
Appears in Proc. 20th European Conference on Object-Oriented Programming (ECOOP 2006), Nantes, France

Augmenting Automatically Generated Unit-Test Suites

with Regression Oracle Checking

Tao Xie

Department of Computer Science

North Carolina State University

Raleigh, NC 27695

xie@csc.ncsu.edu

Abstract. A test case consists of two parts: a test input to exercise the program

under test and a test oracle to check the correctness of the test execution. A test

oracle is often in the form of executable assertions such as in the JUnit test-

ing framework. Manually generated test cases are valuable in exposing program

faults in the current program version or regression faults in future program ver-

sions. However, manually generated test cases are often insufficient for assuring

high software quality. We can then use an existing test-generation tool to generate

new test inputs to augment the existing test suite. However, without specifications

these automatically generated test inputs often do not have test oracles for expos-

ing faults. In this paper, we have developed an automatic approach and its sup-

porting tool, called Orstra, for augmenting an automatically generated unit-test

suite with regression oracle checking. The augmented test suite has an improved

capability of guarding against regression faults. In our new approach, Orstra first

executes the test suite and collects the class under test’s object states exercised

by the test suite. On collected object states, Orstra creates assertions for assert-

ing behavior of the object states. On executed observer methods (public methods

with non-void returns), Orstra also creates assertions for asserting their return

values. Then later when the class is changed, the augmented test suite is executed

to check whether assertion violations are reported. We have evaluated Orstra on

augmenting automatically generated tests for eleven subjects taken from a va-

riety of sources. The experimental results show that an automatically generated

test suite’s fault-detection capability can be effectively improved after being aug-

mented by Orstra.

1 Introduction

To expose faults in a program, developers create a test suite, which includes a set of test

cases to exercise the program. A test case consists of two parts: a test input to exercise

the program under test and a test oracle to check the correctness of the test execution. A

test oracle is often in the form of runtime assertions [2, 36] such as in the JUnit testing

framework [19]. In Extreme Programming [7] practice, writing unit tests has become

an important part of software development. Unit tests help expose not only faults in the

current program version but also regression faults introduced during program changes:

these written unit tests allow developers to change their code in a continuous and con-

trolled way. However, some special test inputs are often overlooked by developers and

380

381

typical manually created unit test suites are often insufficient for assuring high software

quality. Then developers can use one of the existing automatic test-generation tools

[8, 11, 12, 31, 42–44] to generate a large number of test inputs to complement the man-

ually created tests. However, without specifications, these automatically generated test

inputs do not have test oracles, which can be used to check whether test executions are

correct. In this paper, we have developed a new automatic approach that adds asser-

tions into an automatically generated test suite so that the augmented test suite has an

improved capability of guarding against regression faults.

Our approach focuses on object-oriented unit tests, such as the ones written in the

JUnit testing framework [19]. An object-oriented unit test consists of sequences of

method invocations. Our approach proposes a framework for asserting the behavior

of a method invocation in an object-oriented unit-test suite. Behavior of an invocation

depends on the state of the receiver object and method arguments at the beginning of

the invocation. Behavior of an invocation can be asserted by checking at the end of the

invocation the return value of the invocation (when the invocation’s return is not void),

the state of the receiver object, and the states of argument objects (when the invocation

can modify the states of the argument objects). Automatic test-generation tools often

do not create assertions but rely on uncaught exceptions or program crashes to detect

problems in a program [11, 12].

To address insufficient test oracles of an automatically generated test suite, we have

developed an automatic tool, called Orstra, to augment the test suite for guarding against

regression faults. Orstra executes tests in the test suite and collects the class under test’s

object states exercised by the test suite; an object’s state is characterized by the values of

the object’s transitively reachable fields [43]. On collected object states, Orstra invokes

observers (public methods with non-void returns) of the class under test, collects their

actual return values, and creates assertions for checking the returns of observers against

their actual collected values. In addition, for each collected object state S, Orstra de-

termines whether there is another collected object state S′ that is equivalent to S (state

equivalence is defined by graph isomorphism [8,43]); if so, Orstra reconstructs S′ with

method sequences and creates an assertion for checking the state equivalence of S and

S′.

This paper makes the following main contributions:

– We propose a framework for asserting the behavior of a method invocation in an

object-oriented unit-test suite.

– We develop an automatic test-oracle-augmentation tool that systematically adds as-

sertions into an automatically generated test suite in order to improve its capability

of guarding against regression faults.

– We evaluate our approach on augmenting automatically generated tests for eleven

Java classes taken from a variety of sources. The experimental results show that our

test-oracle augmentation can effectively improve the fault-detection capability of a

test suite.

The rest of this paper is organized as follows. Section 2 presents an illustrating

example. Section 3 presents our framework for asserting behavior of a method invoca-

tion in a test suite. Section 4 presents our Orstra tool for automatically augmenting a

382

test suite. Section 5 presents an experiment to assess our approach. Section 6 discusses

issues of the approach. Section 7 reviews related work, and Section 8 concludes.

