
A Characteristic Study of Parameterized Unit1

Tests in .NET Open Source Projects2

Wing Lam3

University of Illinois at Urbana-Champaign, USA4

winglam2@illinois.edu5

Siwakorn Srisakaokul6

University of Illinois at Urbana-Champaign, USA7

srisaka2@illinois.edu8

Blake Bassett9

University of Illinois at Urbana-Champaign, USA10

rbasset2@illinois.edu11

Peyman Mahdian12

University of Illinois at Urbana-Champaign, USA13

mahdian2@illinois.edu14

Tao Xie15

University of Illinois at Urbana-Champaign, USA16

taoxie@illinois.edu17

Pratap Lakshman18

Microsoft, India19

pratapl@microsoft.com20

Jonathan de Halleux21

Microsoft Research, USA22

jhalleux@microsoft.com23

Abstract24

In the past decade, parameterized unit testing has emerged as a promising method to specify25

program behaviors under test in the form of unit tests. Developers can write parameterized26

unit tests (PUTs), unit-test methods with parameters, in contrast to conventional unit tests,27

without parameters. The use of PUTs can enable powerful test generation tools such as Pex to28

have strong test oracles to check against, beyond just uncaught runtime exceptions. In addition,29

PUTs have been popularly supported by various unit testing frameworks for .NET and the JUnit30

framework for Java. However, there exists no study to offer insights on how PUTs are written31

by developers in either proprietary or open source development practices, posing barriers for32

various stakeholders to bring PUTs to widely adopted practices in software industry. To fill this33

gap, we first present categorization results of the Microsoft MSDN Pex Forum posts (contributed34

primarily by industrial practitioners) related to PUTs. We then use the categorization results35

to guide the design of the first characteristic study of PUTs in .NET open source projects. We36

study hundreds of PUTs that open source developers wrote for these open source projects. Our37

study findings provide valuable insights for various stakeholders such as current or prospective38

PUT writers (e.g., developers), PUT framework designers, test-generation tool vendors, testing39

researchers, and testing educators.40

2012 ACM Subject Classification Software and its engineering → Software testing and debug-41

ging42

Keywords and phrases Parameterized unit testing, automated test generation, unit testing43

© Wing Lam, Siwakorn Srisakaokul, Blake Bassett, Peyman Mahdian, Tao Xie, Pratap Lakshman,
and Jonathan de Halleux;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 5; pp. 5:1–5:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:winglam2@illinois.edu
mailto:srisaka2@illinois.edu
mailto:rbasset2@illinois.edu
mailto:mahdian2@illinois.edu
mailto:taoxie@illinois.edu
mailto:pratapl@microsoft.com
mailto:jhalleux@microsoft.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 A Characteristic Study of Parameterized Unit Tests

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.544

Acknowledgements This work was supported in part by National Science Foundation under45

grants no. CCF-1409423, CNS-1513939, and CNS1564274.46

1 Introduction47

With advances in test generation research such as dynamic symbolic execution [23, 35], pow-48

erful test generation tools are now at the fingertips of software developers. For example,49

Pex [37, 39], a state-of-the-art tool based on dynamic symbolic execution, has been shipped50

as IntelliTest [32, 26] in Microsoft Visual Studio 2015 and 2017, benefiting numerous de-51

velopers in software industry. Such test generation tools allow developers to automatically52

generate input values for the code under test, comprehensively covering various program53

behaviors and consequently achieving high code coverage. These tools help alleviate the54

burden of extensive manual software testing, especially on test generation.55

Although such tools provide powerful support for automatic test generation, when they56

are applied directly to the code under test, only a predefined limited set of properties can be57

checked. These predefined properties serve as test oracles for these automatically generated58

input values, and violating these predefined properties leads to various runtime exceptions,59

such as null dereferencing or division by zero. Despite being valuable, these predefined60

properties are weak test oracles, which do not aim for checking functional correctness but61

focus on robustness of the code under test.62

To supply strong test oracles for automatically generated input values, developers can63

write formal specifications such as code contracts [25, 30, 16] in the form of preconditions,64

postconditions, and object invariants in the code under test. However, just like writing65

other types of formal specifications, writing code contracts, especially postconditions, can66

be challenging. According to a study on code contracts [34], 68% of code contracts are67

preconditions while only 26% of them are postconditions (the remaining 6% are object68

invariants). Section 2 shows an example of a method under test whose postconditions are69

difficult to write.70

In the past decade, parameterized unit testing [40, 38] has emerged as a practical alter-71

native to specify program behaviors under test in the form of unit tests. Developers can72

write parameterized unit tests (PUTs), unit-test methods with parameters, in contrast to73

conventional unit tests (CUTs), without parameters. Then developers can apply an auto-74

matic test generation tool such as Pex to automatically generate input values for a PUT’s75

parameters. Note that algebraic specifications [24] can be naturally written in the form of76

PUTs but PUTs are not limited to being used to specify algebraic specifications.77

Since parameterized unit testing was first proposed in 2005 [40], PUTs have been popu-78

larly supported by various unit testing frameworks for .NET along with recent versions of79

the JUnit framework (as parameterized tests [9] and theories [33, 13]). However, there exists80

no study to offer insights on how PUTs are written by developers in development practices of81

either proprietary or open source software, posing barriers for various stakeholders to bring82

PUTs to widely adopted practices in software industry. Example stakeholders are current or83

prospective PUT writers (e.g., developers), PUT framework designers, test-generation tool84

vendors, testing researchers, and testing educators.85

To address the lack of studies on PUTs, we first conduct a categorization of 93 Microsoft86

MSDN Pex Forum posts [31] (contributed primarily by industrial practitioners) related87

to parameterized unit tests. We then use the categorization results to guide the design88

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.5

W. Lam et al. 5:3

of the first characteristic study of PUTs in .NET open source projects (with a focus on89

PUTs written using the Pex framework, given that Pex is one of the most widely used90

test generation tools in industry [39]). Our findings from the categorization results of the91

forum posts show the following top three PUT-related categories that developers are most92

concerned with:93

1. “Assumption/Assertion/Attribute usage” problems, which involve the discussion of us-94

ing certain PUT assumptions, assertions, and attributes to address the issues faced by95

developers, are the most popular category of posts (occupying 23 of the 93 posts).96

2. “Non-primitive parameters/object creation” problems, which involve the discussion of97

generating objects for PUTs with parameters of a non-primitive type, are the second98

most popular category of posts (occupying 17 of the 93 posts).99

3. “PUT concept/guideline” problems, which involve the discussion of the PUT concept100

and general guidelines for writing good PUTs, are the third most popular category of101

posts (occupying 11 of the 93 posts).102

Upon further investigation into these top PUT-related categories, we find that developers103

in general are concerned with when and what assumptions, assertions, and attributes they104

should use when they are writing PUTs. We find that a significant number of forum posts are105

directly related to how developers should replace hard-coded method sequences with non-106

primitive parameters of PUTs. We also find that developers often question what patterns107

their PUTs should be written in. Using our categorization and investigation results, we108

formulate three research questions and answer these questions using 11 open-source projects,109

which contain 741 PUTs.110

In particular, we investigate the following three research questions and attain correspond-111

ing findings:112

1. What are the extents and the types of assumptions, assertions, and attributes113

being used in PUTs? We present a wide range of assumption, assertion, and at-114

tribute types used by developers as shown in Tables 3a, 3b, and 5, and tool vendors or115

researchers can incorporate this data with their tools to better infer assumptions, asser-116

tions, and attributes to assist developers. For example, tool vendors or researchers who117

care about the most commonly used assumptions should focus on PexAssumeUnderTest118

or PexAssumeNotNull, since these two are the most commonly used assumptions. Lastly,119

based on the studied PUTs, we find that increasing the default value of attributes as120

suggested by tools such as Pex rarely contributes to increased code coverage. Tool ven-121

dors or researchers should aim to improve the quality of the attribute recommendations122

provided by their tools, if any are provided at all.123

2. How often can hard-coded method sequences in PUTs be replaced with non-124

primitive parameters and how useful is it to do so? There are a significant number125

of receiver objects in the PUTs (written by developers) that could be promoted to non-126

primitive parameters, and a significant number of existing non-primitive parameters that127

lack factory methods (i.e., methods manually written to help the tools generate desirable128

object states for non-primitive parameters). It is worthwhile for tool researchers or129

vendors to provide effective tool support to assist developers to promote these receiver130

objects (resulted from hard-coded method sequences), e.g., inferring assumptions for131

a non-primitive parameter promoted from hard-coded method sequences. Additionally,132

once hard-coded method sequences are promoted to non-primitive parameters, developers133

can also use assistance in writing more factory methods for such parameters.134

3. What are common design patterns and bad code smells of PUTs? By under-135

standing how developers write PUTs, testing educators can teach developers appropriate136

ECOOP 2018

5:4 A Characteristic Study of Parameterized Unit Tests

ways to improve PUTs. For example, developers should consider splitting PUTs with137

multiple conditional statements into separate PUTs each covering a case of the condi-138

tional statements. Doing so makes the PUTs easier to understand and eases the effort139

to diagnose the reason for test failures. Tool vendors and researchers can also incorpo-140

rate this data with their tools to check the style of PUTs for suggesting how the PUTs141

can be improved. For example, checking whether a PUT contains conditionals, contains142

hard-coded test data, and contains duplicate test code, etc. often accurately identifies a143

PUT that can be improved.144

In summary, this paper makes the following major contributions:145

The categorization of the Microsoft MSDN Pex Forum posts (contributed primarily by146

industrial practitioners) related to PUTs.147

The first characteristic study of PUTs in open source projects, with a focus on hundreds148

of real-world PUTs, producing study findings that provide valuable insights for various149

stakeholders.150

A collection of real-world open-source projects equipped with developer-written PUTs151

and a suite of tools for analyzing PUTs (both are used for our study and are released152

on our project website [10]). These PUTs and analysis tools can be used by the commu-153

nity to conduct future empirical studies or to evaluate enhancements to automated test154

generation tools.155

The work in this paper is part of the efforts of our industry-academia team (including156

university/industrial testing researchers and tool vendors) for bringing parameterized unit157

testing to broad industrial practices of software development. To understand how automatic158

test generation tools interact with PUTs, we specifically study PUTs written with the Pex159

framework. Besides the Pex framework, other .NET frameworks such as NUnit also support160

