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ABSTRACT

An objective of unit testing is to achieve high structural cov-
erage of the code under test. Achieving high structural cov-
erage of object-oriented code requires desirable method-call
sequences that create and mutate objects. These sequences
help generate target object states such as argument or re-
ceiver object states (in short as target states) of a method
under test. Automatic generation of sequences for achieving
target states is often challenging due to a large search space
of possible sequences. On the other hand, code bases us-
ing object types (such as receiver or argument object types)
include sequences that can be used to assist automatic test-
generation approaches in achieving target states. In this
paper, we propose a novel approach, called MSeqGen, that
mines code bases and extracts sequences related to receiver
or argument object types of a method under test. Our
approach uses these extracted sequences to enhance two
state-of-the-art test-generation approaches: random testing
and dynamic symbolic execution. We conduct two evalua-
tions to show the effectiveness of our approach. Using se-
quences extracted by our approach, we show that a random
testing approach achieves 8.7% (with a maximum of 20.0%
for one namespace) higher branch coverage and a dynamic-
symbolic-execution-based approach achieves 17.4% (with a
maximum of 22.5% for one namespace) higher branch cover-
age than without using our approach. Such an improvement
is significant as the branches that are not covered by these
state-of-the-art approaches are generally quite difficult to
cover.

Categories and Subject Descriptors: D.2.3 [Software
Engineering]: Coding Tools and Techniques— Object-oriented
programming; D.2.6 [Software Engineering]: Programming
Environments— Integrated environments;
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//UndirectedDFS: Short form of UndirectedDepthFirstSearch
00:class UndirectedDFS {

01: IVertexAndEdgeListGraph VisitedGraph; ...

02: public UndirectedDFS(IVertexAndEdgeListGraph g) {
03: e

04: }

05: public void Compute(IVertex s) {

06: //init vertices

07: foreach(IVertex u in VisitedGraph.Vertices) {
08: Colors[u]=GraphColor.White;

09: if (InitializeVertex != null)

10: InitializeVertex(this, new VertexEventArgs(u));
11: }

12: //init edges
13: foreach(IEdge e in VisitedGraph.Edges) {

14: EdgeColors[e]=GraphColor.White; }

15: //use start vertex

16: if (s != null) {

17: if (StartVertex != null)

18: StartVertex(this,new VertexEventArgs(s));
19: Visit(s); }

20: // visit vertices

21: foreach(IVertex v in VisitedGraph.Vertices) {
22: if (Colors[v] == GraphColor.White) {

23: if (StartVertex != null)

24: StartVertex(this,new VertexEventArgs(v));
25: Visit(v); }

26: }

27: }

28:}

Figure 1: A method under test from the Quick-

Graph library [20].
1. INTRODUCTION

A primary objective of unit testing is to achieve high
structural coverage such as branch coverage. Achieving high
structural coverage with passing tests gives high confidence
in the quality of the code under test. To achieve high struc-
tural coverage of object-oriented code, unit testing requires
desirable method-call sequences (in short as sequences) that
create and mutate objects. These sequences help generate
target object states (in short as target states) of the receiver
or arguments of the method under test (MUT). As a real
example for a target state, the Compute MUT is shown in
Figure 1. The MUT performs a depth-first search on an
undirected graph. A target state for reaching Statement 8,
14, or 22 requires that a graph object used in test execution
has a non-empty set of vertices and edges.

To generate target states, there exist four major categories
of sequence-generation approaches: bounded-exhaustive [13,
30], evolutionary [11,27], random [5,12,19], and heuristic ap-
proaches [25]. Bounded-exhaustive approaches generate se-
quences exhaustively up to a small bound of sequence length.



However, generating target states often requires longer se-
quences beyond the small bound that can be handled by the
bounded-exhaustive approaches. On the other hand, evo-
lutionary approaches accept an initial set of sequences and
evolve those sequences to produce new sequences that can
generate target states. These approaches use fitness [16], a
metric computed toward reaching a target state, as a guid-
ance for producing new sequences. However, the generation
is still a random process and shares the same characteristics
as random approaches discussed next.

Random approaches use a random mechanism to combine
individual method calls to generate sequences. Although
random approaches are shown as effective as systematic ap-
proaches theoretically [6], random approaches still face chal-
lenges in practice to generate sequences for achieving target
states. The reason is that there is often a low probabil-
ity of generating required sequences at random for achiev-
ing target states. To illustrate the challenges faced by ran-
dom approaches, we applied a state-of-the-art random ap-
proach, called Randoop [19], on the MUT shown in Figure 1.
Randoop achieved branch coverage of 31.8% (7 out of 22
branches). The reason for low coverage is that the random
mechanism of Randoop is not able to generate a graph with
vertices and edges.

A heuristic approach for automatic sequence generation is
used by a recent approach based on dynamic symbolic execu-
tion (DSE) [3,10,14,15], called Pex [25]. Initially, Pex iden-
tifies constructors and other methods of a class under test
that set values to different fields, hopefully helping gener-
ate desirable target state. Using the identified constructors
and methods, Pex generates method-call-sequence skeletons
(in short as skeletons), which are basically method-call se-
quences with symbolic values for primitive types. These
skeletons can be considered as a general form of sequences,
where symbolic values are used instead of constant values
for primitive types. Pex computes concrete values for the
symbolic values in skeletons based on constraints collected
from branch statements in the code under test. Based on
our experience of applying Pex on industrial code bases, we
observed that many branches in the code under test are not
covered due to lack of proper skeletons. For example, Pex
achieved branch coverage of 45.5% (10 out of 22 branches)
on the MUT shown in Figure 1. The reason for low coverage
is that Pex is also not able to generate a graph with vertices
and edges.