2 Example

We next illustrate how Orstra augments an automatically generated test suite’s regres-

sion oracle checking. As an illustrating example, we use a Java implementation of a

bounded stack that stores unique elements. Stotts et al. [40] used this Java implemen-

tation to experiment with their algebraic-specification-based approach for systemati-

cally creating unit tests. In the abbreviated implementation shown in Figure 1, the class

MyInput is the comparable type of elements stored in the stack. In the class implemen-

tation of the bounded stack, the array elems contains the elements of the stack, and

numberOfElements is the number of the elements and the index of the first free loca-

tion in the stack. The max is the capacity of the stack. The public methods in the class

interface include two standard stack operations: push and pop, as well as five observer

methods, whose returns are not void.

Given a Java class, existing automatic test-generation tools [11, 12, 31, 43, 44] can

generate a test suite automatically for the class. For example, Jtest [31] allows users

to set the length of calling sequences between one and three, and then generates

random calling sequences whose lengths are not greater than the user-specified one.

JCrasher [11] automatically constructs method sequences to generate non-primitive ar-

guments and uses default data values for primitive arguments. JCrasher generates tests

as calling sequences with the length of one.

For example, given the UBStack class, existing automatic test-generation tools [11,

12,31,43,44] can generate test suites such as the example test suite UBStackTestwith

two tests (exported in the JUnit testing framework [19]) shown in Figure 2. Each test

has several method sequences on the objects of the class. For example, test1 creates a

stack s1 and invokes push, top, pop, and isMember on it in a row.

Note that there are no assertions generated in the UBStackTest test suite. There-

fore, when the test suite is run, tools such as JCrasher [11] and CnC [12] detect prob-

lems by observing whether uncaught exceptions are thrown; tools such as Korat [8]

detect problems by observing whether the execution of the test suite violates design-

by-contract annotations [9, 23, 28] (equipped with the program under test), which are

translated into run-time assertions [2, 36].

Given a test suite such as UBStackTest, Orstra systematically augments the test

suite to produce an augmented test suite such as UBStackAugTest shown in Figure 3.

For illustration, we annotate UBStackAugTest with line numbers and mark in bold

font those lines of statements that correspond to the statements in UBStackTest. The

augmented test suite UBStackAugTest is equipped with comprehensive assertions,

which reflect the behavior of the current program version under test. These new asser-

tions can guard against regression faults introduced in future program versions.

We next illustrate how Orstra automatically creates assertions for UBStackTest

to produce UBStackAugTest. By running UBStackTest, Orstra dynamically mon-

itors the method sequences executed by UBStackTest and collects the exer-

cised state of a UBStack-receiver object by collecting the values of the re-

383

public class MyInput implements Comparable {
private int o;

public MyInput(int i) { o = i; }
public boolean equals(Object that) {

if (!(that instanceof MyInput)) return false;

return (o == ((MyInput)that).o);

}
}

public class UBStack {
private Comparable[] elems;

private int numberOfElements;

private int max;

public UBStack() { ... }
//standard stack operations

public void push(Comparable i) { ... }
public void pop() { ... }
//stack observer methods

public int getNumberOfElements() { ... }
public boolean isFull() { ... }
public boolean isEmpty() { ... }
public boolean isMember(Comparable i) {... }
public MyInput top() { ... }

}

Fig. 1. A bounded stack implementation (UBStack) in Java

public class UBStackTest extends TestCase {
public void test1() {

UBStack s1 = new UBStack();

MyInput i1 = new MyInput(3);

s1.push(i1);

s1.top();

s1.pop();

s1.isMember(i1);

}

public void test2() {
UBStack s2 = new UBStack();

s2.isEmpty();

s2.isFull();

s2.getNumberOfElements();

}
}

Fig. 2. An automatically generated test suite UBStackTest for UBStack

ceiver object’s transitively reachable fields. Based on the collected method in-

vocations, Orstra identifies UBStack’s observer methods that are invoked by

UBStackTest: top(), isMember(new MyInput(3)), isEmtpy(), isFull(), and

getNumberOfElements().

Then on each UBStack-receiver-object state exercised by UBStackTest, Orstra

invokes the collected observer methods. For example, after the constructor invocation

(shown in Line 2 of Figure 3), Orstra invokes the five observer methods on the UBStack

object s1. After invoking these observer methods, Orstra collects their return values

and then makes an assertion for each observer method by adding a JUnit assertion

method (assertEquals), whose first argument is the observer method’s return and

second argument is the collected return value. The five inserted assertions are shown

in Lines 4-9. Similarly, Orstra inserts assertions after the push invocation (shown in

384

0 public class UBStackAugTest extends TestCase {
1 public void testAug1() {
2 UBStack s1 = new UBStack();

3 //start inserting new assertions for observers

4 assertEquals(s1.isEmpty(), true);

5 assertEquals(s1.isFull(), false);

6 assertEquals(s1.getNumberOfElements(), 0);

7 MyInput temp_i1 = new MyInput(3);

8 assertEquals(s1.isMember(temp_i1), false);

9 assertEquals(s1.top(), null);

10 //finish inserting new assertions for observers

11 MyInput i1 = new MyInput(3);

12 s1.push(i1);

13 //start inserting new assertions for observers

14 assertEquals(s1.isEmpty(), false);

15 assertEquals(s1.isFull(), false);

16 assertEquals(s1.getNumberOfElements(), 1);

17 assertEquals(s1.isMember(temp_i1), true);

18 //finish inserting new assertions for observers

19 assertEquals(Runtime.genStateStr(s1.top()), "o:3;");