PUTs. In recent years, PUTs are also increasingly adopted among Java developers, partly161

due to the inclusion of parameterized test [9] and theories [33, 13] in the JUnit framework.162

However, unlike the Pex framework, these other frameworks lack powerful test generation163

tools such as Pex to support automatic generation of tests with high code coverage, and164

part of our study with PUTs, specifically the part described in Section 5, does investigate165

the code coverage of the input values automatically generated from PUTs.166

The remainder of this paper is organized as follows. Section 2 presents an example of167

parameterized unit testing. Section 3 discusses the categorization of Pex forum posts that168

motivates our study. Section 4 discusses the setup of our study. Section 5 presents our169

study findings and discusses the implications to stakeholders. Section 6 discusses threats170

to validity of our study. Section 7 presents our related work, and Section 8 concludes the171

paper.172

2 Background173

Consider the method under test from the open source project of NUnit Console [6] in Fig-174

ure 1. One way to supply strong test oracles for automatically generated input values is175

to write preconditions and postconditions for this method under test. It is relatively easy176

to specify preconditions for the method as (sn != null) && (sv != null) but it is actually177

quite challenging to specify comprehensive postconditions to capture this method’s intended178

behaviors. The reason is that this method’s intended behaviors depend on the behaviors179

of all the method calls inside the SaveSetting method. In order to write postconditions180

for SaveSetting, we would need to know the postconditions of the other method calls in181

W. Lam et al. 5:5

1 public class SettingsGroup {
2 private Hashtable storage = new Hashtable();
3 public event SettingsEventHandler Changed;
4 public void SaveSetting(string sn, object sv) {
5 object ov = GetSetting(settingName);
6 //Avoid change if there is no real change
7 if(ov != null) {
8 if((ov is string && sv is string && (string)ov == (string)sv) ||
9 (os is int && sv is int && (int)ov == (int)sv) ||

10 (os is bool && sv is bool && (bool)ov == (bool)sv) ||
11 (os is Enum && sv is Enum && ov.Equals(sv)))
12 return;
13 }
14 storage[settingName] = settingValue;
15 if(Changed != null)
16 Changed(this, new SettingsEventArgs(sn));
17 }
18 }

Figure 1 SaveSetting method under test from the SettingsGroup class of NUnit Console [6].

SaveSetting (e.g., GetSetting) as well. In addition, the postconditions can be very long182

since there are many conditional statements with complex conditions (e.g., Lines 8-11). If a183

method contains loops, its postcondition may be even more difficult to write, since we would184

need to know the loop invariants and the postconditions may need to contain quantifiers.185

Thus, there is a need for a practical method to specify program behaviors under test in186

the form of unit tests. Specifying program behaviors in the form of unit tests can be easier187

since we do not need to specify all the intended behaviors of the method under test as a188

single logical formula. Instead, we can write test code to specify the intended behaviors of189

the method under test for a specific scenario (e.g., interacting with other specific methods).190

For example, a real-world conventional unit test (CUT) written by the NUnit developers191

is shown in Figure 2. The CUT in this figure checks that after we save a setting by call-192

ing the SaveSetting method, we should be able to retrieve the same setting by calling the193

GetSetting method. Despite seemingly comprehensive, the CUT in Figure 2 is insufficient,194

since it is unable to cover Lines 8-12 of the method in Figure 1. Figure 3 shows an additional195

CUT that developers can write to cover Lines 8-12; this additional CUT checks that saving196

the same setting twice does not invoke the Changed event handler twice. These two CUTs’197

corresponding, and more powerful, PUT is shown in Figure 4.198

The beginning of the PUT (Lines 3-5) include PexAssume statements that serve as as-199

sumptions for the three PUT parameters. During test generation, Pex filters out all the200

generated input values (for the PUT parameters) that violate the specified assumptions.201

These assumptions are needed to specify the state of SettingsGroup that one may want to202

test. For example, according to Lines 2-3 in Figure 2, sg initially does not have "X" and203

"NAME" set. Thus, we need to add PexAssume.IsNull(st.Getting(sn)) (Line 5) to force Pex204

to generate only an object of SettingsGroup that satisfies the same condition as Lines 2-3205

in Figure 2. Otherwise, without such assumptions, the input values generated by Pex may206

largely be of no interest to the developers. The PexAssert statements in Lines 7 and 10207

are used as the assertions to be verified when running the generated input values. More208

specifically, the assumption on Line 5 and the assertion on Line 7 in the PUT correspond209

to Lines 2-3 and Lines 6-7, respectively, in the CUT from Figure 2. Lines 8-9 in the PUT210

then cover the case of calling the SaveSetting method twice with the same parameters as211

accomplished in the CUT shown in Figure 3. Note that writing the PUT allows the test to212

be more general as variable sn can be any arbitrary string, better than hard-coding it to be213

only "X" or "NAME" (as done in the CUTs).214

A PUT is annotated with the [PexMethod] attribute, and is sometimes attached with215

ECOOP 2018

5:6 A Characteristic Study of Parameterized Unit Tests

1 public void SaveAndLoadSettings() {
2 Assert.IsNull(sg.GetSetting("X"));
3 Assert.IsNull(sg.GetSetting("NAME"));
4 sg.SaveSetting("X", 5);
5 sg.SaveSetting("NAME", "Charlie");
6 Assert.AreEqual(5, sg.GetSetting("X"));
7 Assert.AreEqual("Charlie", sg.GetSetting("NAME"));
8 }

Figure 2 A real-world CUT for the method in Figure 1.

1 public void SaveSettingsWhenSettingIsAlreadyInitialized() {
2 Assert.IsNull(sg.GetSetting("X"));
3 sg.SaveSetting("X", 5);
4 sg.SaveSetting("X", 5);
5 // Below assert that Changed only got invoked once in SaveSetting
6 ...
7 }

Figure 3 An additional CUT for the method in Figure 1 to cover the lines that the CUT in
Figure 2 does not cover.

1 [PexMethod(MaxRuns = 200)]
2 public void TestSave1(SettingsGroup sg, string sn, object sv) {
3 PexAssume.IsTrue(sg != null && sg.Changed != null);
4 PexAssume.IsTrue(sn != null && sv != null);
5 PexAssume.IsNull(sg.GetSetting(sn));
6 sg.SaveSetting(sn, sv);
7 PexAssert.AreEqual(sv, sg.GetSetting(sn));
8 sg.SaveSetting(sn, sv);
9 // Below assert that Changed only got invoked once in SaveSetting

10 ...
11 }

Figure 4 The PUT corresponding to the CUTs in Figures 2 and 3.

optional attributes to provide configuration options for automatic test generation tools.216

An example attribute is [PexMethod(MaxRuns = 200)] as shown in Figure 4. The MaxRuns217

attribute along with the attribute value of 200 indicates that Pex can take a maximum218

of 200 runs/iterations during Pex’s path exploration phase for test generation. Since the219

default value of MaxRuns is 1000, setting the value of MaxRuns to be just 200 decreases the220

time that Pex may take to generate input values. Note that doing so may also cause Pex to221

generate fewer input values.222

3 Categorization of Forum Posts223

This section presents our categorization results of the Microsoft MSDN Pex Forum posts [31]224

related to parameterized unit tests. As of January 10th, 2018, the forum includes 1,436 posts225

asked by Pex users around the world. These users are primarily industrial practitioners. To226

select the forum posts related to parameterized unit tests, we search the forum with each227

of the keywords “parameterized”, “PUT”, and “unit test”. Searching the forum with these228

three keywords returns 14, 18, and 243 posts, respectively. We manually inspect each of229

these returned posts to select only posts that are actually related to parameterized unit tests.230

Finally among the returned posts, we identify 93 posts as those related to parameterized231

unit tests. Then we categorize these 93 posts into 8 major categories and one miscellaneous232

category, as shown in Table 1. The categorization details of the 93 posts can be found on233

our project website [10]. We next describe each of these categories and the number of posts234

falling into each category.235

The posts falling into the top 1 category “assumption/assertion/attribute usage” (25%236

of the posts) involve discussion of using certain PUT assumptions, assertions, and attributes237

W. Lam et al. 5:7

Table 1 Categorization results of the Microsoft MSDN Pex Forum posts related to parameterized
unit tests.

Category #Posts
Assumption/Assertion/Attribute usage 25% (23/93)
Non-primitive parameters/object creation 18% (17/93)
PUT concept/guideline 12% (11/93)
Test generation 11% (10/93)
PUT/CUT relationship 9% (8/93)
Testing interface/generic class/abstract class 6% (6/93)
Code contracts 5% (5/93)
Mocking 5% (5/93)
Miscellaneous 9% (8/93)
Total 100% (93/93)

to address the issues faced by PUT users. The posts falling into the second most popular238

category “non-primitive parameters/object creation” (18% of the posts) involve discussion239

of generating objects for PUTs with non-primitive-type parameters, one of the two major240

issues [42] for Pex to generate input values for PUTs. The posts falling into category “PUT241

concept/guideline” (12% of the posts) involve discussion of the PUT concept and general242

guideline for writing good PUTs. The posts falling into category “test generation” (11%243

of the posts) involve discussion of Pex’s test generation for PUTs. The posts falling into244

category “PUT/CUT relationship” (9% of the posts) involve discussion of co-existence of245

both CUTs and PUTs for the code under test. The posts falling into category “testing246

interface/generic class/abstract class” (6% of the posts) involve discussion of writing PUTs247

for interfaces, generic classes, or abstract classes. The posts falling into category “code248

contracts” (5% of the posts) involve discussion of writing PUTs for code under test equipped249

with code contracts [25, 30, 16]. The posts falling into category “mocking” (5% of the posts)250

involve discussion of writing mock models together with PUTs. The miscellaneous category251

(9% of the posts) includes those other posts that cannot be classified into one of the 8 major252

categories.253

We use the posts from the top 3 major categories to guide our study design described in254

the rest of the paper, specifically with research questions RQ1-RQ3 listed in Section 5. In255

particular, our study focuses on quantitative aspects of assumption, assertion, and attribute256

usage (top 1 category) in RQ1, non-primitive parameters/object creation (top 2 category)257

in RQ2, and PUT concept/guideline (top 3 category) in RQ3.258

4 Study Setup259

This section describes our process for collecting subjects (e.g., open source projects contain-260

ing PUTs) and the tools that we develop to collect and process data from the subjects. The261

details of these subjects and our tools can be found on our project website [10].262