A common characteristic among these previous approaches
for generating sequences is that these approaches generate
sequences either randomly or based on implementation in-
formations of method calls used in a sequence. As these ex-
isting approaches are not effective in generating sequences,
in this paper, we propose a novel approach called MSeqGen.
MSeqGen addresses this significant problem of sequence gen-
eration from a novel perspective of how these method calls
are used together in practice. More specifically, using infor-
mation of how the method calls are used in practice helps
generate sequences that can achieve target states. To gather
such usage information of method calls, our MSeqGen ap-
proach mines code bases that are already using the object
types such as receiver or argument object types of the MUT.
For a MUT, these code bases include source code of the ap-
plication that the MUT belongs to and test code for that
application. In addition, code bases also include other ap-
plications using the receiver or argument object types of the

MUT available in both proprietary and open source code
(available on the web).

To the best of our knowledge, our approach is the first
one that addresses the significant problem of sequence gen-
eration by leveraging the information of how method calls
are used in practice. Our approach mines code bases to ex-
tract sequences related to receiver or argument object types
of a MUT. Our approach uses extracted sequences to as-
sist both random and DSE-based approaches in achieving
higher structural coverage. More specifically, our approach
addresses three major issues in extracting sequences from
code bases. First, code bases are often large and complete
analysis of these code bases can be prohibitively expensive.
To address this issue, our approach searches for code por-
tions relevant to receiver or argument object types of the
MUT and analyzes those relevant code portions only. Sec-
ond, constant values in sequences extracted from code bases
can be different from values required to achieve target states.
To address this issue, our approach converts extracted se-
quences into skeletons by replacing constant values for prim-
itive types with symbolic values. We refer to this process of
converting sequences into skeletons as sequence generaliza-
tion. Third, extracted sequences individually may not be
useful in achieving target states. Our approach addresses
this issue by combining extracted sequences randomly to
generate new sequences that may produce target states.

In summary, this paper makes the following major contri-
butions:

e The first approach that leverages the information of
how method calls are used in practice to address the
significant problem of sequence generation in object-
oriented unit testing.

e A technique that mines large code bases by searching
for code portions relevant to receiver or argument ob-
ject types of a MUT. Our approach analyzes only those
relevant code portions since analyzing complete code
bases can be prohibitively expensive.

e A technique for generalizing extracted sequences (i.e.,
converting sequences into skeletons) to assist DSE-
based approaches. Generalization helps address issues
where constant values in extracted sequences are dif-
ferent from values required to achieve target states.

e A technique for generating new sequences by randomly
combining extracted sequences. These new sequences
try to address the issue where extracted sequences in-
dividually are not sufficient to achieve target states.

e An implementation of the approach and its evaluation
upon two state-of-the-art industrial testing tools: Ran-
doop and Pex. Both Pex and Randoop were shown to
find serious defects in industrial code bases [19, 25].
Our approach represents a significant, successful step
towards addressing complex testing problems in indus-
trial practice, targeting at complex desirable sequences
from multiple classes rather than sequences on single
classes such as data structures heavily focused by pre-
vious approaches [11,27].

e Empirical results from two evaluations show that our
approach can effectively assist state-of-the-art random
and DSE-based approaches in achieving higher branch



coverage. Using our approach, we show that a random
approach achieves 8.7% (with a maximum of 20.0% for
one namespace) higher branch coverage and a DSE-
based approach achieves 17.4% (with a maximum of
22.5% for one namespace) higher branch coverage than
without using our approach. Such an improvement is
significant since the branches that are not covered by
these state-of-the-art approaches are generally quite
difficult to cover.

The rest of the paper is structured as follows: Section 2
presents background on a random and a DSE-based ap-
proaches. Section 3 explains our approach with an example.
Section 4 describes key aspects of our approach. Section 5
presents our evaluation results. Section 6 discusses threats
to validity. Section 7 discusses limitations of our approach
and future work. Section 8 presents related work. Finally,
Section 9 concludes.

2. BACKGROUND

In this paper, we use two existing approaches Randoop [19]
and Pex [25] as example state-of-the-art approaches for ran-
dom and DSE-based approaches, respectively. We next briefly
describe these two example approaches.

2.1 Randoop

Randoop [19] is a random testing approach that constructs
test inputs (in the form of sequences) incrementally by ran-
domly selecting method calls. For each such randomly se-
lected method call, Randoop finds arguments from previously-
constructed inputs or tries to generate new sequences for
those arguments. These constructed sequences are consid-
ered as test inputs. Unlike a pure random approach, Ran-
doop incorporates feedback obtained from previously con-
structed test inputs while generating new test inputs. As
soon as a test input is constructed, Randoop executes the
test input and verifies the output against a set of contracts
and filters.

2.2 Pex

Pex [25] is an automatic unit-test-generation tool from
Microsoft. Pex accepts parameterized unit tests (PUT) [26]
as input; PUTs are a new advancement in unit testing and
these PUTs accept parameters unlike conventional unit tests,
which do not accept any parameters. From these PUTs,
Pex generates conventional unit tests that can achieve high
structural coverage of the code under test. More specifi-
cally, Pex is a DSE-based approach [10] that initially ex-
ecutes the code under test with arbitrary inputs. During
execution, Pex collects symbolic constraints on inputs ob-
tained from predicates in branch statements along the exe-
cution. Pex uses a constraint solver to compute variations
of the previous inputs to guide future program executions
along different paths. As PUTSs also accept non-primitive
types as arguments, Pex uses a combination of static and dy-
namic analysis techniques for generating sequences for those
non-primitive types. Using static analysis, Pex determines
possible constructors and other methods of a class that set
values to different fields of that class. Based on constraints
collected during execution of the code under test, Pex deter-
mines which methods can set values for required fields and
tries to cover target branches by combining constructors and
method calls.