20 //insert no new assertions for top

21 s1.pop();

22 //start inserting new assertions for state equivalence

23 UBStack temp_s1 = new UBStack();

24 EqualsBuilder.reflectionEquals(s1, temp_s1);

25 //finish inserting new assertions for state equivalence

26 assertEquals(s1.isMember(i1), false);

27 //insert no new assertions for isMember

28 }
29

30 public void testAug2() {
31 UBStack s2 = new UBStack();

32 //insert no new assertions because the equivalent state

33 //has been asserted in test1

34 assertEquals(s2.isEmpty(), true);

35 assertEquals(s2.isFull(), false);

36 assertEquals(s2.getNumberOfElements(), 0);

37 }
39}

Fig. 3. An Orstra-augmented test suite for UBStackTest

Line 12) for asserting the state of the receiver s1. Because in test1 of UBStackTest,

there is an observer method top invoked immediately after the push invocation, in the

inserted assertions for s1 after the push invocation, Orstra does not include another

duplicate top observer invocation. Then Orstra still adds an assertion for the original

top invocation (shown in Line 19). When Orstra collects the return value of top, it

determines that the value is not of a primitive type but of the MyInput type. It then

invokes its own runtime helper method (Runtime.genStateStr) to collect the state-

representation string of the MyInput-type return value. The string consists of the values

of all transitively reachable fields of the MyInput-type object, represented as “o:3;”,

where o is the field name and 3 is the field value.

After the top invocation (shown in Line 19), Orstra inserts no new assertion for as-

serting the state of s1 immediately after the top invocation, because Orstra dynamically

determines top to be a state-preserving or side-effect-free method: all its invocations in

the test suite do not modify the state of the receiver object.

After the pop invocation (shown in Line 21), Orstra detects that s1’s state is equiv-

alent to another collected object state that is produced by a shorter method sequence: an

385

object state produced after the constructor invocation; Orstra determines state equiva-

lence of two objects by comparing their state-representation strings. Therefore, instead

of invoking observer methods on s1, Orstra constructs an assertion for asserting that the

state of s1 is equivalent to the state of temp s1, which is produced after the construc-

tor is invoked. Orstra creates the assertion by using an equals-assertion-builder method

(EqualsBuilder.reflectionEquals) from the Apache Jakarta Commons subpro-

ject [4]. This method uses Java reflection mechanisms [5] to determine if two objects

are equal based on field-by-field comparison. If an equals method is defined as a pub-

lic method of the class under test, Orstra can also alternatively use the equals method

for building the assertion.

After the isMember invocation (shown in Line 26), Orstra inserts no new assertion

for asserting the state of s1 immediately after the isMember invocation, because Orstra

dynamically determines isMember to be a state-preserving method.

When augmenting test2, Orstra does not insert assertions for the state of s2 im-

mediately after the constructor invocation, because the object state that is produced

by the same method sequence has been asserted in testAug1. In testAug2, Orstra

adds assertions only for those observer-method invocations that are originally in test2

(shown in Lines 34-36).

3 Framework

This section formalizes some notions introduced informally in the previous section. We

first describe approaches for representing states of non-primitive-type objects and then

compare these approaches. We finally describe how these state representations can be

used to build assertions for the receiver object and return value of a method invocation.

3.1 State Representation

When a variable (such as the return of a method invocation) is of a primitive type or

a primitive-object type such as String and Integer, Orstra asserts its value by com-

paring it with an expected value. When a variable (such as the return or receiver of a

method invocation) is a non-primitive-type object, Orstra constructs assertions by using

several types of state representations: method-sequence representation [43], concrete-

state representation [43], and observer-abstraction representation [46].

Method-Sequence Representation The method-sequence-representation tech-

nique [43] represents the state of an object by using sequences of method invocations

that produce the object (following Henkel and Diwan [22] who use the representation

in mapping Java classes to algebras). Then Orstra can reconstruct or clone an object

state by re-executing the method invocations in the method-sequence representation;

the capability of reconstructing an object state is crucial when Orstra wants to assert

that the state of the object under consideration is equivalent to that of another object

constructed elsewhere.

The state representation uses symbolic expressions with the grammar shown below:

386

exp ::= prim | invoc “.state” | invoc “.retval”

args ::= ǫ | exp | args “,” exp

invoc ::= method “(” args “)”

prim ::= “null” | “true” | “false” | “0” | “1” | “-1” | . . .

Each object or value is represented with an expression. Arguments for a method in-
vocation are represented as sequences of zero or more expressions (separated by com-
mas); the receiver of a non-static, non-constructor method invocation is treated as the
first method argument. A static method invocation or constructor invocation does not
have a receiver. The .state and .retval expressions denote the state of the receiver
after the invocation and the return of the invocation, respectively. For brevity, the gram-
mar shown above does not specify types for the expressions. A method is represented
uniquely by its defining class, name, and the entire signature. (For brevity, we do not
show a method’s defining class or signature in the state-representation examples of this
paper.) For example, in test1, the state of the object s1 after the push invocation is
represented by

push(UBStack<init>().state, MyInput<init>(3).state).state.

where UBStack<init> and MyInput<init> represent constructor invocations.
Note that the state representation based on method sequences allows tests to contain

loops, arithmetic, aliasing, and polymorphism. Consider the following two tests test3
and test4:

public void test3() {
UBStack t = new UBStack();

UBStack s3 = t;

for (int i = 0; i <= 1; i++)

s3.push(new MyInput(i));

}

public void test4() {
UBStack s4 = new UBStack();

int i = 0;

s4.push(new MyInput(i));

s4.push(new MyInput(i + 1));

}

Orstra dynamically monitors the invocations of the methods on the actual ob-

jects created at runtime and collects the actual argument values for these invocations.

