ArrayList cannot be updated when it is being

traversed by an iterator of java.util.Iterator) [13], our approach is

not applicable. Second, in SBD, the predefined bug-pattern

templates are still limited. With more pattern templates predefined

and applied, the generality of SBD could be further improved.

To make SBD more practical, we plan to extend SBD to locate

sibling bugs for more well-known bug types (e.g., data race, dead

lock, and buffer overflow) in our future work. During this process,

we plan to keep exploring better approaches to specifying bug-

pattern templates, inferring PSBPs, and detecting sibling bugs.

7. ACKNOWLEDGMENTS
The authors from Peking University are sponsored by the

National Basic Research Program of China (973) (Grant No.

2009CB320703, 2011CB302604), the National Natural Science

Foundation of China (Grant No. 61121063, 61033006), the High-

Tech Research and Development Program of China (Grant No.

2012AA011202, 2013AA01A213) and the Key Program of

Ministry of Education, China under Grant No. 313004. Tao Xie’s

work is supported in part by NSF grants CCF-0845272, CCF-

0915400, CNS-0958235, CNS-1160603, an NSA Science of

Security Lablet grant, a NIST grant, and NSF of China No.

61228203. We are thankful for the tremendous advice from Sung

Kim in the initial phase of this work.

8. REFERENCES
[1] S. Cherem and R. Rugina. Region analysis and

transformation for Java programs. In Proc. of the 4th Int.

Symposium on Memory Management, ISMM '04, pages 85-

96, New York, NY, USA, 2004. ACM.

[2] I. Dillig, T. Dillig, E. Yahav, and S. Chandra. The CLOSER:

automating resource management in Java. In Proc. of the 7th

Int. Symposium on Memory Management, ISMM ’08, pages

1-10, New York, NY, USA, 2008. ACM.

[3] ESC/Java. http://en.wikipedia.org/wiki/ESC/Java.

[4] FindBugs. http://findbugs.sourceforge.net/.

[5] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su. Has the bug

really been fixed? In Proc. of the 32nd ACM/IEEE Int. Conf.

on Software Engineering - Volume 1, ICSE’10, pages 55-64,

New York, NY, USA, 2010. ACM.

[6] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and

tuning a static analysis to find null pointer bugs. In Proc. of

the 6th ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering, PASTE’05,

pages 13-19, New York, NY, USA, 2005. ACM.

[7] Jlint. http://jlint.sourceforge.net/.

[8] S. Kim and M. D. Ernst. Which warnings should I fix first?

In Proc. of the 6th joint meeting of the European Software

Engineering Conf. and the ACM SIGSOFT Symposium on

Foundations of Software Engineering, ESEC/FSE’07, pages

45-54, New York, NY, USA, 2007. ACM.

[9] M. Kim, S. Sinha, C. Görg, H. Shah, M. J. Harrold, and M.

G. Nanda. Automated bug neighborhood analysis for

identifying incomplete bug fixes. In Proc. of the 3rd Int. Conf.

on Software Testing, Verification and Validation, ICST ’10,

pages 383-392, Washington, DC, USA, 2010. IEEE

Computer Society.

[10] G. Liang, L. Wu, Q. Wu, Q. Wang, T. Xie, and H. Mei.

Automatic construction of an effective training set for

prioritizing static analysis warnings. In Proc. of the 25th

IEEE/ACM Int. Conf. on Automated Software Engineering,

ASE’10, pages 93-102, New York, NY, USA, 2010. ACM.

[11] G. Liang, Q. Wu, Q. Wang, and H. Mei. An effective defect

detection and warning prioritization approach for resource

leaks. In Proc. of the 36th Annual IEEE Computer Software

and Applications Conference (COMPSAC 2012), pages 119-

128, Izmir, Turkey, July 16-20, 2012.

[12] Lint4j. http://www.jutils.com/.