3. EXAMPLE

We next explain our approach with an illustrative exam-
ple shown in Figure 1. The figure shows a MUT, called
Compute, taken from the QuickGraph library [20]. The MUT
requires two non-primitive objects: IVertexAndEdgeListGraph
and IVertex. The MUT requires an object of IVertexAnd-
EdgeListGraph (which represents a graph) since the construc-
tor of the receiver object of the MUT has the argument of
type IVertexAndEdgeListGraph. The MUT accepts a vertex in
the graph as argument and computes a depth-first search of
the graph. To achieve high structural coverage of the MUT,
the minimal requirement is that the graph object should in-
clude vertices and edges. We used both Randoop and Pex to
generate unit tests for the MUT. Randoop achieved branch
coverage of 31.8% (7 of 22). The reason for low branch cov-
erage is that the random mechanism of Randoop is not able
to generate a graph object with vertices and edges.

To generate test inputs using Pex, we created a PUT that
includes UndirectedDFS as a parameter. As the constructor of
UndirectedDFS accepts an interface IVertexAndEdgeListGraph
as argument, Pex can automatically generate a new class im-
plementing the IVertexAndEdgeListGraph interface. However,
such a new class may not support the (implicit) contracts
associated with the interface implementation. Therefore, we
provided minimal assistance to Pex by describing which im-
plementing classes can be used for interfaces. For example,
we feed to Pex the information that it can use the Adjacency-
Graph class as an implementing class for the IVertexAndEdge-
ListGraph interface. Pex achieved branch coverage of 45.5%
on the MUT. Although Pex achieved higher branch cover-
age than Randoop, the coverage is still low (only 45.5%).
Similar to Randoop, Pex was not able to generate a graph
object with vertices and edges.

We next describe how MSeqGen can assist Randoop and
Pex by extracting sequences from existing code bases. We
need sequences for objects of three classes': UndirectedDFS,
IVertexAndEdgeListGraph, and IVertex. We need a sequence
for an object of the UndirectedDFS class to construct a de-
sirable receiver object state. We also need sequences for ob-
jects of classes implementing the IVertexAndEdgeListGraph
and IVertex interfaces. We collected a set of applications
(code bases of 3.9 MB of .NET assembly code) from an open
source C# repository? that reuse classes of the QuickGraph
library. MSeqGen analyzes these code bases and extracts
sequences that produce objects of these classes.

MSeqGen extracted 5 sequences for the AdjacencyGraph
class that implements the IVertexAndEdgeListGraph interface,
and 11 sequences for the Vertex class that implements the
IVertex interface. Figures 2 and 3 show example sequences
for creating objects of the AdjacencyGraph and Vertex classes.
The sequence for AdjacencyGraph satisfies our minimal re-
quirement that the resulting graph should include vertices
and edges. It is challenging to generate these sequences au-
tomatically, especially due to the large number of possible
sequence combinations. In contrast, MSeqGen can easily ex-
tract such sequences from existing code bases.

One issue with extracted sequences is that these sequences
can include additional classes. For example, Statement 3 of
Figure 2 shows that the sequence requires another object

'We use classes to collectively denote both classes and in-
terfaces.

Zhttp://www.codeplex.com/



01: VertexAndEdgeProvider vo; //requires as input

02: bool bVal; //requires as input

03: AdjacencyGraph agObj = new AdjacencyGraph(vo,bVal);
04: IVertex source = agObj.AddVertex();

05: IVertex target = agObj.AddVertex();

06: IVertex vertex3 = agObj.AddVertex();

07: IEdge edgObjl = agObj.AddEdge (source,target);

08: IEdge edgObj2 = agObj.AddEdge(target,vertex3);

09: IEdge edgObj3 = agObj.AddEdge (source,vertex3);

Figure 2: A sequence for producing an AdjacencyGraph
object with vertices and edges.

AdjacencyGraph agObj; //requires as input

IVertex vObj = agObj.AddVertex();

Figure 3: A sequence for producing an IVertex ob-
ject.

of the class VertexAndEdgeProvider. MSeqGen automatically
identifies such additional classes and gathers sequences that
produce objects of these classes. MSeqGen extracted one
sequence for the VertexAndEdgeProvider class from existing
code bases. Section 4 presents more details on how MSeqGen
addresses challenges for extracting these sequences.

We next use Randoop with additional sequences extracted
by MSeqGen. Randoop generated new test inputs incorpo-
rating sequences extracted by MSeqGen. The new test in-
puts achieved branch coverage of 86.4% (19 of 22) of the
Compute method. When we use our extracted sequences to
assist Pex, Pex also achieved the same branch coverage for
the Compute method. The remaining not-covered branches
are due to lack of event handlers that need to be registered
with UndirectedDFS. This example describes our MSeqGen
approach and highlights the significance of using sequences
from existing code bases in achieving higher branch coverage
with both random and DSE-based approaches.

4. APPROACH

Figure 4 shows a high-level overview of our MSeqGen ap-
proach. MSeqGen accepts an application under test and
identifies classes and interfaces, declared or used by the ap-
plication under test. These applications under test can also
be frameworks or libraries. We refer to extracted classes for
which sequences need to be collected as target classes, de-
noted by {T'Cy, TCq, ..., TCp,}. MSeqGen also accepts a set
of existing code bases, denoted by {C'B1, CBa, ..., CByp},
that already use these target classes. In our prototype im-
plemented for the MSeqGen approach, these code bases are
in the form of .NET assemblies. Initially, MSeqGen searches
for relevant method bodies by using target classes as key-
words. MSeqGen constructs control-flow graphs for these
method bodies and extracts sequences that produce objects
of target classes. MSeqGen extracts sequences by travers-
ing these control-flow graphs. These extracted sequences are
used to assist random and DSE-based approaches. For DSE-
based approaches, MSeqGen converts extracted sequences
into skeletons by replacing constant values for primitive types
with symbolic values. We next explain each phase of MSe-
qGen in detail using the illustrative example shown in Fig-
ure 1.