For example, it represents the states of both s3 and s4 at the end of test3 and

test4 as push(push(UBStack<init>().state, MyInput<init>(0)).state,

MyInput<init>(1)).state.

The above-shown grammar does not capture a method execution’s side effect on

an argument: a method can modify the state of a non-primitive-type argument and this

argument can be used for another later method invocation. Following Henkel and Di-

wan’s suggested extension [22], we can enhance the first grammar rule to address this

issue:

exp ::= prim | invoc “.state” | invoc “.retval” | invoc “.argi”

where the added expression (invoc “.argi”) denotes the state of the modified ith argu-

ment after the method invocation.

If test code modifies directly some public fields of an object without invoking any

of its methods, these side effects on the object are not captured by method sequences

387

in the method-sequence representation. To address this issue, Orstra can be extended to

create a public field-writing method for each public field of the object, and then monitor

object-field accesses in the test code. If Orstra detects at runtime the execution of the

object’s field-write instruction in the test code, it can insert a corresponding field-writing

method invocation in the method-sequence representation.

Concrete-State Representation A program is executed upon the program state that

includes a program heap. The concrete-state representation of an object [43] considers

only parts of the heap that are reachable from the object. We also call each part a “heap”

and view it as a graph: nodes represent objects and edges represent fields. Let P be the

set consisting of all primitive values, including null, integers, etc. Let O be a set of

objects whose fields form a set F . (Each object has a field that represents its class, and

array elements are considered index-labelled object fields.)

Definition 1. A heap is an edge-labelled graph 〈O, E〉, where E = {〈o, f, o′〉|o ∈
O, f ∈ F, o′ ∈ O ∪ P}.

Heap isomorphism is defined as graph isomorphism based on node bijection [8].

Definition 2. Two heaps 〈O1, E1〉 and 〈O2, E2〉 are isomorphic iff there is a bijection

ρ : O1 → O2 such that:

E2 = {〈ρ(o), f, ρ(o′)〉|〈o, f, o′〉 ∈ E1, o
′ ∈ O1} ∪

{〈ρ(o), f, o′〉|〈o, f, o′〉 ∈ E1, o
′ ∈ P}.

The definition allows only object identities to vary: two isomorphic heaps have the same

fields for all objects and the same values for all primitive fields.

The state of an object is represented with a rooted heap, instead of the whole pro-

gram heap.

Definition 3. A rooted heap is a pair 〈r, h〉 of a root object r and a heap h whose all

nodes are reachable from r.

Orstra linearizes rooted heaps into strings such that checking heap isomorphism

corresponds to checking string equality. Figure 4 shows the pseudo-code of the lin-

earization algorithm. The linearization algorithm traverses the entire rooted heap in the

depth-first order, starting from the root. When the algorithm visits a node for the first

time, it assigns a unique identifier to the node, and keeps this mapping in ids so that

already assigned identifiers can be reused by nodes that appear in cycles. We can show

that the linearization normalizes rooted heaps into strings. The states of two objects are

equivalent if their strings resulted from linearization are the same.

Observer-Abstraction Representation The observer abstraction technique [46] rep-

resents the state of an object by using abstraction functions that are constructed based

on observers. We first define an observer following Henkel and Diwan’s work [22] on

specifying algebraic specifications for a class:

388

Map ids; // maps nodes into their unique ids

String linearize(Node root, Heap <O,E>) {
ids = new Map();

return lin("root", root, <O,E>);

}

String lin(String fieldName, Node root, Heap <O,E>) {
if (ids.containsKey(root))

return fieldName+":"+String.valueOf(ids.get(root))+";";

int id = ids.size() + 1;

ids.put(root, id);

StringBuffer rep = new StringBuffer();

rep.append(fieldName+":"+String.valueOf(id)+";");

Edge[] fields = sortByField({ <root, f, o> in E });
foreach (<root, f, o> in fields) {

if (isPrimitive(o))

rep.append(f+":"+String.valueOf(o)+";");

else

rep.append(lin(f, o, <O,E>));

}
return rep.toString();

}

Fig. 4. Pseudo-code of the linearization algorithm

Definition 4. An observer of a class c is a method ob in c’s interface such that the return

type of ob is not void.

An observer invocation is a method invocation whose method is an observer. Given

an object o of class c and a set of observer calls OB = {ob1, ob2, ..., obn}
1 of c,

the observer abstraction technique represents the state of o with n values OBR =
{obr1, obr2, ..., obrn}, where each value obri represents the return value of observer

call obi invoked on o.

When behavior of an object is to be asserted, Orstra can assert the observer-

abstraction representation of the object: asserting the return values of observer invo-

cations on the object.