4.1 Subject-collection Procedure263

The subject-collection procedure (including subject sanitization) is a multi-stage process. At264

a coarse granularity, this process involves (1) comprehensive and extensive subject collection265

from searchable online source code repositories, (2) deduplication of subjects obtained multi-266

ple times from different repositories, and (3) verification of developer-written parameterized267

ECOOP 2018

5:8 A Characteristic Study of Parameterized Unit Tests

unit tests (e.g., filtering out subjects containing only automatically-generated parameterized268

test stubs).269

For comprehensive collection of subjects, we query a set of widely known code search270

services. The used query is “PexMethod Assert”, requiring both “PexMethod” and “Assert”271

to appear in the source file of the search results. The two code search services that return272

non-empty results based on our search criteria are GitHub [4] and SearchCode [12]. For273

each code search service, we first search with our query, and then we extract the source274

code repositories containing the files in the search results. When a particular repository is275

available from multiple search services, we extract the version of the repository from the276

search service that has the most recent commit. Lastly, we manually verify that each of our277

source code repositories has at least one PUT with one or more parameters and one or more278

assertions.279

4.2 Analysis Tools280

We develop a set of tools to collect metrics from the subjects. We use Roslyn [5], the281

.NET Compiler Platform, to build our tools. These tools parse C# source files to produce282

an abstract syntax tree, which is traversed to collect information and statistics of interest.283

More specifically, the analysis tools statically analyze the C# source code in the .cs files of284

each subject. The outputs of the tools include but are not limited to the following: PUTs,285

PUTs with if statements, results in Tables 3 and 6, the number of assumption and assertion286

clauses, and attributes of the subjects’ PUTs. In general, the results that we present in the287

remainder of the paper are collected either directly with the analysis tools released on our288

website [10], manual investigation conducted by the authors, or a combination of the two289

(e.g., using the PUTs with if statements to manually categorize the number of PUTs that290

have unnecessary if statements).291

4.3 Collected Subjects292

In total, we study 77 subjects and retain only the subjects that contain at least 10 PUTs and293

are not used for university courses or academic research (e.g., creating PUTs to experiment294

with Pex’s capability of achieving high code coverage). This comprehensive list of subjects295

that we study can be found on our project website [10].296

Table 2 shows the information on the subjects that contain at least 10 PUTs. We count297

a test method as a PUT if the test method is annotated with attribute “PexMethod” and has298

at least one parameter. Our detailed study for research questions focuses on subjects with299

at least 10 PUTs because a subject with fewer PUTs often includes occasional tryouts of300

PUTs instead of serious use of them for testing the functionalities of the open source project.301

Column 1 shows the name of each subject, and Columns 2-3 shows the number of PUTs302

and CUTs in each subject. Columns 4-6 show the number of the lines of production source303

code, PUTs and CUTs, respectively, in each subject. Columns 7-8 shows the percentage of304

statements covered in the project under test by the PUTs on which Pex is applied and by the305

CUTs of the subject. Column 9 shows the version of Pex a subject’s PUTs were written with.306

If a subject contains PUTs written with multiple versions of Pex, the most recent version of307

Pex used to write the subject’s PUTs is shown. Altogether, we identify 11 subjects with at308

least 10 PUTs, and these subjects contain a total of 741 PUTs. When we examine the profiles309

of the contributors to the subjects, we find that all but one of the subjects have contributors310

who work in industry. The remaining one subject, PurelyFunctionalDataStructures, referred311

to as PFDS in our tables, is developed by a graduate student imitating the algorithms in a312

W. Lam et al. 5:9

Table 2 Subjects collected for our study.

#Methods #LOC Code Cov. Pex
Subject Name PUT CUT Source PUT CUT PUT CUT Version
Atom 240 297 127916 3570 3983 N/A N/A 0.20.41218.2
BBCode 17 22 1576 188 219 84% 69% 0.94.0.0
ConcurrentList 23 57 315 243 645 51% 75% 0.94.0.0
Functional-dotnet 41 87 14002 355 1666 N/A N/A 0.15.40714.1
Henoch 63 149 4793 142 2816 N/A N/A 0.94.0.0
OpenMheg 45 6 21809 382 100 N/A N/A 0.6.30728.0
PFDS 10 2 1818 120 34 50% 12% 0.93.0.0
QuickGraph 205 123 38530 1478 2186 5% 50% 0.94.0.0
SerialProtocol 34 0 7603 269 0 49% 0% 0.94.0.0
Shweet 12 42 2481 295 703 N/A N/A 0.91.50418.0
Utilities-net 51 0 3224 475 0 26% 0% 0.94.0.0
Total 741 785 223158 7496 12352 - - -
Average 67 71 22174 681 1123 52% 41% -

data structure textbook. The table shows the percentage of statements covered for only 5313

out of 11 subjects because we have difficulties compiling the other subjects (e.g., a subject314

misses some dependencies). Part of our future work is to debug the remaining subjects315

so that we can compile them. More details about the subjects (e.g., the contributors of316

the subjects, the number of public methods in the subjects) can be found on our project317

website [10].318

5 Study Results319

Our study is based on forum posts asked by Pex users around the world as detailed in Sec-320

tions 5.1 to 5.3. Our study findings aim to benefit various stakeholders such as current321

or prospective PUT writers (e.g., developers), PUT framework designers, test-generation322

tool vendors, testing researchers, and testing educators. In particular, our study intends to323

address the following three main research questions:324

RQ1: What are the extents and the types of assumptions, assertions, and attributes325

being used in PUTs?326

We address RQ1 because addressing it can help understand developers’ current prac-327

tice of writing assumptions, assertions, and attributes in PUTs, and better inform328

stakeholders future directions on providing effective tool support or training on writ-329

ing assumptions, assertions, and attributes in PUTs.330

RQ2: How often can hard-coded method sequences in PUTs be replaced with non-331

primitive parameters and how useful is it to do so?332

We address RQ2 because addressing it can help understand the extent of writing333

sufficiently general PUTs (e.g., promoting an object produced by a method sequence334

hard-coded in a PUT to a non-primitive parameter of the PUT) to fully leverage335

automatic test generation tools.336

RQ3: What are common design patterns and bad code smells of PUTs?337

We address RQ3 because addressing it can help understand how developers are cur-338

rently writing PUTs and identify better ways to write good PUTs.339

ECOOP 2018

5:10 A Characteristic Study of Parameterized Unit Tests

5.1 RQ1. Assumptions, Assertions, and Attributes340

Table 3

(a) Different types of assumptions in
subjects.

PexAssume Type # #NC
PexAssumeUnderTest 273 273
PexAssumeNotNull 211 211
IsTrue 158 2
AreNotEqual 73 0
EnumIsDefined 22 0
AreDistinct 13 0
AreDistinctValues 13 0
IsNotNull 10 10
IsFalse 9 0
AreEqual 9 0
TrueForAll 7 2
IsNotNullOrEmpty 4 4
Fail 4 0
InRange 3 0
AreElementsNotNull 1 1
Total 810 503
Null Check Percentage 62% (503/810)

(b) Different types of assertions in
subjects.

PexAssert Type # #NC
AreEqual 355 0
IsTrue 199 2
IsFalse 75 3
Inconclusive 43 0
IsNotNull 26 26
Equal 21 1
TrueForAll 19 0
That 17 0
AreElementsEqual 16 0
IsNull 9 9
AreNotEqual 5 0
Fail 5 0
Throws 5 0
AreBehaviorsEqual 4 0
ImpliesIsTrue 3 0
FALSE 3 0
TRUE 3 0
Empty 2 0
Implies 2 0
Contains 1 0
DoesNotContain 1 0
ReachEventually 1 0
Total 815 41
Null Check Percentage 5% (41/815)

To understand developers’ practices of writing assumptions, assertions, and attributes in341

PUTs, we study our subjects’ common types of assumptions, assertions, and attributes. Our342

study helps provide relevant insights to the posts from the Assumption/Assertion/Attribute343

usage category described in Section 3. For example, the original poster of the forum post344

titled “New to Unit Testing” questions what type of assertions she/he should use. Another345

forum post titled “Do I use NUnit Assert or PexAssert inside my PUTs?” reveals that the346

original poster does not understand when and what assumptions to use.347

5.1.1 Assumption Usage348

As shown in Table 3a, PexAssumeUnderTest is the most common type of assumption, used349

273 times in our subjects. PexAssumeUnderTest marks parameters as non-null and to be350

that precise type. The second most common type of assumption, PexAssumeNotNull, is used351

211 times. Similar to PexAssumeUnderTest, PexAssumeNotNull marks parameters as non-null352

except that it does not require their types to be precise. Both PexAssumeUnderTest and353

PexAssumeNotNull are specified as attributes of parameters, but they are essentially a conve-354

W. Lam et al. 5:11

Figure 5 Assumption-type distribution for each of our subjects.

nient alternative to specifying assumptions (e.g., the use of attribute PexAssumeNotNull on355

a parameter X is the same as PexAssume.IsNotNull(X)). Since PUTs are commonly written356

to test the behavior of non-null objects as the class under test or use non-null objects as357

arguments to a method under test, it is reasonable that the common assumption types used358

by developers are ones that mark parameters as non-null. Figure 5 shows that the com-359

bination of PexAssumeUnderTest, PexAssumeNotNull, and IsNotNull, which are for nullness360

checking, appears the most in all of our subjects. Note that Figure 5 contains only the top361

10 commonly used assumption types in our subjects. Furthermore, according to the last row362

of Tables 3a and 3b, developers perform null checks much more frequently for assumptions363

than assertions. Our findings about the frequency of assumption types and assertion types364

that check whether objects are null are similar to the findings of a previous study [34] on365

how frequently preconditions and postconditions in code contracts are used to check whether366

objects are null. Similar to code contracts, we find that 62% of assumptions perform null367

checks while the study on code contracts finds that 77% (1079/1356) of preconditions per-368

form null checks. Our study also finds that 5% of assertions perform null checks while the369

study on code contracts finds that 43% (165/380) of postconditions perform null checks.370

Since assertions are validated at the end of a PUT and it is less often that code before the371

assertions manipulates or produces a null object, it is reasonable that assumptions check for372

null much more frequently than assertions do. For assumption and assertion types such as373

TrueForAll, developers’ low number of uses may be due to the unawareness of such types’374

existence. TrueForAll checks whether a predicate holds over a collection of elements. In our375

subjects, we find cases such as the one in Figure 6 where a collection is iterated over to check376

whether a predicate is true for all of its elements; instead, developers could have used the377

ECOOP 2018

5:12 A Characteristic Study of Parameterized Unit Tests

1 [PexMethod]
2 public void GetEnumerator_WhenMatrixConvertedToEnumerable_IteratesOverAllElements<T>(
3 [PexAssumeNotNull]ObjectMatrix<T> matrix) {
4 System.Collections.IEnumerable enumerable = matrix;
5 foreach(var item in enumerable.Cast<T>())
6 {
7 Assert.IsTrue(matrix.Contains(item));
8 }
9 }

Figure 6 PUT (in Atom [1]) that could benefit from Pex’s TrueForAll assertion.