4.1 Code Searching

We use code searching in our approach since code bases
are often large and analyzing complete code bases can be
prohibitively expensive. To avoid analyzing complete code
bases, we use a keyword search to identify relevant method

00:public void Sort(VertexAndEdgeProvider vo) {
01: AdjacencyGraph g = new AdjacencyGraph(vo, true);
02: Hashtable iv = new Hashtable();

03: int i = 0; //adding vertices

04: IVertex a = g.AddVertex();

05: iv.Add(a);

06: IVertex b = g.AddVertex();

07: iv.Add(b);

08: IVertex c = g.AddVertex();

09: iv.Add(c);

10: g.AddEdge(a,b); //adding edges

11: g.AddEdge(a,c);

12: g.AddEdge(b,c);

13: //TSAlgorithm: TopologicalSortAlgorithm
14: TSAlgorithm topo = new TSAlgorithm(g);

15: topo.Compute(); ... }

Figure 5: A relevant method body for classes Ad-
jacencyGraph, VertexAndEdgeProvider, Hashtable, and Topo-
logicalSortAlgorithm.

bodies including target classes. In particular, we use a text-
based search, where the text is derived by decompiling .NET
assemblies taken as inputs. We consider that a method body
is relevant to a target class T'C};, if the method body includes
the name of the T'C; target class. For example, we use Ad-
jacencyGraph as a keyword and search for method bodies
including that keyword. Figure 5 shows an example method
body including the AdjacencyGraph keyword. As our code
search is primarily a text-based search, code searching also
returns irrelevant method bodies such as method bodies that
include AdjacencyGraph as a variable name or a word in com-
ments. We filter out such irrelevant method bodies in sub-
sequent phases.

We use intra-procedural analysis to analyze only such rel-
evant method bodies. We use intra-procedural analysis since
this analysis is more scalable than inter-procedural analysis.
Although intra-procedural analysis is less precise than inter-
procedural analysis, we address this precision issue by using
an iterative strategy explained in subsequent sections.

4.2 CodeAnalysis

We next analyze each relevant method body statically and
construct a control-flow graph (CFG). Our CFG includes
four types of statements: method calls, object creations,
typecasts, and field accesses. The rationale behind choosing
these statements is that these statements result in generat-
ing objects of target classes. While constructing a CFG, we
identify the nodes (in the constructed CFG) that produce
the target classes such as AdjacencyGraph and mark them as
nodes of interest. For example, the node corresponding to
Statement 1 in Figure 5 is marked as a node of interest for
the target class AdjacencyGraph. We also filter out irrelevant
method bodies identified during the code searching phase if
their related CFGs do not contain any nodes of interest.

We next extract sequences from a CFG using nodes of
interest. For each node of interest related to a target class
TCj;, we gather a path from the node of interest to the end of
the CFG. In the case of loops, we consider the nodes inside
a loop as a group of nodes that is executed either once or
not. Considering these nodes once can help identify the
sequence inside the loop. We also annotate these nodes to
store the additional information that these nodes (and their
associated method calls) exist inside loops. This additional
information is used in subsequent phases while generating
code based on extracted sequences.



Code MSeqGen

bases

Relevant
method decls

searchinT

Application Target
under classes

Application
analysis

analysis

-
analysis
Method-call ’—'
sequences Test
generalization
Generalized r
se;uences

Random
approach

inputs

DSE-
based
approach

Figure 4: Overview of our MSeqGen approach.

Often, an extracted sequence can include a few method
calls that are unrelated to the target class T'C;. We use data-
dependency analysis to filter out such unrelated method calls
from the extracted sequence. We start with the method
call (in short as base method call) associated with a node
of interest and filter out method calls that do not share the
same receiver object as the base method call. Our data-
dependency analysis results in a sequence that creates and
mutates an object of a target class T'C;. For example, Fig-
ure 2 shows a sequence gathered from the code example in
Figure 5. MSeqGen extracts several such sequences for dif-
ferent classes from the same code example. For example, if
the set of target classes also includes classes Hashtable and
TSAlgorithm, MSeqGen automatically extracts one sequence
for each of these classes as shown below from the code ex-
ample.

Sequence for Hashtable:
IVertex a,b,c; //requires as input
Hashtable iv = new Hashtable();
iv.Add(a);
iv.Add(b);
iv.Add(c);

Sequence for TSAlgorithm:
AdjacencyGraph g; //requires as input
TSAlgorithm tsObj = new TSAlgorithm(g);
ts0bj.compute() ;

One issue with extracted sequences is that these sequences
can include additional non-primitive types. For example,
the sequence for AdjacencyGraph (shown in Figure 2) requires
non-primitive type VertexAndEdgeProvider. To achieve tar-
get states, we need new sequences for generating these ad-
ditional non-primitive types. In principle, call sites in code
bases including sequences for a T'C}; target class also include
the sequences for generating related additional non-primitive
types. However, in practice, often these call sites do not
include sequences for these additional non-primitive types
due to two factors. (1) A sequence for an additional non-
primitive type is available in another method body and is
not found by our approach as it uses intra-procedural analy-
sis for extracting sequences. (2) A sequence for an additional
non-primitive type does not exist in the current code base
CB; (such as a framework or a library) and expects a reusing
application to provide a necessary sequence.

We address this issue by extracting new sequences for ad-
ditional non-primitive types by using an iterative strategy.
More specifically, we first extract sequences for the initial set
of target classes and collect all additional classes for which

A. Class Definition:
00:class MyClass {

01: private int testMe;
02: private String ipAddr;
03:}

B. MUT:

00:public void Mutl(MyClass mc, String IPAddress) {
01: if(mc.getTestMe() > 100) {

02: if (IsAValidIPAddress(IPAddress)) { ... }

03: %}

04:}

C. Method-call sequence (MCS):
00:MyClass mcObj = new MyClass();
01:mc0Obj.SetTestMe (10);

02:mcObj . SetIpAddr("127.0.0.1");

D. Skeleton:

00:int symvar = *, string ipaddr = *;
01:MyClass mcObj = new MyClass();
02:mc0bj.SetTestMe (symvar) ;
03:mc0bj.SetIpAddr (ipaddr) ;

Figure 6: An illustrative example for method-call
sequence generalization.

new sequences need to be extracted. We next extract se-
quences for these additional classes and collect more new
additional classes. We repeat this process either till no new
additional classes are collected or we reach a fixed number of
iterations accepted as a configuration parameter, denoted by
NUM_ITERATIONS. A high value for NUM_ITERATIONS
can help collect more sequences; however, a high value can
require more time for collecting those sequences. In our
approach, we use five as the value of NUM_ITERATIONS,
which is set based on our initial empirical experience.