Among different user-defined observers for a class, toString() [41] deserves spe-

cial attention. This observer returns a string representation of the object, often being

concise and human-readable. java.lang.Object [41] defines a default toString,

which returns the name of the object’s class followed by the unsigned hexadecimal

representation of the hash code of the object. The Java API documentation [41] recom-

mends developers to override this toString method in their own classes.

Comparison In this section, we compare different state representations in terms of

their relationships and the extent of revealing implementation details, as well as their

effects on asserting method invocation behavior.

We first define subsumption relationships among state representations as follows.

State representation S1 subsumes state representation S2 if and only if any two objects

that have the same S1 representations also have the same S2 representations. State rep-

resentation S1 strictly subsumes state representation S2 if S1 subsumes S2 and for some

objects O and O’, the S1 representations differ but the S2 representations do not. State

1 Orstra does not use an observer defined in java.lang.Object [41].

389

representations S1 and S2 are incomparable if neither S1 subsumes S2 nor S2 subsumes

S1. State representations S1 and S2 are equivalent if S1 subsumes S2 and S2 subsumes

S1.

If state representation S1 subsumes state representation S2, and S1 has been asserted

(by checking whether the actual state representation is the same as the expected one), it

is not necessary to assert S2: asserting S2 is redundant after we have asserted S1.

The method-sequence representation strictly subsumes the concrete-state repre-

sentation. The concrete-state representation strictly subsumes the observer-abstraction

representation. Among different observers, the representation resulting from the

toString() observer often subsumes the representation resulting from other observers

and is often equivalent to the concrete-state representation.

Different state representations expose different levels of implementation details. If a

state representation exposes more implementation details of a program, it is often more

difficult for developers to determine whether the program behaves as expected once an

assertion for the state representation is violated. In addition, If a state representation

exposes more implementation details, developers can be overwhelmed by assertion vi-

olations that are not symptoms of regression faults but due to expected implementation

changes (such as during program refactoring [18]). Although these assertion violations

can be useful during software impact analysis [6], we prefer to put assertions on state

representations that reveals fewer implementation details.

Among the three representations, the concrete-state representation exposes more

implementation details than the other two representations: the concrete-state represen-

tation of an object is sensitive to changes on the object’s field structure or the semantic

of its fields, even if these changes do not cause any behavioral difference in the object’s

interface. To address this issue of the concrete-state representation, when Orstra creates

an assertion for an object’s concrete-state representation, instead of directly asserting

the concrete-state representation string, Orstra asserts that the object is equivalent to

another object produced with a different method sequence if such an object can be

found (note that state equivalence is still determined based on the comparison of repre-

sentation strings). This strategy is inspired by state-equivalence checking in algebraic-

specifications-based testing [16, 22]. One such example is in Line 24 of Figure 3.

3.2 Method-Execution-Behavior Assertions

The execution of a test case produces a sequence of method executions.

Definition 5. A method execution is a sextuple e = (m, Sargs, Sentry , Sexit, Sargs′ ,

r) where m, Sargs, Sentry , Sexit, Sargs′ , and r are the method name (including the

signature), the argument-object states at the method entry, the receiver-object state at

the method entry, the receiver-object state at the method exit, the argument-object states

at the method exit, and the method return value, respectively.

Note that when m’s return is void, r is void; when m is a static method, Sentry and

Sexit are empty; when m is a constructor method, Sentry is empty.

When a method execution e is a public method of the class under test C and none of

e’s indirect or direct callers is a method of C, we call that e is invoked on the interface

390

of C. For each such method execution e invoked on the interface of C, if Sexit is not

empty, Sexit can be asserted by using the following ways:

– If another method sequence can be found to produce an object state S′ that is ex-

pected to be equivalent to Sexit, an assertion is created to compare the state repre-

sentations of S′ and Sexit.

– If an observer method ob is defined by the class under test, an assertion is created to

compare the return of an ob invocation on Sexit with the expected value (the ways

of comparing return values are described below).

As is discussed in Section 3.1, we do not create an assertion that directly compares

the concrete-state representation string of the receiver object with the expected string,

because such an assertion is too sensitive to some internal implementation changes that

may not affect the interface behavior.

If a method invocation is a state-preserving method, then asserting Sexit is not nec-

essary; instead, the existing purity analysis techniques [37, 39] can be exploited to stat-

ically check its purity if its purity is to be asserted.

Similarly, we can assert Sargs′ in the same way as asserting Sexit. If a method invo-

cation does not modify argument objects’ states, then asserting Sargs′ is not necessary.

For each method execution e that is invoked on the interface of the class under test,

if r is not void, its return value r can be asserted by using the following ways:

– If r is of a primitive type (including primitive-type objects such as String and

Integer), an assertion is created to compare r with the expected primitive value.

– If r is of the class-under-test type (which is a non-primitive type), an assertion is

created by using the above ways of asserting a receiver-object state Sexit.

– If r is of a non-primitive type R but not the class-under-test type,

— if the observer method toString is defined by R, an assertion is created to

compare the return of the toString invocation on r with the expected string value;

— otherwise, an assertion is created to compare r’s concrete-state representation

string with the expected representation string value2.

When a method execution throws an uncaught exception, we can add an assertion

for asserting that the exception is to be thrown and it is not necessary to add other

assertions for Sexit, Sargs′ , or r.