TrueForAll assumption or assertion. More specifically, the developers of the method in Fig-378

ure 6 could have replaced Lines 5-8 with PexAssert.TrueForAll(enumerable.Cast<T>(), item379

=> matrix.Contains(item)). It is important to note that in versions of Pex after 0.94.0.0,380

certain assumption and assertion types were removed (e.g., TrueForAll). However, as shown381

in Table 2, none of our subjects used versions of Pex after 0.94.0.0.382

5.1.2 Assertion Usage383

According to Figure 7, in all of the subjects except OpenMheg, the PUTs usually contain384

assertions for nullness or equality checking. Instead, OpenMheg’s assertions are mainly385

Assert.Inconclusive. Assert.Inconclusive is used to indicate that a test is still incomplete.386

From our inspection of the PUTs with Assert.Inconclusive in OpenMheg, we find that de-387

velopers write Assert.Inconclusive("this test has to be reviewed") in the PUTs. When388

we investigate the contents of these PUTs, we find that the developers indeed use these as-389

sertions to keep track of which tests are still incomplete. One example of OpenMheg’s PUT390

that contains Assert.Inconclusive is shown in Figure 8. The example is one of many PUTs391

in OpenMheg that create a new object but then do nothing with the object and contain392

no other assertions but Assert.Inconclusive. When we ignore all PUTs of OpenMheg that393

contain only Assert.Inconclusive, we find that the remaining assertions are similar to our394

other subjects in that most of them are for nullness or equality checking.395

As shown in Table 4, the PFDS subject has the highest number of assume clauses per396

PUT method. Upon closer investigation of PFDS’s assume clauses, we find that these clauses397

are necessary because PUTs in PFDS test various data structures and the developers of398

PFDS have to specify assumptions for all of its PUTs to guide Pex to generate data-structure399

inputs that are not null and contain some elements. When we examine the assume clauses400

in Atom, the subject with the second highest number of assume clauses per PUT method,401

we also find similar cases. On the other hand, the Shweet subject has the highest number of402

assert clauses per PUT method. Shweet’s high number of assert clauses per PUT method403

can be attributed to the fact that the subject has multiple PUTs each of which contains404

around 8 assertions. The reason why some of Shweet’s PUTs each have around 8 assertions405

is that the subject’s PUTs test a web service, and the service returns 8 values every time406

it is triggered. Therefore, multiple of Shweet’s PUTs assert for whether these 8 values are407

correctly returned or not.408

5.1.3 Attribute Usage409

To investigate developers’ practices of configuring Pex via PUT attributes, we study the410

number and settings of attributes, as configuration options for running Pex, written by411

developers in PUTs. Our findings from the forum posts related to attributes suggest that412

developers are often confused on what attributes to use or how they should configure at-413

tributes. More specifically, 5 out of 23 of the Assumption/Assertion/Attribute usage forum414

W. Lam et al. 5:13

Figure 7 Assertion-type distribution for each of our subjects.

1 [PexMethod]
2 public Content Constructor03(GenericContentRef genericContentRef) {
3 Content target = new Content(genericContentRef);
4 Assert.Inconclusive("this test has to be reviewed");
5 return target;
6 }

Figure 8 PUT (in OpenMheg [7]) that contains Assert.Inconclusive.

posts involve an answer recommending the use of a particular attribute or configuring an415

attribute in a specific way. For example, a post titled “the test state was: path bounds416

exceeded - infinite loop” discusses how developers should set the MaxBranches attribute of417

Pex. The setting of MaxBranches controls the maximum number of branches taken by Pex418

along a single execution path.419

The fourth column of Table 4 shows the average number of attributes added per PUT.420

The results show that developers add only 1 attribute for every 3-4 PUTs. Table 5 shows421

the number of attributes added for our subjects. Common attributes that developers add422

are MaxRuns, MaxConstraintSolverTime, and MaxBranches. The setting of MaxRuns controls the423

maximum number of runs before Pex terminates. Developers commonly set this attribute424

to be 100 runs when the default value is 1,000. Upon our inspection, most of the PUTs425

that use this attribute test methods related to inserting objects into a data structure. By426

setting the value of this attribute, developers make Pex terminate faster. In fact, 14 out of427

18 attributes used in QuickGraph are MaxRuns.428

MaxConstraintSolverTime is another type of attribute that some projects contain. The429

attribute controls the constraint solver’s timeout value during Pex’s exploration. By default,430

ECOOP 2018

5:14 A Characteristic Study of Parameterized Unit Tests

Table 4 Number of PexAssume clauses, PexAssert clauses, and Pex Attributes per PUT.

Subject Name # of Assume # of Assert # of Attrs
Cl. / PUT Cl. / PUT / PUT

Atom 1.72 (412/240) 1.71 (411/240) 0.07 (16/240)
BBCode 1.71 (29/ 17) 1.47 (25/ 17) 2.18 (37/ 17)
ConcurrentList 0.96 (22/ 23) 0.74 (17/ 23) 0.26 (6/ 23)
Functional-dotnet 1.39 (57/ 41) 1.24 (51/ 41) 0.17 (7/ 41)
Henoch 0.78 (49/ 63) 0.05 (3/ 63) 0.38 (24/ 63)
OpenMheg 0.76 (34/ 45) 1.29 (58/ 45) 0.00 (0/ 45)
PFDS 2.70 (27/ 10) 1.10 (11/ 10) 0.00 (0/ 10)
QuickGraph 0.91 (186/205) 0.85 (175/205) 0.10 (21/205)
SerialProtocol 0.44 (15/ 34) 0.00 (0/ 34) 0.00 (0/ 34)
Shweet 1.00 (12/ 12) 3.42 (41/ 12) 0.33 (4/ 12)
Utilities-net 0.18 (9/ 51) 1.37 (70/ 51) 0.00 (0/ 51)
Average 1.14 1.20 0.32

Table 5 Different types of Pex attributes in our subjects’ PUTs.

Pex Attribute Type #
MaxBranches 36
MaxRuns 18
MaxConstraintSolverTime 12
MaxConditions 8
MaxRunsWIthoutNewTests 6
MaxStack 5
Timeout 4
MaxExecutionTreeNodes 4
MaxWorkingSet 4
MaxConstraintSolverMemory 4
Total 101

MaxConstraintSolverTime is set to 10 seconds. Similar to MaxRuns, we find that developers431

often set the value to be lower than the default value so that Pex would finish sooner. For432

example, BBCode contains PUTs with MaxConstraintSolverTime set to 5 seconds, and Atom433

contains PUTs with MaxConstraintSolverTime set to 2 seconds.434

In contrast to MaxRuns, we find that developers commonly set the value of MaxBranches435

to be higher than the default value. A common value set by developers is 20,000 when the436

default value is 10,000. When we study these PUTs, we find that the code tested by these437

PUTs all has loops, and the developers’ intention when using this attribute is to increase438

the number of loop iterations allowed by Pex. For example, ConcurrentList contains several439

PUTs with MaxBranches = 20000 set. When we run Pex without this attribute, Pex suggests440

to set MaxBranches to 20000. However, when we compare the code coverage with and without441

the attribute being set, we find that the code coverage does not increase with the attribute442

set. In fact, we find that when we manually unset all attributes of ConcurrentList, the code443

coverage does not change at all. The number of input values (generated by Pex) that exhibit444

a failed test result also does not change. Our findings indicate that increasing the default445

values of attributes often does not help increase the code coverage. In fact, for some of BB-446

W. Lam et al. 5:15

Code’s PUTs, its developers set 9 different attributes all to the value of 1,000,000,000. Based447

on our estimation of running Pex on these PUTs, it would take approximately 2000 days for448

Pex to terminate. When we run Pex with a time limit of three hours on BBCode’s PUTs449

with the developer-specified attributes, we notice that the coverage increases marginally by450

less than 1% compared to running Pex with the same time limit on BBCode’s PUTs without451

any attributes.452

5.1.4 Implications453

With the wide range of assumption and assertion types used by developers as shown in454

Tables 3a and 3b, tool vendors or researchers can incorporate this data with their tools455

to better infer assumptions and assertions to assist developers. For example, tool vendors456

or researchers who care about the most commonly used assumption types should focus457

on PexAssumeUnderTest or PexAssumeNotNull, since these two are the most commonly used458

assumption types. Lastly, based on our subjects’ PUTs, we find that increasing the default459

value of attributes as suggested by tools such as Pex rarely contributes to increased code460

coverage. Tool vendors or researchers should aim to improve the quality of the attribute461

recommendations provided by their tools, if any are provided at all.462

5.2 RQ2. Non-primitive Parameters463

Typically developers are expected to avoid hard-coding a method sequence in a PUT to464

produce an object used for testing the method under test. Instead, developers are expected465

to promote such objects to a non-primitive parameter of the PUT. In this way, the PUT466

can be made more general, to capture the intended behavior and enable an automatic467

test generation tool such as Pex to generate objects of various states for the non-primitive468

parameter. We find that 4 out of 17 answers from our non-primitive parameters/object469

creation category of forum posts described in Section 3 are directly related to how developers470

should replace hard-coded method sequences with non-primitive parameters. For example,471

in a forum post titled “Can Pex Generate a List<T> for my PUT”, one of the answers to472

the question is that the developer should write a PUT that takes List as a non-primitive473

parameter instead of hard-coding a specific method sequence for producing a List object.474