4.3 Method-Call Sequence Generalization

We generalize sequences to address an issue that constant
values in extracted sequences can be different from values
required to achieve target states. We refer to the process
of converting sequences into skeletons (which are sequences
with symbolic values instead of concrete values for primitive
types) as sequence genmeralization. For example, consider a
simple MUT and an example sequence (denoted as MCS)
shown in Figures 6a to 6c¢, respectively. The sequence can-
not directly achieve the true branch of the MUT since the
value of testMe is set to 10. To address this issue, we gener-
alize extracted sequences. More specifically, we replace con-
stant values of primitive types in extracted sequences with
symbolic values. Figure 6d also shows the skeleton, where a



symbolic variable symvar of type int is taken as input for the
sequence. This symvar variable replaces the constant value
10 in the MCS. When this skeleton is used along with a DSE-
based approach, the DSE-based approach initially generates
a concrete random value for the symvar symbolic variable
and gathers the constraint (> 100) in the MUT through dy-
namic execution. The DSE-based approach next solves the
constraint to generate another concrete value for symvar such
as 200 that satisfies the gathered constraint.

Although DSE-based approaches are effective in practice,
it is challenging for these approaches to generate concrete
values for variables that require complex values such as dou-
bles, IP addresses, or URLs. In such cases, constant values
in extracted sequences are useful in quickly covering those
related branches such as the true branch in Statement 2
(Figure 6b) of the MUT. To address this issue, we preserve
constant values in sequences along with the newly intro-
duced symbolic values by using a symbolic boolean value as
a switch between symbolic and constant values.

4.4 Generation of New Sequences

MSeqGen extracts sequences from code bases and uses
these sequences to assist random and DSE-based approaches.
However, in some cases, these extracted sequences individ-
ually are not sufficient to achieve target states. MSeqGen
tries to address this issue by generating new sequences from
extracted sequences by combining extracted sequences ran-
domly. For example, consider two target classes T; and Tj,
where T requires an object of T; and a MUT requires an
object of Tj. Consider that MSeqGen identified two method
bodies, denoted by M Dy and M D2, in code bases relevant to
both T; and T;. Consider that MSeqGen extracted sequences
S} and S} for target classes T; and T; from M D;, respec-
tively. Similarly, MSeqGen extracted sequences S? and S?
for target classes T; and T; from M Da, respectively. The
target class T has sequences S; and S?, and the target
class T} has sequences S; and S?. Given these sequences,
MSeqGen can generate some or all of four different combina-
tions of these sequences for generating objects of T;. These
new sequences may further help achieve target states in the
MUT.

5. EVALUATION

We conducted three different evaluations to show the ef-
fectiveness of our MSeqGen approach. In our evaluations, we
used two popular .NET applications: QuickGraph [20] and
Facebook [9]. Our empirical results show that MSeqGen han-
dles large code bases and extracts sequences that can help
achieve target states. Our empirical results also show that
our approach can effectively assist random and DSE-based
approaches in achieving higher branch coverage. The de-
tails of subjects and results of our evaluation are available at
http://research.csc.ncsu.edu/ase/projects/mseqgen/.
All experiments were conducted on a machine with 1.6GHz
Xeon processor and 1GB RAM. We next present research
questions addressed in our evaluations.

5.1 Research Questions

In our evaluations, we address the following research ques-
tions.
e RQI1: Can our approach handle large code bases in
gathering sequences for target classes of subject appli-
cations?

e RQ2: Can our approach assist a random approach in
achieving higher code coverage of the code under test
than without the assistance of our approach?

e RQ3: Can our approach assist a DSE-based approach
in achieving higher code coverage of the code under
test than without the assistance of our approach?

5.2 Subject Applications

We used two popular .NET applications for evaluating
our MSeqGen approach: QuickGraph [20] and Facebook [9].
QuickGraph is a C# graph library that provides various di-
rected/undirected graph data structures. QuickGraph also
provides algorithms such as depth-first search, breadth-first
search, and A* search [4]. QuickGraph includes 165 classes
and interfaces with 5 KLOC. Facebook is a popular social
network website that connects people with friends and others
whom they work, study, and live around. In our evaluation,
we use a Facebook developer toolkit that provides APIs nec-
essary for developing Facebook applications. The Facebook
developer toolkit includes 285 classes and interfaces with 40
KLOC.

5.3 RQL: Gathering Sequences

We next address the first research question on whether our
approach can handle large code bases in gathering sequences
for target classes of the QuickGraph and Facebook applica-
tions. For QuickGraph and Facebook, we use code bases
including 3.85 MB and 5 MB of .NET assembly code, re-
spectively. Our approach extracted 167 sequences for Quick-
Graph with a maximum length of 12 method calls for the Ad-
jacencyGraph class. Our approach took 5.2 minutes for ana-
lyzing code bases related to QuickGraph. For Facebook, our
approach extracted 355 sequences with a maximum length
of 51 method calls for the Hashtable class. Although the
sequence extracted for Hashtable is long, this sequence in-
cludes method calls such as Add for multiple times. Our ap-
proach took 4.5 minutes for analyzing code bases related to
Facebook and to gather these sequences. Our results show
that our approach can mine large code bases for gathering
sequences to help achieve target states.

54 RQ2: Assisting Random Approach

We next address the second research question on whether
our approach helps increase branch coverage achieved by
a state-of-the-art random approach, called Randoop [19].
To address this research question, we first run Randoop on
QuickGraph and Facebook applications, and generate test
inputs. Randoop generates test inputs in the form of se-
quences of method calls. We execute generated test inputs
and measure branch coverage using a coverage measurement
tool, called NCover®. This measured coverage forms a base-
line for comparing Randoop with and without the assistance
from our approach. In our evaluation, we use default con-
figurations provided by the Randoop developers. For each
namespace of the subject application, we ran Randoop for
a maximum of 130 seconds.