4 Automatic Test-Oracle Augmentation

The preceding section presents a framework for asserting the behavior exhibited by a

method execution in a test suite. Although developers can manually write assertions

based on the framework, it is tedious to write comprehensive assertions as specified

2 Note that we do not intend to create another method sequence that produces an object state that

is expected to be equivalent to r but directly assert r’s concrete-state representation string, be-

cause r is not of the class-under-test type and its implementation details often remain relatively

stable.

391

by the framework. Some automatic test-generation tools such as JCrasher [11] do not

generate any assertions and some tools such as Jtest [31] generate a limited number

of assertions. In practice, the assertions in an automatically generated test suite are

often insufficient to provide strong oracle checking. This section presents our Orstra

tool that automatically adds new assertions into an automatically generated test suite

based on the proposed framework. The automatic augmentation consists of two phases:

state-capturing phase and assertion-building phase. In the state-capturing phase, Orstra

dynamically collects object states exercised by the test suite and the method sequences

that are needed to reproduce these object states. In the assertion-building phase, Orstra

builds assertions that assert behavior of the collected object states and the returns of

observer methods.

4.1 State-Capturing Phase

In the state-capturing phase, Orstra runs a given test suite T (in the form of a JUnit test

class [19]) for the class under test C and dynamically rewrites the bytecodes of each

class at class loading time (based on the Byte Code Engineering Library (BCEL) [13]).

Orstra rewrites the T class bytecodes to collect receiver object references, method

names, method signatures, arguments, and returns at call sites of those method se-

quences that lead to C-object states or argument-object states for C’s methods. Then

Orstra can use the collected method call information to reconstruct the method se-

quence that leads to a particular C-object state or argument-object state. The recon-

structed method sequence can be used in constructing assertions for C-object states in

the assertion-building phase.

Orstra also rewrites the C class bytecodes in order to collect a C-object’s concrete-

state representations at the entry and exit of each method call invoked through the C-

object’s interface. Orstra uses Java reflection mechanisms [5] to recursively collect all

the fields that are reachable from a C-object and uses the linearization algorithm (shown

in Figure 4) to produce the object’s state-representation string.

Additionally Orstra collects the set OM of observer-method invocations exercised

by T . These observer-method invocations are used to inspect and assert behavior of an

C-object state in the assertion-building phase.

4.2 Assertion-Building Phase

In the assertion-building phase, Orstra iterates through each C-object state o exercised

by the initial test suite T . If o is equivalent to a nonempty set O of some other object

states exercised by T , Orstra picks the object state o′ in O that is produced by the short-

est method sequence m′. Then Orstra creates an assertion for asserting state equivalence

by using the techniques described in Section 3.2.
In particular, if an equals method is defined in C’s interface, Orstra creates the

following JUnit assertion method (assertTrue) [19] to check state equivalence after
invoking the method sequence m′ to produce o′:

C o’ = m’;

assertTrue(o.equals(o’))

392

Note that m′ needs to be replaced with the actual method sequence in the exported

assertion code.
If no equalsmethod is defined in C’s interface, Orstra creates an assertion by using

an equals-assertion-builder method (EqualsBuilder.reflectionEquals),which is
from the Apache Jakarta Commons subproject [4]. This method uses Java reflection
mechanisms [5] to determine if two objects are equal by comparing their transitively
reachable fields. We can show that if two objects o and o′ have the same state represen-
tation strings, the return value of EqualsBuilder.reflectionEquals(o, o’) is
true. Orstra creates the following assertion to check state equivalence after invoking
the method sequence m′ to produce o′:

C o’ = m’;

EqualsBuilder.reflectionEquals(o, o’)

If o is not equivalent to any other object state exercised by T , Orstra invokes on o

each observer method om in OM collected in the state-capturing phase. Orstra collects

the return value r of the om invocation and makes an assertion by using the techniques

described in Section 3.2.
In particular, if r is of a primitive type, Orstra creates the following assertion to

check the return of om:

assertEquals(o.om, r_str);

where r str is the string representation of r’s value.

If r is of the C type, Orstra uses the above-described technique for constructing an

assertion for a C object if there exist any other object states that are equivalent to r.
If r is of a non-primitive type R but not the C type, Orstra creates the following

assertion if a toString method is defined in R’s interface:

assertEquals((o.om).toString(), t_str);

where t str is the return value of the toString method invocation. If no toString
method is defined in R’s interface, Orstra creates the following assertion:

assertEquals(Runtime.genStateStr(o.om), s_str);

where Runtime.genStateStr is Orstra’s own runtime helper method for returning

the concrete-representation string of an object state, and s str is the concrete-state rep-

resentation string of r.

The preceding assertion building techniques are generally exhaustive, enumerating

possible mechanisms that developers may use to write assertions manually for these

different cases.

In the end of the assertion-building phase, Orstra produces an augmented test suite,

which is an exported JUnit test suite, including generated assertions together with the

original tests in T .

Note that an automatically generated test suite can include a high percentage of

redundant tests [43], which generally do not add value to the test suite. It is not neces-

sary to run these redundant tests or add assertions for these redundant tests. To produce

a compact test suite with necessary assertions, the implementation of Orstra actually

first collects all nonequivalent method executions and creates assertions only for these

method executions; therefore, the tests in the actually exported JUnit test suite may not

correspond one-on-one to the tests in the original JUnit test suite.