Doing so enables Pex to generate non-empty, non-null objects of that list. Since many of our475

forum posts are related to how developers should replace hard-coded method sequences with476

non-primitive parameters, we decide to study how frequently developers write PUTs with477

non-primitive parameters and how often hard-coded method sequences in these PUTs could478

be replaced with non-primitive parameters. More details about the forum posts specifically479

related to this research question can be found on our project website [10].480

5.2.1 Non-primitive Parameter Usage481

As shown in Table 6, our result indicates that developers on average write non-primitive482

parameters 59.0% of the time for the PUTs in our subjects. In other words, for every483

10 parameters used by developers, 5-6 of those parameters are non-primitive. However,484

developers write factory methods for only 17.9% of the non-primitive parameters used in485

our subjects’ PUTs. The lack of non-primitive parameters and factory methods for such486

parameters inhibits test generation tools such as Pex from generating high-quality input487

values. For example, Figure 9 depicts 1 out of 16 PUTs that tests the BinaryHeap data488

structure in the QuickGraph subject. Promoting the object that it is testing (BinaryHeap)489

ECOOP 2018

5:16 A Characteristic Study of Parameterized Unit Tests

Table 6 Statistics for factory methods and non-primitive parameters of our subjects. Average is
calculated by dividing the sum of the two relevant columns (e.g., 59.0% is from the sum of Column
3 / the sum of Column 2).

Subject Name
Non-prim Non-prim w/ Factory

Total Non-prim / Params / Non-prim
Params Params Params w/ Factory Params

Atom 456 290 63.6% 66 22.8%
BBCode 33 9 27.3% 0 0.0%
ConcurrentList 16 0 0.0% 0 -
Functional-dotnet 50 5 10.0% 2 40.0%
Henoch 54 48 88.9% 0 0.0%
OpenMheg 75 55 73.3% 0 0.0%
PFDS 10 10 100.0% 0 0.0%
QuickGraph 125 111 88.8% 21 18.9%
SerialProtocol 51 21 41.2% 12 57.1%
Shweet 21 1 4.8% 0 0.0%
Utilities-net 66 15 22.7% 0 0.0%
Average 59.0% 17.9%

to a non-primitive parameter enables Pex to use factory methods such as the one depicted in490

Figure 10 to generate high-quality input values. Without promoting the BinaryHeap object491

to a parameter and using a factory method such as the one in Figure 10, the input values492

generated by Pex with the 16 PUTs can cover only 13% of the code blocks in the BinaryHeap493

class as opposed to 80% when the BinaryHeap object is promoted and a factory method is494

provided for it. When developers do not promote non-primitive objects to a non-primitive495

parameter or provide factory methods for it, the effectiveness of their tests really depends496

on the values that the developers use to initialize the objects in their tests. For example, if497

developers do not promote the BinaryHeap object to a parameter or provide factory methods498

for it, then depending on the values that the developers would use to initialize the BinaryHeap499

object, the code blocks covered by the 16 PUTs could actually range from 13% to 80% (the500

same as that achieved by promoting the BinaryHeap object to a parameter and providing501

a factory method for it). Promoting the BinaryHeap object to a parameter and providing502

factory methods for it not only enable tools such as Pex to generate objects of BinaryHeap503

that the developers may not have thought of themselves, but also alleviate the burden of504

developers to choose the right values for their tests to properly exercise the code under505

test. It is important to note that if we just promote the BinaryHeap object in the 16 PUTs506

but do not provide a factory method for it, the percentage of code blocks covered by the507

PUTs is 52%. Our findings here suggest that to enable tools such as Pex to generate input508

values that cover the most code, it is desirable to promote non-primitive objects in PUTs to509

non-primitive parameters and provide factory methods for such parameters. However, even510

if no factory methods are provided, simply promoting non-primitive objects in PUTs may511

already increase the code coverage achieved by the input values generated by tools such as512

Pex.513

W. Lam et al. 5:17

1 [PexMethod(MaxRuns = 100)]
2 [PexAllowedExceptionFromTypeUnderTest(typeof(InvalidOperationException))]
3 public void InsertAndRemoveMinimum<TPriority, TValue>(
4 [PexAssumeUnderTest]BinaryHeap<TPriority, TValue> target,
5 [PexAssumeNotNull] KeyValuePair<TPriority, TValue>[] kvs)
6 {
7 var count = target.Count;
8 foreach (var kv in kvs)
9 target.Add(kv.Key, kv.Value);

10 TPriority minimum = default(TPriority);
11 for (int i = 0; i < kvs.Length; ++i)
12 {
13 if (i == 0)
14 minimum = target.RemoveMinimum().Key;
15 else
16 {
17 var m = target.RemoveMinimum().Key;
18 Assert.IsTrue(target.PriorityComparison(minimum, m) <= 0);
19 minimum = m;
20 }
21 AssertInvariant(target);
22 }
23 Assert.AreEqual(0, target.Count);
24 }

Figure 9 InsertAndRemoveMinimum PUT from the BinaryHeapTest class of QuickGraph [11].

1 [PexFactoryMethod(typeof(BinaryHeap<int, int>))]
2 public static BinaryHeap<int, int> Create(int capacity)
3 {
4 var heap = new BinaryHeap<int, int>(capacity, (i, j) => i.CompareTo(j));
5 return heap;
6 }

Figure 10 Factory method for the BinaryHeapTest class of QuickGraph [11].

5.2.2 Promoting Receiver Object514

To determine how often developers could have replaced a hard-coded method sequence with515

a non-primitive parameter, we manually inspect each PUT to determine the number of them516

that could have had their receiver objects be replaced with a non-primitive parameter. We517

consider an object of a PUT to be a receiver object if the object directly or indirectly affects518

the PUT’s assertions. The detailed results of our manual inspection effort can be found on519

our project website [10] under “PUT Patterns”. As shown in Table 7, 95.7% (709/741) of520

the PUTs in our subjects have at least one receiver object. However, we find that 49.2%521

(349/709) of these PUTs with receiver objects do not have a parameter for the receiver522

objects, and 89.4% (312/349) of them can actually be modified so that all receiver objects523

in the PUT are promoted to PUT parameters. As shown in Table 8, we categorize the 349524

PUTs whose receiver objects could be promoted into the following four different categories.525

(1) In 47.9% (167/349) of the PUTs, we can easily promote their receiver objects into a526

non-primitive parameter (e.g., removing the object creation line and adding a parameter).527

(2) In 41.5% (145/349) of the PUTs, their receiver objects are static (which cannot be528

instantiated). (3) In 9.7% (34/349) of the PUTs, they are testing their receiver objects’529

constructors. (4) In 1.6% (3/349) of the PUTs, they are testing multiple receiver objects530

with shared variables (e.g., testing the equals method of an object).531

Of the PUTs belonging to the first category shown in Table 8, 33.0% (55/167) of them532

test specific object states. Figure 11 shows an example of a PUT that tests a specific object533

state. The developers of this PUT could have promoted _list and element to parameters534

and updated index accordingly before the assertion in Line 9. Figure 12 depicts a more535

general version of the PUT in Figure 11. Notice how the initial contents of the list and the536

element being added to the list are hard-coded in Figure 11 but not in Figure 12.537

ECOOP 2018

5:18 A Characteristic Study of Parameterized Unit Tests

Table 7 Statistics of PUTs with receiver objects (ROs).

Subject Name # of PUTs # of PUTs w/o # of PUTs whose ROs
w/ ROs promoted ROs should be promoted

Atom 90.4% (217/240) 59.4% (129/217) 98.4% (127/129)
BBCode 88.2% (15/ 17) 100.0% (15/ 15) 100.0% (15/ 15)
ConcurrentList 100.0% (23/ 23) 56.5% (13/ 23) 100.0% (13/ 13)
Functional-dotnet 85.4% (35/ 41) 91.4% (32/ 35) 100.0% (32/ 32)
Henoch 100.0% (63/ 63) 25.4% (16/ 63) 43.8% (7/ 16)
OpenMheg 100.0% (45/ 45) 25.0% (11/ 45) 18.2% (2/ 11)
PFDS 100.0% (10/ 10) 100.0% (10/ 10) 100.0% (10/ 10)
QuickGraph 99.5% (204/205) 20.1% (41/204) 73.2% (30/ 41)
SerialProtocol 100.0% (34/ 34) 55.9% (19/ 34) 68.4% (13/ 19)
Shweet 100.0% (12/ 12) 100.0% (12/ 12) 100.0% (12/ 12)
Utilities-net 100.0% (51/ 51) 100.0% (51/ 51) 100.0% (51/ 51)
Total 95.7% (709/741) 49.2% (349/709) 89.4% (312/349)

1 [PexMethod]
2 public void GetItem(int index) {
3 IList<int> _list = new ConcurrentList<int>();
4 PexAssume.IsTrue(index >= 0);
5 const int element = 5;
6 for (int i = 0; i < index; i++)
7 _list.Add(0);
8 _list.Add(element);
9 Assert.That(_list[index], Is.EqualTo(element));

10 }

Figure 11 PUT testing a specific object state in ConcurrentList [2].

1 [PexMethod]
2 public void GetItem_Promoted(int index, IList<int> _list, int element) {
3 int size = _list.Count;
4 PexAssume.IsTrue(index >= 0);
5 for(int i = 0; i < index; i++)
6 _list.Add(0);
7 _list.Add(element);
8 index += size;
9 Assert.That(_list[index], Is.EqualTo(element));

10 }

Figure 12 Version of the PUT in Figure 11 with receiver object promoted.