To assist Randoop with our extracted sequences, we syn-
thesize static method bodies that include our gathered se-
quences and return objects of target classes of our subject
applications. For example, if a target class T'C; has four se-
quences, we synthesize four static method bodies where each

3http://www.ncover . com/



00:class BidirectionalGraph { ...
01: public IEdge AddEdge(IVertex src, IVertex tg) {

02: // look for the vertex in the list

03: if (!VertexInEdges.ContainsKey(src))

04: throw new VertexNotFoundException
("Could not find source");

05: if (!VertexInEdges.ContainsKey(tg))

06: throw new VertexNotFoundException

("Could not find target");
07: // create edge
08: IEdge e = base.AddEdge(src, tg);
09: VertexInEdges [target].Add(e);
10: return e;
11: }
12:}
Figure 7: A MUT AddEdge in the BidirectionalGraph
class of QuickGraph.

method body returns an object of T'C; by executing a gath-
ered sequence for T'Cj;. If a sequence for T'C;; requires other
objects of non-primitive or primitive types (whose values are
not known in gathered sequences due to static analysis), we
add those non-primitive and primitive types as arguments
for the method bodies. For primitive types, Randoop ran-
domly generates some values. For non-primitive types, Ran-
doop randomly generates a new sequence or selects some
other method body (synthesized by our approach) that pro-
duces that non-primitive type. We gather newly generated
test inputs that include the method bodies synthesized by
MSeqGen and add these new test inputs to existing tests to
measure the increase in the branch coverage.

Table 1 shows the results of our evaluation with both sub-
ject applications. The table shows the results for all names-
paces of the subject applications. As we include test code
available with subject applications in code bases used for ex-
tracting sequences, we show branch coverage achieved by the
test code alone in Column “T”. Column “R” shows branch
coverage achieved by Randoop. Column “R + M” shows
branch coverage achieved by Randoop with the assistance
of our MSeqGen approach. Column “Increase in Branch
Coverage” shows additional branch coverage achieved with
the assistance from our MSeqGen approach. As shown in
our results, “R + M” achieved higher coverage than Ran-
doop and test code (except for namespaces facebook and
facebook.Utility). There are two primary reasons for lower
coverage of “R + M” for these two namespaces: the ran-
dom mechanism of Randoop and limitations of our current
implementation. Due to the random mechanism used by
Randoop, various method calls used in test code that con-
tributed to higher coverage achieved by the test code are
not used by Randoop in generating test inputs. Section 7
presents limitations of our current implementation on why
“R + M” achieved lower coverage than existing test code
for namespaces facebook and facebook.Utility. Our results
show that there is a considerable increase of 8.7% on aver-
age® (with a maximum of 20%) in branch coverage achieved
by Randoop with assistance from our approach.

We next provide examples to describe scenarios where
our approach can assist random approaches. We also de-
scribe scenarios where our approach cannot assist random
approaches. We use a MUT, called AddEdge, in the Bidirec-
tionalGraph class of the QuickGraph.Representations names-
pace (shown in Figure 7). Although Randoop generated
three test inputs (in the form of sequences) for the AddEdge

4We compute average from those namespaces that have a
non-zero increase in the branch coverage

MUT, Randoop achieved low branch coverage of 40.0% (2
out of 5 branches). The reason for not achieving high cover-
age for the AddEdge MUT is that the AddEdge MUT requires
a specific receiver object state. To reach Statement 8 of
the MUT, the VertexInEdges field should include the new
vertices represented by src and tg that are passed as ar-
guments. With the sequences extracted by our approach,
Randoop achieved a branch coverage of 80.0% (4 out of 5
branches). As our sequences are extracted from code bases
that include usage scenarios on how these method calls are
used in real practice, our sequences helped achieve high cov-
erage for the AddEdge MUT.

Although Randoop achieved higher branch coverage with
the assistance from our approach, the test inputs generated
by Randoop did not cover the true branch of Statement 5 to
reach Statement 6. The reason is that our sequences do not
include a usage scenario where the AddEdge MUT is invoked
with one vertex in VertexInEdges and the other vertex not
in VertexInEdges. Such usage scenarios rarely exist in code
bases that are used for extracting sequences as these usage
scenarios are related to testing the MUT for negative cases
rather than reusing the MUT in real practice. However,
a more systematic approach such as a DSE-based approach
can cover such not-covered branches with the assistance from
our approach.

5,5 RQS3: Assisting DSE-based Approaches

We next address the third research question on whether
our approach can help increase branch coverage achieved
by a DSE-based approach. To address this research ques-
tion, we use a state-of-the-art DSE-based approach called
Pex [25]. Pex accepts PUTs as input and generates con-
ventional unit tests from these PUTs using DSE. As PUTs
are not available with our subject applications, we generated
PUTSs for each public method in our subject applications us-
ing the PexWizard tool. PexWizard is a tool provided with
Pex and this tool automatically generates PUTs for each
public method in the application given as input. A PUT
generated for the Compute MUT (Figure 1) is shown below.

00: [PexMethod]

O1:public void ComputeO1(

02: [PexAssumeUnderTest]UndirectedDFS target,

03: [PexAssumeUnderTest]Vertex s) {

04: target.Compute(s);

05: Assert.Inconclusive("this test has to be reviewed");
06:}

The receiver object and argument objects required for the
Compute MUT are accepted as arguments for the PUT. Pex
generates skeletons for the non-primitive arguments by us-
ing a heuristic-based approach (Section 2.2). For this evalu-
ation, we used only the QuickGraph application. The reason
is that Pex does not terminate in generating unit tests for the
Facebook application. In future work, we plan to investigate
the issues with Pex and apply Pex on the Facebook applica-
tion. To provide a baseline for showing the effectiveness of
our approach, we first applied Pex on PUTSs generated for
the QuickGraph application. We executed generated unit
tests and measured branch coverage achieved by these unit
tests for different namespaces in the QuickGraph applica-
tion. In our evaluation, we use default configurations of
Pex.