393

Table 1. Experimental subjects

class meths public ncnb Jtest JCrasher faults

meths loc tests tests

IntStack 5 5 44 94 6 83

UBStack 11 11 106 1423 14 305

ShoppingCart 9 8 70 470 31 120

BankAccount 7 7 34 519 135 42

BinSearchTree 13 8 246 277 56 309

BinomialHeap 22 17 535 6205 438 310

DisjSet 10 7 166 779 64 307

FibonacciHeap 24 14 468 3743 150 311

HashMap 27 19 597 5186 47 305

LinkedList 38 32 398 3028 86 298

TreeMap 61 25 949 931 1000 311

5 Experiment

This section presents our experiment conducted to address the following research ques-

tion:

– RQ: Can our Orstra test-oracle-augmentation tool improve the fault-detection ca-

pability (which approximates the regression-fault-detection capability) of an auto-

matically generated test suite?

5.1 Experimental Subjects

Table 1 lists eleven Java classes that we use in the experiment. These classes were

previously used in evaluating our previous work [43] on detecting redundant tests.

UBStack is the illustrating example taken from the experimental subjects used by Stotts

et al. [40]. IntStack was used by Henkel and Diwan [22] in illustrating their approach

of discovering algebraic specifications. ShoppingCart is an example for JUnit [10].

BankAccount is an example distributed with Jtest [31]. The remaining seven classes

are data structures previously used to evaluate Korat [8]. The first four columns show

the class name, the number of methods, the number of public methods, and the number

of non-comment, non-blank lines of code for each subject.

To address the research question, our experiment requires automatically generated

test suites for these subjects so that Orstra can augment these test suites. We then use

two third-party test-generation tools, Jtest [31] and JCrasher [11], to automatically gen-

erate test inputs for these eleven Java classes. Jtest allows users to set the length of

calling sequences between one and three; we set it to three, and Jtest first generates all

calling sequences of length one, then those of length two, and finally those of length

three. JCrasher automatically constructs method sequences to generate non-primitive

arguments and uses default data values for primitive arguments. JCrasher generates

394

tests as calling sequences with the length of one. The fifth and sixth columns of Table 1

show the number of tests generated by Jtest and JCrasher.

Although our ultimate research question is to investigate how much better an aug-

mented test suite guards against regression faults, we cannot collect sufficient real re-

gression faults for the experimental subjects. Instead, in the experiment, we use general

fault-detection capability of a test suite to approximate regression-fault-detection ca-

pability. In particular, we measure the fault-detection capability of a test suite before

and after Orstra’s augmentation. Then our experiment requires faults for these eleven

Java classes. These Java classes were not equipped with such faults; therefore, we used

Ferastrau [24], a Java mutation testing tool, to seed faults in these classes. Ferastrau

modifies a single line of code in an original version in order to produce a faulty version.

We configured Ferastrau to produce around 300 faulty versions for each class. For three

relatively small classes, Ferastrau generates a much smaller number of faulty versions

than 300. The last column of Table 1 shows the number of faulty versions generated by

Ferastrau.

5.2 Measures

To measure the fault-detection capability of a test suite, we use a metric, fault-exposure

ratio (FE): the number of faults detected by the test suite divided by the number of to-

tal faults. A higher fault-exposure ratio indicates a better fault-detection capability. The

JUnit testing framework [19] reports that a test fails when an assertion in the test is vio-

lated or an uncaught exception is thrown from the test. An initial test suite generated by

JCrasher or Jtest may include some failing tests when being run on the original versions

of some Java classes shown in Table 1, because some automatically generated tests may

be illegal, violating (undocumented) preconditions of some Java classes. Therefore, we

determine that a test suite exposes the seeded fault in a faulty version if the number

of failing tests reported on the faulty version is larger than the number of failing tests

on the original version. We measure the fault-exposure ratio FEorig of an initial test

suite and the fault-exposure ratio FEaug of its augmented test suite. We then measure

the improvement factor, given by the equation:
FEaug−FEorig

FEorig
. A higher improvement

factor indicates a more substantial improvement of the fault-detection capability.

5.3 Experimental Results

Table 2 shows the experimental results. The results for JCrasher-generated test suites

are shown in Columns 2-4 and the results for Jtest-generated test suites are shown in

Columns 5-7. Columns 2 and 5 show the fault-exposure ratios of the original test suites

(before test-oracle augmentation). Columns 3 and 6 show the fault-exposure ratios of

the test suites augmented by Orstra. Columns 4 and 7 show the improvement factors

of the augmented test suites over the original test suites. The last two rows show the

average and median data for Columns 2-7.