Upon further investigation, we find that the 145 PUTs in the second category shown in538

Table 8 can and should actually be promoted by making the class under test not be static.539

On the other hand, the PUTs that test their receiver objects’ constructors have no need to540

be improved by promotion. Lastly, the PUTs that test multiple receiver objects are best541

left not promoted. In the end we find that the 167 PUTs in the first category (their receiver542

objects can be easily promoted) and the 145 PUTs in the second category (their receiver543

objects are static) are PUTs whose receiver objects could be promoted and they should544

actually be promoted. These two categories of PUTs form the total of 89.4% (312/394) of545

the PUTs that could be promoted and should be promoted. Promoting these objects enables546

test generation tools such as Pex to use factory methods to generate different states of the547

receiver objects (beyond specific hard-coded ones) for the PUTs.548

Based on our promotion experiences, often the time, after we promote receiver objects549

(resulted from hard-coded method sequences) to non-primitive parameters of PUTs, we need550

to add assumptions to constrain the non-primitive parameters so that test generation tools551

W. Lam et al. 5:19

Table 8 Categorization results of the PUTs whose receiver objects could be promoted.

Category #PUTs
(1) Their receiver objects can be easily promoted 167 (47.9%)
(2) Their receiver objects are static 145 (41.5%)
(3) Testing their receiver objects’ constructors 34 (9.7%)
(4) Testing multiple receiver objects with shared variables 3 (0.9%)
Total 349

1 [TestMethod]
2 public void GetItem_CUT()
3 {
4 GetItem_Promoted(0, null, 5);
5 }

Figure 13 Example of a CUT generated from the PUT in Figure 12.

will not generate input values that are of no interest to developers. For example, for the552

GetItem_Promoted PUT in Figure 12, one of the input values generated by Pex with this553

PUT can be found in Figure 13. Although the value of index (0) from the GetItem_CUT in554

Figure 13 is reasonable for both the GetItem and GetItem_Promoted PUTs and the value of555

element (5) is reasonable for the GetItem_Promoted PUT, the additional value of _list (null)556

is unreasonable. The value is unreasonable because the GetItem PUT is expected to test557

adding various elements to _list but it is not expected to test the case when _list is null.558

However, due to our promotion of _list’s hard-coded method sequence to a non-primitive559

parameter, input values generated from GetItem_Promoted would actually test such a case.560

In order for developers to prevent such nonsensical input values from being generated, the561

developers would have to add the assumption of PexAssume.IsNotNull(_list) before Line 3 of562

GetItem_Promoted. Such assumption writing can be time-consuming: essentially promoting563

hard-coded method sequences to be non-primitive parameters and adding assumptions to564

these parameters are going from specifying “how” (to generate specific object states) to565

specifying “what” (specific object states need to be generated).566

5.2.3 Implications567

There are a significant number of receiver objects (in the PUTs written by developers)568

that could be promoted to non-primitive parameters, and a significant number of existing569

non-primitive parameters that lack factory methods. It is worthwhile for tool researchers570

or vendors to provide effective tool support to assist developers to promote these receiver571

objects (resulted from hard-coded method sequences), e.g., inferring assumptions for a non-572

primitive parameter promoted from hard-coded method sequences. Additionally, once hard-573

coded method sequences are promoted to non-primitive parameters, developers can also use574

assistance in writing effective factory methods for such parameters.575

5.3 RQ3. PUT Design Patterns and Bad Smells576

Our categorization of forum posts as described in Section 3 shows that 5 out of 11 of the577

PUT concept/guideline posts discuss patterns in which PUTs should be written in. For578

example, two of the posts titled “Assertions in PUT” and “PUT with PEX” involve answers579

informing the original poster that assertions are typically necessary for PUTs. One such580

forum post contains the following response: “You should write Asserts, in order to ensure581

ECOOP 2018

5:20 A Characteristic Study of Parameterized Unit Tests

1 [PexMethod]
2 public void Clear<T>([PexAssumeUnderTest]ConcurrentList<T> target) {
3 target.Clear();
4 }

Figure 14 PUT (in ConcurrentList [2]) that should be improved with assertions.

Table 9 Categorization results of bad smells in PUTs

Category #PUTs
(1) Code duplication 55
(2) Unnecessary conditional statement 39
(3) Hard-coded test data 37
Total 131

that the Function (TestInvoice in this case) really does what it is intended to do”. To better582

understand how developers write PUTs, we manually inspect all of the PUTs in our subjects583

to see what the common design patterns and bad smells are. The detailed results of our584

manual inspection effort can be found on our project website [10] under “PUT Patterns”.585

5.3.1 PUT Design Patterns586

We find that the majority of the PUTs are written in the following patterns: “AAA” (Triple-587

A) and Parameterized Stub. Triple-A is a well-known design pattern for writing unit tests [8].588

These tests are organized into three sections: setting up the code under test (Arrange),589

exercising the code under test (Act), and verifying the behavior of the code under test590

(Assert). On the other hand, a Parameterized Stub test is used to test the code under test591

that already contains many assertions (e.g., code equipped with code contracts [25, 30, 16]).592

In general, Parameterized Stub tests are easy to write and understand, since the test body593

is short and contains only a few method calls to the code under test. In our subjects,594

we find that 34.6% (270/741) and 32.1% (251/741) of the PUTs to exhibit the Triple-595

A and Parameterized Stub test pattern, respectively. Of the 251 PUTs that exhibit the596

Parameterized Stub pattern, we find that 74.5% (187/251) of them are PUTs that should597

be improved with assertions, given that the code under test itself does not contain any598

code-contract assertions or any other type of assertions. For example, the PUT in Figure 14599

contains only a single statement to test the robustness of the Clear method, which by itself600

does not contain any assertions. Developers of this PUT should at least add an assertion601

such as Assert.That(target.Count, Is.EqualTo(0)); to the end of the PUT to ensure that602

once Clear is invoked, then the number of elements in a ConcurrentList object will be 0.603

Similar to the bad smells typically found in conventional unit tests [29], we consider the604

following three categories of bad smells in our PUTs: (1) code duplication, (2) unnecessary605

conditional statement, and (3) hard-coded test data. These three categories of bad smells606

can cause tests to be difficult to understand and maintain. Table 9 shows the number of607

PUTs containing each category of bad smells. Our analysis tools as described in Section 4.2608

assist our manual inspections of the PUTs by listing the PUTs that contain conditional609

statements or hard-coded test data (as arbitrary strings). Using these lists of PUTs, we610

then manually inspect each of these PUTs to determine whether it really has bad code611

smells. To determine code duplication, we manually compare every PUT with every other612

PUT of the same class. Next, we discuss each of the categories in detail.613

W. Lam et al. 5:21

1 [PexMethod]
2 public void GetItem(int index)
3 {
4 PexAssume.IsTrue(index >= 0);
5 const int element = 5;
6 for (int i = 0; i < index; i++)
7 {
8 _list.Add(0);
9 }

10 _list.Add(element);
11 Assert.That(_list[index], Is.EqualTo(element));
12 }

Figure 15 PUT (from the ConcurrentListHandWrittenTests class of ConcurrentList [2]) that
contains many lines of test-code duplication with another PUT named SetItem from the same class.

Table 10 Categorization results of why conditional statements exist in PUTs.

Category #PUTs
(1) Testing particular cases 16
(2) Forcing Pex to explore particular cases 9
(3) Testing different cases according to boolean conditions 9
(4) Unnecessary if statements 5
Total 39

5.3.2 Code Duplication in PUTs614

Similar to conventional unit tests, PUTs also contain the bad smell of test-code duplication.615

Test-code duplication is a poor practice because it increases the cost of maintaining tests.616

Duplication often arises when developers clone tests and do not put enough thought into617

how to reuse test logic intelligently. As the number of tests increases, it is important that618

the developers either factor out commonly used sequences of statements into helper methods619

that can be reused by various tests, or in the case of PUTs, consider merging the PUTs and620

using assumptions/attributes to ensure that the specific cases being tested previously are621

still tested. In our subjects’ PUTs, we find that 7.4% (55/741) of them contain test-code du-622

plication. In other words, for 55 of our subjects’ PUTs, there exist another PUT (in the same623

subject) that contains a significant amount of duplicate test code. One example of such PUT624

is shown in Figure 15. The PUT in this example is from the ConcurrentListHandWrittenTests625

class of ConcurrentList [2] and is almost identical to another PUT named SetItem in the626

same class. More specifically, the only lines that differ between the two PUTs are Lines 6 and627

10. For Line 6 the loop terminating condition is set to i <= index as opposed to i < index.628

For Line 10, instead of adding an element with the Add method, the line is _list[index] =629

element;. In .NET, the use of brackets and an index value to add elements to a collection is630

enabled by Indexers [14]. Since the intention of the two PUTs is to test whether setting and631

getting an element from a list of arbitrary size correctly set and get the correct element, the632

two differences in Lines 6 and 10 between the two PUTs actually do not matter. Instead633

of duplicating so many lines of test code, the developers of these two PUTs should just634

delete one of them. Doing so will not only help decrease the cost for developers to maintain635

the tests, but also to speed up the testing time, since there will be fewer tests that cover636

the same parts of the code under test. Developers can also make use of existing tools for637

detecting code clones [18, 19] to automatically help detect code duplication in PUTs.638

ECOOP 2018

5:22 A Characteristic Study of Parameterized Unit Tests

1 IList<int> _list = new ConcurrentList<int>();
2 [PexMethod(MaxBranches = 20000)]
3 public void Clear(int count)
4 {
5 var numClears = 100;
6 var results = new List<int>(numClears * 2);
7 var numCpus = Environment.ProcessorCount;
8 var sw = Stopwatch.StartNew();
9 using (SaneParallel.For(0, numCpus, x =>

10 {
11 for (var i = 0; i < count; i++)
12 _list.Add(i);
13 }))
14 {
15 for (var i = 0; i < numClears; i++)
16 {
17 Thread.Sleep(100);
18 results.Add(_list.Count);
19 _list.Clear();
20 results.Add(_list.Count);
21 }
22 }
23 sw.Stop();
24 for (var i = 0; i < numClears; i++)
25 Console.WriteLine("Before/After Clear #{0}: {1}/{2}", i, results[i << 1], results[(i << 1) + 1]);
26 Console.WriteLine("ClearParallelSane took {0}ms", sw.ElapsedMilliseconds);
27 _list.Clear();
28 Assert.That(_list.Count, Is.EqualTo(0));
29 }

Figure 16 PUT with hard-coded test data in the SaneParallelTests class of ConcurrentList [2].