We next used our extracted sequences to assist Pex. Pex
provides a feature called factory methods, which allow pro-



Application # of [Test Code|Random|[Random + MSeqGen| % Increase in
classes T R R+ M Branch coverage

QuickGraph.Algorithms 104 18.4 63.3 63.3 -
QuickGraph.Algorithms.Search 11 40.3 33.3 47.6 14.3
QuickGraph.Algorithms.ShortestPath| 4 0 29.3 30.2 0.9
QuickGraph.Algorithms.Visitors 11 0 86.4 86.4 -
QuickGraph.Collections 19 11.2 74.0 83.3 9.3
QuickGraph.Exceptions 3 40.0 100.0 100.0 -
QuickGraph.Predicates 9 8.6 43.1 48.3 5.2
QuickGraph.Providers 1 100.0 80.0 100.0 20.0
QuickGraph.Representations 3 43.1 35.1 49.0 13.9
facebook 25 48.9 14.0 23.3 9.3
facebook.Components 3 0 30.7 30.7 -
facebook.desktop 14 0 18.5 21.0 2.5
facebook.Forms 4 0 11.1 11.1 -
facebook.Properties 1 31.3 37.5 37.5 -
facebook.Schema 216 6.1 20.8 24.8 4.1
facebook.Types 1 0 100.0 100.0 -
facebook.Utility 8 49.1 22.6 37.7 15.1
facebook.web 12 0 3.3 4.5 1.2
AVERAGE 8.7

Table 1:
MSeqGen. T: Test code, R: Randoop, M: MSeqGen

Application # C| P |P 4+ M|Increase
%
QuickGraph.Algorithms 104 18.2| 30.6 22.5
QuickGraph.Algorithms.Search 1110 13.9 13.9
QuickGraph.Algorithms.ShortestPath{ 4 |[1.9 1.9 -
QuickGraph.Algorithms. Visitors 11 |50.0] 50.0 -
QuickGraph.Collections 19 [14.9] 29.0 14.1
QuickGraph.Exceptions 3 160.0] 60.0 -
QuickGraph.Predicates 9 |31.0f 31.0 -
QuickGraph.Representations 1 [2.7] 21.6 19.2
AVERAGE 17.4

Table 2: Evaluation results showing higher branch
coverage achieved by Pex with the assistance of
MSeqGen. # C: number of classes, P: Pex, M: MSeqGen

grammers to provide assistance to Pex in generating non-
primitive object types. We used this feature by converting
our extracted sequences into factory methods. One issue
with factory methods is that the current Pex allows only
one factory method for a non-primitive object type. As our
approach can extract multiple sequences for creating an ob-
ject of a non-primitive type, we combine all sequences re-
lated to a non-primitive type into one factory method by
using a switch statement. We next apply Pex on the sub-
ject application with new factory methods created based on
our extracted sequences. We again generate unit tests using
Pex and measure new branch coverage.

Table 2 shows our results by applying Pex with and with-
out our sequences on the QuickGraph application. On av-
erage, our approach helped increase the branch coverage by
17.4% (with a maximum increase of 22.5% for one names-
pace). Although there is a considerable increase in branch
coverage with the assistance from our approach, overall Pex
still achieved low branch coverage. This result is due to a
limitation with the current Pex that cannot automatically
identify implementing classes for interfaces and use their re-
lated factory methods. Often, factory methods created by
our approach accept interfaces as arguments. Therefore, Pex
is not able to identify relevant factory methods for interfaces,
although factory methods for their implementing classes are
created by our approach. In future work, we plan to address

Evaluation results showing higher branch coverage achieved by Randoop with the assistance of

this limitation and we expect that our results can be much
better after addressing this limitation of Pex.

We next present example scenarios where our approach is
quite useful in achieving higher branch coverage with Pex.
We use the TopologicalSortAlgorithm class in the Quick-
Graph.Algorithms namespace as an illustrative example. With-
out the assistance from our approach, Pex did not achieve
any coverage of the TopologicalSortAlgorithm class as Pex
was not able to generate any sequences for creating objects
of the TopologicalSortAlgorithm class. The reason for not
able to generate any sequences is that the constructor of
TopologicalSortAlgorithm accepts an interface as input. Us-
ing the factory methods generated by our approach, Pex
achieved a branch coverage of 57.9% (11 out of 19 branches).
Our results show that our approach can assist DSE-based
approaches in achieving higher code coverage than without
using our approach.

6. THREATSTO VALIDITY

The threats to external validity primarily include the de-
gree to which the subject applications used in our evalua-
tion are representative of true practice. We used two real
non-trivial subjects in our evaluation: a medium-scale appli-
cation QuickGraph [20] and a large-scale application Face-
book [9]. These threats could be reduced by using more
subjects in our evaluation. The threats to internal validity
are instrumentation effects that can bias our results. Faults
in our MSeqGen prototype might cause such effects. Fur-
thermore, faults in the tools for random and DSE-based
approaches used in our evaluations might also cause such
effects. To reduce these threats, we inspected a significant
sample set of generated test results.

7. DISCUSSION AND FUTURE WORK

Although random and DSE-based approaches show con-
siderable increase in branch coverage with the assistance
from our approach, overall coverage achieved by these ap-
proaches are still not close to 100% coverage. The reason is
that often code under test includes complex branches that



00:public void Visit(IVertex s) {

01: ...

02: m_Q.Push(s);

03: while (m_Q.Count !'= 0) {

04: IVertex u = (IVertex)m_Q.Peek();

05: m_Q.Pop();

06: .