[13] N. A. Naeem and O. Lhotak. Typestate-like analysis of

multiple interacting objects. In Proc. of the 23rd ACM

SIGPLAN Conf. on Object-Oriented Programming Systems

Languages and Applications, OOPSLA’08, pages 347-366,

New York, NY, USA, 2008.

[14] F. Nielson, H. R. Nielson, and C. Hankin. Principles of

Program Analysis. Springer Publishing Company,

Incorporated, 2010.

[15] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing

to large software systems. SIGSOFT Software Eng. Notes,

29(6), pages 241-251, Oct. 2004.

[16] K. Pan, S. Kim, and E. J. Whitehead, Jr. Toward an

understanding of bug fix patterns. Empirical Software

Engineering. 14(3), pages 286-315, June 2009.

[17] PMD. http://pmd.sourceforge.net/.

[18] R. Purushothaman and D. E. Perry. Toward understanding

the rhetoric of small source code changes. IEEE Trans.

Softw. Eng., 31(6):511-526, June 2005.

[19] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of

bug finding tools for Java. In Proc. of the 15th Int.

Symposium on Software Reliability Engineering, ISSRE’04,

pages 245-256, Washington, DC, USA, 2004. IEEE

Computer Society.

[20] R. Shaham, E. Yahav, E. K. Kolodner, and M. Sagiv.

Establishing local temporal heap safety properties with

applications to compile-time memory management. In Proc.

of the 10th Int. Conf. on Static Analysis, SAS’03, pages 483-

503, Berlin, Heidelberg, 2003. Springer-Verlag.

[21] J. Sliwerski, T. Zimmermann, and A. Zeller. HATARI:

raising risk awareness. SIGSOFT Softw. Eng. Notes,

30(5):107-110, Sept. 2005.

[22] J. Sliwerski, T. Zimmermann, and A. Zeller. When do

changes induce fixes? SIGSOFT Softw. Eng. Notes, 30(4):1-

5, May 2005.

[23] F. Spoto. Precise null-pointer analysis. Softw. Syst. Model.,

10(2):219-252, May 2011.

[24] L. Tan, D. Yuan, G. Krishna, Y. Zhou. /*iComment: Bugs or

bad comments?*/. In Proc. of the 21st Symposium on

Operating Systems Principles, pp.145-158, Stevenson, USA,

Oct. 14-17, 2007.

[25] E. Torlak and S. Chandra. Effective interprocedural resource

leak detection. In Proc. of the 32nd ACM/IEEE Int. Conf. on

Software Engineering - Volume 1, ICSE’10, pages 535-544,

New York, NY, USA, 2010. ACM.

[26] J. Tucek, W. Xiong, and Y. Zhou. Efficient online validation

with delta execution. SIGPLAN Not., 44(3):193-204, Mar.

2009.

[27] W. Weimer and G. C. Necula. Mining temporal

specifications for error detection. In Proc. of the 11th Int.

Conf. on Tools and Algorithms for the Construction and

Analysis of Systems, pp.461-476, Edinburgh, UK, Apr. 4-8,

2005.

[28] W. Weimer and G. C. Necula. Finding and preventing run-

time error handling mistakes. In Proc. of the 19th Annual

ACM SIGPLAN Conf. on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA’04, pages

419-431, New York, NY, USA, 2004. ACM.

[29] Q. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei. Iterative

mining of resource-releasing specifications. In Proc. of the

26th IEEE/ACM Int. Conf. on Automated Software

Engineering, ASE’2011, pages 233-242, 2011.

[30] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L.

Bairavasundaram. How do fixes become bugs? In Proc. of

the 19th ACM SIGSOFT Symposium and the 13th European

Conf. on Foundations of Software Engineering,

ESEC/FSE’11, pages 26-36, New York, NY, USA, 2011.

[31] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource

specifications from natural language API documentation. In

Proc. of the 24th Int. Conf. on Automated Software

Engineering, pp.307-318, Auckland, New Zealand, Nov. 16-

20, 2009.