5.3.3 Unnecessary Conditional Statements in PUTs639

Typically developers are expected not to write any conditional statements in their tests,640

because tests should be simple, linear sequences of statements. When a test has multiple641

execution paths, one cannot be sure exactly how the test will execute in a specific case. In our642

subjects, 7.0% (52/741) of the PUTs contain at least one conditional branch. To understand643

why developers write PUTs with conditionals, we study whether the conditionals in these644

PUTs are necessary and if they are not, why the developers write such conditionals in their645

PUTs. We find that 25% (13/52) of the PUTs contain conditional statements that could not646

be removed. These PUTs are typically testing the interactions of two or more operations647

of the code under test (e.g., adding and removing from a data structure). The remaining648

75.0% (39/52) of the PUTs with conditionals can have their conditionals removed or each649

of these PUTs should be split into two or more PUTs. Table 10 shows the reasons for why650

the conditionals of such PUTs should be removed and the number of PUTs for each of the651

reasons. The PUTs in the first and second categories should replace their conditionals with652

PexAssume() statements to force Pex to explore and test particular cases. The PUTs in653

the third category should be each split into multiple PUTs each of which tests a different654

case of the conditional. For the PUTs created from the third category, developers can use655

PexAssume() statements in the new PUTs to filter out inputs that do not satisfy the boolean656

conditions of the case that the new PUTs are responsible for. The PUTs in the last category657

contain conditionals that can be removed with a slight modification to the test (e.g., some658

conditionals in a loop can be removed by amending the loop and/or adding code before the659

loop). The automatic detection and fixing of unnecessary conditional statements in PUTs660

would be a valuable and challenging line of future work due to the following. There are661

various reasons for why a PUT may have conditionals as shown in Table 10, and depending662

on the reason why a PUT may have conditionals, the fix for removing the conditionals, if663

removal is possible, can be quite different.664

W. Lam et al. 5:23

5.3.4 Hard-coded Test Data in PUTs665

Another bad smell that we identify in our subjects’ PUTs is hard-coded test data. This666

smell can be problematic for three main reasons. (1) Tests are more difficult to understand.667

A developer debugging the tests would need to look at the hard-coded data and deduce how668

each value is related to another and how these values affect the code under test. (2) Tests are669

more likely to be flaky [28, 22, 15]. A common reason for tests to be flaky is the reliance on670

external dependencies such as databases, file system, and global variables. Hard-coded data671

in these tests often lead to multiple tests modifying the same external dependency and these672

modifications could cause these tests to fail unexpectedly. (3) Hard-coded test data prevent673

automatic test generation tools such as Pex from generating high-quality input values. In674

our subjects’ PUTs, we find that 5.0% (37/741) of them use hard-coded test data. One675

example of such PUT is shown in Figure 16. In this example, the developers are testing the676

Clear method of the ConcurrentList object (_list). The PUT adds an arbitrary number of677

elements to the _list object, clears the list, and records the number of elements in the list.678

The process of adding and clearing the list repeats 100 times as decided by numClears on679

Line 5. As far as we can tell, the developers arbitrarily choose the value of 100 for numClears680

on Line 5. When we parameterize the numClears variable and add an assumption that the681

variable should be between 1 and 1073741823 (to prevent ArgumentOutOfRangeException), we682

find that the input values generated by Pex for the numClears variable to be 1 and 2. These683

two values exercise the same lines of the Clear method just as the value of 100 would. The684

important point here is that contrary to the developers’ arbitrarily chosen value of 100, Pex685

is able to systematically find that using just the values of 1 and 2 would already sufficiently686

test the Clear method. That is, as we manually confirm, even if the developers devote more687

computation time to testing the Clear method by setting numClears to 100, they would not688

cover any additional code or find any additional test failures. Therefore, the developers of689

this PUT should not hard code the test data, and instead they should parameterize the690

numClears variable. Doing so would enable automatic test generation tools such as Pex to691

generate high-quality input values that sufficiently test the code under test. Developers can692

also make use of existing program analysis tools [41] to automatically detect whether certain693

hard-coded test data may exist between multiple PUTs.694

5.3.5 Implications695

By understanding how developers write PUTs, testing educators can suggest ways to improve696

PUTs. For example, developers should consider splitting PUTs with multiple conditional697

statements into separate PUTs each covering a case of the conditional statements. Doing so698

makes the developer’s PUTs easier to understand and eases the effort to diagnose the reason699

for test failures. Tool vendors and researchers can incorporate this data with their tools700

to check the style of PUTs for better suggestions on how the PUTs can be improved. For701

example, checking whether a PUT is a Parameterized Stub, contains conditionals, contains702

hard-coded test data, and contains duplicate test code often correctly identifies a PUT that703

can be improved.704

6 Threats to Validity705

There are various threats to validity in our study. We broadly divide the main threats into706

internal and external validity.707

ECOOP 2018

5:24 A Characteristic Study of Parameterized Unit Tests

6.1 Internal Validity708

Threats to internal validity are concerned with the validity of our study procedure. Due709

to the complexity of software, faults in our analysis tools could have affected our results.710

However, our analysis tools are tested with a suite of unit tests, and samples of the results711

are manually verified. Results from our manual analyses are confirmed by at least two of712

the authors. Furthermore, we rely on various other tools for our study, such as dotCover [3]713

to measure the code coverage of the input values generated by Pex. These tools could have714

faults as well and consequently such faults could have affected our results.715

6.2 External Validity716

There are two main threats to external validity in our study.717

1. We use the categorization of the Microsoft MSDN Pex Forum posts [31] to determine718

the issues surrounding parameterized unit testing. These forum posts enable us and719

the research community to access the issues of developers objectively and quantitatively,720

but the issues identified from the posts may not be representative of all the issues that721

developers encounter.722

2. Our findings may not apply to subjects other than those that we study, especially since we723

are able to find only 11 subjects matching the criteria defined in Section 4. Furthermore,724

we primarily focus on projects using PUTs in the context of automated test generation,725

so our findings from such subjects may not generalize to situations outside of this setting726

(e.g., general usage of Theories [33] in Java). In addition, our analyses focus specifically727

on subjects that contain PUTs written using the Pex framework, and the API differences728

or idiosyncrasies of other frameworks may impact the applicability of our findings. All of729

our subjects are written in C#, but vary widely in their application domains and project730

sizes. Finally, all of our subjects are open source software, and therefore our findings731

may not generalize to proprietary software.732

7 Related Work733

To the best of our knowledge, our characteristic study is the first on parameterized unit734

testing in open source projects. In contrast, previous work focuses on proposing new tech-735

niques for parameterized unit testing and does not provide any insight on the practices of736

parameterized unit testing. For example, Xie et al. [43] propose a technique for assessing737

the quality of PUTs using mutation testing. Thummalapenta et al. [36] propose manual738

retrofitting of CUTs to PUTs, and show that new faults are detected and coverage is in-739

creased after such manual retrofitting is conducted. Fraser et al. [21] propose a technique740

for generating PUTs starting from concrete test inputs and results.741

Our work is related to previous work on studying developer-written formal specifications742

such as code contracts [16]. Schiller et al. [34] conduct case studies on the use of code743

contracts in open source projects in C#. They analyze 90 projects using code contracts and744

categorize their use of various types of specifications, such as null checks, bound checks, and745

emptiness checks. They find that checks for nullity and emptiness are the most common746

types of specifications. Similarly we find that the most common types of PUT assumptions747

are also used for nullness specification. However, the most common types of PUT assertions748

are used for equality checking instead of null and emptiness.749

Estler et al. [20] study code contract usage in 21 open source projects using JML [27]750

in Java, Design By Contract in Eiffel [30], and code contracts [16] in C#. Their study751

W. Lam et al. 5:25

also includes an analysis of the change in code contracts over time, relative to the change752

in the specified source code. Their findings agree with Schiller’s on the majority use of753

nullness code contracts. Furthermore, Chalin [17] studies code contract usage in over 80754

Eiffel projects. They show that programmers using Eiffel tend to write more assertions than755

programmers using any other languages do.756

8 Conclusion757

To fill the gap of lacking studies of PUTs in development practices of either proprietary758

or open source software, we have presented categorization results of the Microsoft MSDN759

Pex Forum posts (contributed primarily by industrial practitioners) related to PUTs. We760

then use the categorization results to guide the design of the first characteristic study of761

parameterized unit testing in open source projects. Our study involves hundreds of PUTs762

that open source developers write for various open source projects.763

Our study findings provide the following valuable insights for various stakeholders such764

as current or prospective PUT writers (e.g., developers), PUT framework designers, test-765

generation tool vendors, testing researchers, and testing educators.766

1. We have studied the extents and types of assumptions, assertions, and attributes being767

used in PUTs. Our study has identified assumption and assertion types that tool ven-768

dors or researchers can incorporate with their tools to better infer assumptions and769

assertions to assist developers. For example, tool vendors or researchers who care770

about the most commonly used assumption types should focus on PexAssumeUnderTest or771

PexAssumeNotNull, since these two are the most commonly used assumption types. We772

have also found that increasing the default value of attributes as suggested by tools such773

as Pex rarely contributes to increased code coverage. Tool vendors or researchers should774

aim to improve the quality of the attribute recommendations provided by their tools, if775

any are provided at all.776

2. We have studied how often hard-coded method sequences in PUTs can be replaced with777

non-primitive parameters and how useful it is for developers to do so. Our study has778

found that there are a significant number of receiver objects in the PUTs written by de-779

velopers that could be promoted to non-primitive parameters, and a significant number780

of existing non-primitive parameters that lack factory methods. Tool researchers or ven-781

dors should provide effective tool support to assist developers to promote these receiver782

objects (resulted from hard-coded method sequences), e.g., inferring assumptions for a783

non-primitive parameter promoted from hard-coded method sequences. Additionally,784

once hard-coded method sequences are promoted to non-primitive parameters, develop-785

ers can also use assistance in writing effective factory methods for such parameters.786