07: foreach(IEdge e in VisitedGraph.OutEdges(uw)) {

08: ... //Difficult branch

09: }

10: }

11:}

Figure 8: An example difficult branch not reached
by any approach used in our evaluation.

are quite difficult to cover. We next give an example of a
difficult branch that is not covered by any of the approaches
used in our evaluation. We use the code example shown in
Figure 8 as an illustrative example. This difficult branch is in
the Visit method of the BreadthFirstSearchAlgorithm class.
The receiver-object state to reach Statement 8 requires that
the VisitedGraph object has a non-empty set of vertices and
edges. Reaching Statement 8 also requires a specific object
state for the argument s. In particular, the vertex repre-
sented by the argument s should already exist in the Vis-
itedGraph object and should have outgoing edges. Although
our extracted sequences include a sequence for achieving a
desirable receiver-object state, our sequences do not include
a necessary sequence for achieving a desirable argument-
object state. In future work, we plan to further address
these issues by generating new sequences using evolution-
ary approaches [11,27]. There, we can use our extracted
sequences as an initial set for these evolutionary approaches
to evolve. Generation of new sequences using evolutionary
approaches can also help reduce the bias in our approach,
where our approach gives more preference to verify common
usage rather than uncommon usage.

In our evaluations, for the facebook and facebook.Utility
namespaces, branch coverage achieved by Randoop (with
the assistance of our approach) is lower than branch cov-
erage achieved by the test code (commonly written by ap-
plication developers). There are two primary reasons for
lower coverage of these namespaces: limitations of the ran-
dom mechanism of Randoop and our current implementa-
tion. Our current implementation does not handle several
features such as inheritance or C# generics. Therefore, our
implementation could not capture some sequences due to
their use of these features. In future work, we plan to ex-
tend our implementation to support these features.

Our approach extracts sequences from code bases using
the receiver or argument object types of a MUT (in a frame-
work under analysis) and generates method bodies to as-
sist test-generation approaches. Sometimes, these sequences
may include object types specific to the code bases. For ex-
ample, these object types can be classes that implement in-
terfaces provided by the framework under analysis. In such
scenarios, the method bodies generated by our approach are
not compilable. Currently, we fix those compilation errors
manually. In future work, we plan to automatically compile
and verify extracted sequences to reduce this manual effort.

8. RELATED WORK

Test-generation approaches [5,12,18,30] were developed
for object-oriented testing and these approaches accept a
class under test (CUT) and generate random sequences of
method calls belonging to the CUT with random values for

method arguments. Another set of approaches [11] replaces
random values for method arguments with symbolic values
and compute concrete values for these arguments by solv-
ing constraints inside the method under test. Tonella [27]
proposed an approach that exploits genetic algorithms to
generate new sequences evolved from an initial set of se-
quences. Tonella’s approach requires the users to provide
this initial set of sequences. Inkumsah and Xie [11] extended
Tonella’s approach by integrating evolutionary testing with
symbolic execution. However, all these approaches cannot
handle multiple classes and their methods due to a large
search space of possible sequences.

Randoop [19] executes constructed sequences in each it-
eration and computes feedback in order to guide the search
process to generate valid sequences. However, Randoop still
relies on random techniques and cannot effectively generate
sequences for achieving target states as shown in our eval-
uation. Our approach extracts sequences from code bases
and use those sequences to assist other approaches such as
Randoop in achieving higher structural coverage.

Our approach is also related to another category of ap-
proaches based on mining source code [1,8,23,24,29]. These
approaches mine code bases statically and extracts frequent
patterns as implicit programming rules. These approaches
use mining algorithms such as frequent itemset mining [28]
or association rule mining [2] for extracting frequent pat-
terns. These mined programming rules are used for assist-
ing programmers in writing code or detecting violations in
an application under analysis. Our approach also uses static
analysis for extracting patterns as sequences that can pro-
duce objects of receiver or arguments types of a MUT. Un-
like these existing approaches, our approach uses extracted
sequences in a novel way for assisting test-generation ap-
proaches in achieving high structural coverage.

Another category of existing work [7,17,21] uses a capture-
and-replay approach for generating unit tests. During the
capture phase, their approach monitors the interaction of a
unit such as the class under test with the rest of the sys-
tem (to which the class belongs to). Their approach gener-
ates unit tests for the class under test based on monitored
interactions. During the replay phase, their approach exe-
cutes generated unit tests. Our previous approach, called
UnitPlus [22], captures sequences in existing test code and
suggests those sequences to developers in reducing the ef-
fort of writing new unit tests. Our new MSeqGen approach
captures sequences from existing code bases but uses those
sequences for assisting test-generation approaches. Unlike
existing approaches that replay exactly the same captured
behavior, our MSeqGen approach replays beyond the cap-
tured behavior using techniques such as sequence general-
ization or generating new sequences by combining extracted
sequences.

9. CONCLUSION

Generation of desirable method-call sequences for achiev-
ing high structural coverage of the code under test is a known
challenging problem in unit testing of object-oriented code.
Existing work [5,13,30] in addressing this problem is based
primarily on the implementation information of the class un-
der test. In this paper, we proposed the first approach that
addresses this problem from a novel perspective of incor-
porating other sources of information such as how method
calls are used in practice. Our approach gathers the infor-



mation of how method calls are used in practice by min-
ing code bases that use receiver or argument object types
of a method under test. Our approach extracts sequences
related to these object types and uses extracted sequences
to enhance two state-of-the-art test-generation approaches:
random testing and dynamic symbolic execution. We have
demonstrated the effectiveness of our approach with eval-
uations. Using sequences extracted by our approach, we
showed that a random testing approach achieved 8.7% (with
a maximum of 20.0% for one namespace) higher branch cov-
erage and a DSE-based approach achieved 17.4% (with a
maximum of 22.5% for one namespace) higher branch cov-
erage than without using our approach. Such an improve-
ment is significant since the branches that are not covered
by these state-of-the-art approaches are generally quite dif-
ficult to cover. Our approach represents a step towards a
new direction of leveraging research in the field of mining
software engineering data to assist test generation, serving
as a synergy between these two major research areas.
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