3. We have studied the common design patterns and bad smells in PUTs, and have found787

that there are a number of patterns that often correctly identify a PUT that can be788

improved. More specifically, checking whether a PUT is a Parameterized Stub, con-789

tains conditionals, contains hard-coded test data, and contains duplicate test code often790

correctly identifies a PUT that can be improved. Tool vendors and researchers can in-791

corporate this data with their tools to check the style of PUTs for better suggestions on792

how these PUTs can be improved.793

The study is part of our ongoing industry-academia team efforts for bringing parameterized794

unit testing to broad industrial practices of software development.795

ECOOP 2018

5:26 A Characteristic Study of Parameterized Unit Tests

References796

1 Atom. URL: https://github.com/tivtag/Atom.797

2 ConcurrentList. URL: https://github.com/damageboy/ConcurrentList.798

3 dotCover. URL: https://www.jetbrains.com/dotcover.799

4 GitHub code search. URL: https://github.com/search.800

5 The .NET compiler platform Roslyn. URL: https://github.com/dotnet/roslyn.801

6 NUnit Console. URL: https://github.com/nunit/nunit-console.802

7 OpenMheg. URL: https://github.com/orryverducci/openmheg.803

8 Parameterized Test Patterns for Microsoft Pex). URL: http://citeseerx.ist.psu.edu/804

viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.216.282.805

9 Parameterized tests in JUnit. URL: https://github.com/junit-team/junit/wiki/806

Parameterized-tests.807

10 PUT study project web. URL: https://sites.google.com/site/putstudy.808

11 QuickGraph. URL: https://github.com/tathanhdinh/QuickGraph.809

12 SearchCode code search. URL: https://searchcode.com.810

13 Theories in JUnit. URL: https://github.com/junit-team/junit/wiki/Theories.811

14 Using Indexers (C# Programming Guide). URL: https://docs.microsoft.com/en-us/812

dotnet/csharp/programming-guide/indexers/using-indexers.813

15 Stephan Arlt, Tobias Morciniec, Andreas Podelski, and Silke Wagner. If A fails, can B still814

succeed? Inferring dependencies between test results in automotive system testing. In ICST815

2015: Proceedings of the 8th International Conference on Software Testing, Verification and816

Validation, pages 1–10, Graz, Austria, April 2015.817

16 Michael Barnett, Manuel Fähndrich, Peli de Halleux, Francesco Logozzo, and Nikolai Till-818

mann. Exploiting the synergy between automated-test-generation and programming-by-819

contract. In ICSE 2009: Proceedings of the 31st International Conference on Software820

Engineering, pages 401–402, Vancouver, BC, Canada, May 2009.821

17 Patrice Chalin. Are practitioners writing contracts? In Rigorous Development of Complex822

Fault-Tolerant Systems, pages 100–113. 2006.823

18 Yingnong Dang, Dongmei Zhang, Song Ge, Chengyun Chu, Yingjun Qiu, and Tao Xie.824

XIAO: Tuning code clones at hands of engineers in practice. In ACSAC 2012: Proceedings825

of 28th Annual Computer Security Applications Conference, pages 369–378, Orlando, FL,826

USA, December 2012.827

19 Yingnong Dang, Dongmei Zhang, Song Ge, Ray Huang, Chengyun Chu, and Tao Xie.828

Transferring code-clone detection and analysis to practice. In ICSE 2017: Proceedings829

of the 39th International Conference on Software Engineering, Software Engineering in830

Practice (SEIP), pages 53–62, Buenos Aires, Argentina, May 2017.831

20 H-Christian Estler, Carlo A Furia, Martin Nordio, Marco Piccioni, and Bertrand Meyer.832

Contracts in practice. In FM 2014: Proceedings of the 19th International Symposium on833

Formal Methods, pages 230–246. Singapore, May 2014.834

21 Gordon Fraser and Andreas Zeller. Generating parameterized unit tests. In ISSTA 2011:835

Proceedings of the 2011 International Symposium on Software Testing and Analysis, pages836

364–374, Toronto, ON, Canada, July 2011.837

22 Zebao Gao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. Making838

system user interactive tests repeatable: When and what should we control? In ICSE839

2015: Proceedings of the 37th International Conference on Software Engineering, pages840

55–65, Florence, Italy, May 2015.841

23 Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated random842

testing. In PLDI 2005: Proceedings of the ACM SIGPLAN 2005 Conference on Program-843

ming Language Design and Implementation, Chicago, IL, USA, June 2005.844

https://github.com/tivtag/Atom
https://github.com/damageboy/ConcurrentList
https://www.jetbrains.com/dotcover
https://github.com/search
https://github.com/dotnet/roslyn
https://github.com/nunit/nunit-console
https://github.com/orryverducci/openmheg
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.216.282
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.216.282
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.216.282
https://github.com/junit-team/junit/wiki/Parameterized-tests
https://github.com/junit-team/junit/wiki/Parameterized-tests
https://github.com/junit-team/junit/wiki/Parameterized-tests
https://sites.google.com/site/putstudy
https://github.com/tathanhdinh/QuickGraph
https://searchcode.com
https://github.com/junit-team/junit/wiki/Theories
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/using-indexers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/using-indexers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/using-indexers

W. Lam et al. 5:27

24 John V. Guttag and James J. Horning. The algebraic specification of abstract data types.845

Acta Informatica, pages 27–52, 1978.846

25 C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the847

ACM, pages 576–580, October 1969.848

26 Pratap Lakshman. Visual Studio 2015 – Build better software with Smart Unit Tests.849

MSDN Magazine.850

27 Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behav-851

ioral interface specification language for Java. Technical Report TR 98-06i, Department of852

Computer Science, Iowa State University, June 1998.853

28 Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical analysis854

of flaky tests. In FSE 2014: Proceedings of the ACM SIGSOFT 22nd Symposium on the855

Foundations of Software Engineering, pages 643–653, Hong Kong, November 2014.856

29 Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code. Prentice Hall PTR, Upper857

Saddle River, NJ, USA, 2006.858

30 Bertrand Meyer. Applying "Design by Contract". Computer, pages 40–51, October 1992.859

31 Microsoft. Pex MSDN discussion forum, April 2011. URL: http://social.msdn.860

microsoft.com/Forums/en-US/pex.861

32 Microsoft. Generate unit tests for your code with IntelliTest, 2015. URL: https://msdn.862

microsoft.com/library/dn823749.863

33 David Saff. Theory-infected: Or how I learned to stop worrying and love universal quantifi-864

cation. In OOPSLA Companion: Proceedings of the Object-Oriented Programming Systems,865

Languages, and Applications, pages 846–847, Montreal, QC, Canada, October 2007.866

34 Todd W Schiller, Kellen Donohue, Forrest Coward, and Michael D Ernst. Case studies867

and tools for contract specifications. In ICSE 2014: Proceedings of the 36th International868

Conference on Software Engineering, pages 596–607, Hyderabad, India, June 2014.869

35 Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine for C.870

In ESEC/FSE 2005: Proceedings of the 10th European Software Engineering Conference871

and the 13th ACM SIGSOFT Symposium on the Foundations of Software Engineering,872

pages 263–272, Lisbon, Portugal, September 2005.873

36 Suresh Thummalapenta, Madhuri R Marri, Tao Xie, Nikolai Tillmann, and Jonathan874

de Halleux. Retrofitting unit tests for parameterized unit testing. In FASE 2011: Proceed-875

ings of the Fundamental Approaches to Software Engineering, pages 294–309. Saarbrücken,876

Germany, March 2011.877

37 Nikolai Tillmann and Jonathan De Halleux. Pex: White box test generation for .NET. In878

TAP 2008: Proceedings of the 2nd International Conference on Tests And Proofs (TAP),879

pages 134–153, Prato, Italy, April 2008.880

38 Nikolai Tillmann, Jonathan de Halleux, and Tao Xie. Parameterized unit testing: Theory881

and practice. In ICSE 2010: Proceedings of the 32nd International Conference on Software882

Engineering, pages 483–484, Cape Town, South Africa, May 2010.883

39 Nikolai Tillmann, Jonathan de Halleux, and Tao Xie. Transferring an automated test884

generation tool to practice: From Pex to Fakes and Code Digger. In ASE 2014: Proceedings885

of the 29th Annual International Conference on Automated Software Engineering, pages886

385–396, Västerøas, Sweden, September 2014.887

40 Nikolai Tillmann and Wolfram Schulte. Parameterized unit tests. In ESEC/FSE 2005:888

Proceedings of the 10th European Software Engineering Conference and the 13th ACM889

SIGSOFT Symposium on the Foundations of Software Engineering, pages 253–262, Lisbon,890

Portugal, September 2005.891

41 Matias Waterloo, Suzette Person, and Sebastian Elbaum. Test analysis: Searching for892

faults in tests. In ASE 2015: Proceedings of the 30th Annual International Conference on893

Automated Software Engineering, pages 149–154, Lincoln, NE, USA, November 2015.894

ECOOP 2018

http://social.msdn.microsoft.com/Forums/en-US/pex
http://social.msdn.microsoft.com/Forums/en-US/pex
http://social.msdn.microsoft.com/Forums/en-US/pex
https://msdn.microsoft.com/library/dn823749
https://msdn.microsoft.com/library/dn823749
https://msdn.microsoft.com/library/dn823749

5:28 A Characteristic Study of Parameterized Unit Tests

42 Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. Precise identifica-895

tion of problems for structural test generation. In ICSE 2011: Proceedings of the 33rd896

International Conference on Software Engineering, pages 611–620, Waikiki, HI, USA, May897

2011.898

43 Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. Mutation analysis899

of parameterized unit tests. In ICSTW 2009: Proceedings of the International Conference900

on Software Testing, Verification and Validation Workshops, pages 177–181, Denver, CO,901

USA, April 2009.902

	Introduction
	Background
	Categorization of Forum Posts
	Study Setup
	Subject-collection Procedure
	Analysis Tools
	Collected Subjects

	Study Results
	RQ1. Assumptions, Assertions, and Attributes
	Assumption Usage
	Assertion Usage
	Attribute Usage
	Implications

	RQ2. Non-primitive Parameters
	Non-primitive Parameter Usage
	Promoting Receiver Object
	Implications

	RQ3. PUT Design Patterns and Bad Smells
	PUT Design Patterns
	Code Duplication in PUTs
	Unnecessary Conditional Statements in PUTs
	Hard-coded Test Data in PUTs
	Implications

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Conclusion