Without containing any assertion, a JCrasher-generated test exposes a fault if an un-

caught exception is thrown during the execution of the test. We observed that JCrasher-

generated tests has 0% fault-exposure ratios for two classes (ShoppingCart and

395

Table 2. Fault-exposure ratios of Jtest-generated, JCrasher-generated, and augmented test suites,

and improvement factors of test augmentation.

class JCrasher-gen tests Jtest-gen tests

orig aug improve orig aug improve

IntStack 9% 40% 3.36 47% 47% 0.00

UBStack 39% 53% 0.36 60% 60% 0.00

ShoppingCart 0% 48% ∞ 56% 56% 0.00

BankAccount 0% 98% ∞ 98% 98% 0.00

BinSearchTree 8% 20% 1.58 20% 27% 0.34

BinomialHeap 18% 95% 4.19 85% 95% 0.12

DisjSet 23% 31% 0.36 26% 43% 0.65

FibonacciHeap 9% 96% 9.28 55% 96% 0.74

HashMap 14% 76% 4.30 22% 76% 2.43

LinkedList 7% 35% 3.73 45% 45% 0.01

TreeMap 2% 89% 54.40 12% 89% 6.29

Average 12% 62% 9.06 48% 67% 0.96

Median 9% 53% 3.55 47% 60% 0.12

BankAccount), because no seeded faults for these two classes cause uncaught excep-

tions. Jtest equips its generated tests with some assertions: these assertions typically

assert those method invocations whose return values are of primitive types. (Section 7

discusses main differences between Orstra and Jtest’s assertion creation.) Generally,

Jtest-generated test suites have higher fault-exposure ratios than JCrasher-generated test

suites. The phenomenon is due to two factors: Jtest generates more test inputs (with

longer method sequences) than JCrasher, and Jtest has stronger oracle checking (with

additional assertions) than JCrasher.

After Orstra augments the JCrasher-generated test suites with additional assertions,

we observed that the augmented test suites achieve substantial improvements of fault-

exposure ratios. After augmenting the JCrasher-generated test suite for TreeMap, Orstra

achieves an improvement factor of even beyond 50. The augmented Jtest-generated test

suites also gain improvements of fault-exposure ratios (although not substantially as

JCrasher-generated test suites), except for the first four classes. These four classes are

relatively simple and seeded faults for these classes can be exposed with a less com-

prehensive set of assertions; Jtest-generated assertions are already sufficient to expose

those exposable seeded faults.

5.4 Threats to Validity

The threats to external validity primarily include the degree to which the subject pro-

grams and their existing test suites are representative of true practice. Our subjects are

from various sources and the Korat data structures have nontrivial size for unit testing.

Our experiment had used initial test suites automatically generated by two third-party

tools, one of which (Jtest) is popular and used in industry. These threats could be fur-

ther reduced by experiments on more subjects and third-party tools. The main threats

396

to internal validity include instrumentation effects that can bias our results. Faults in

our tool implementation, Jtest, or JCrasher might cause such effects. To reduce these

threats, we have manually inspected the source code of augmented tests and execution

traces for several program subjects. The main threats to construct validity include the

uses of those measurements in our experiment to assess our tool. To assess the effec-

tiveness of our test-oracle-augmentation tool, we measure the exposure ratios of faults

seeded by a mutation testing tool to approximate the exposure ratios of real regression

faults introduced as an effect of changes made in the maintenance process. Although

empirical studies showed that faults seeded by mutation testing tools yield trustwor-

thy results [3], these threats can be reduced by conducting more experiments on real

regression faults.

6 Discussion

6.1 Analysis Cost

In general, the number of assertions generated for an initial test suite can be approxi-

mately characterized as

|assertions| = O(|nonEqvStates| × |observers|+
|statesEqvToAnother|)

where |nonEqvStates| × |observers| is the number of nonequivalent object states

exercised by the initial test suite being multiplied by the number of observer calls ex-

ercised by the initial test suite; recall that Orstra generates an assertion for the return

of an observer invoked on a nonequivalent object state. |statesEqvToAnother| is the

number of object states (produced by nonequivalent method executions in the initial test

suite) that can be found to be equivalent to another object state produced by a different

method sequence; recall that Orstra generates an assertion for asserting that an object

state produced by a method sequence is equivalent to another object state produced by

a different method sequence if any.

Using Orstra in regression testing activities incurs two types of extra cost. The first

type is the cost of augmenting the initial test suite. In our experiment, the elapsed real

time of running our test augmentation is reasonable, being up to several seconds, de-

termined primarily by the class complexity, the number of tests in the test suite, the

number of generated assertions. Note that Orstra needs to be run once when the initial

test suite is augmented for the first time, and later to be run when reported assertion

violations are determined not to be caused by regression faults. In future work, follow-

ing the idea of repairing GUI regression tests [27], we plan to improve Orstra so that it

can fix those violated assertions in the augmented test suite without re-augmenting the

whole initial test suite.

The second type of cost is the cost of running additional assertion checking in the

augmented test suite, determined primarily by the number of generated assertions. Al-

though this cost is incurred every time the augmented test suite is run (after the program

is changed), running the initial unit-test suite is often fast and running these additional

assertion checking slows down the execution of the test suite within several factors. In-

deed, if an initial test suite exercises many non-equivalent object states and the program

397

under test has many observer methods, the cost of both augmenting the test suite and

running the augmented test suite could be high. Under these situations, developers can

configure Orstra to trade weaker oracle checking for efficiency by invoking a subset

of observer methods during assertion generation. In addition, regression test prioritiza-

tion [15] or test selection [20] for Java programs can be used to order or select tests in

the Orstra-augmented test suite for execution when the execution time is too long.

6.2 Fault-Free Behavioral Changes

Orstra observes behavior of the program under test when being exercised by a test suite

and then automatically adds assertions to the test suite to assert the program behavior is

preserved after future program changes. Indeed, sometimes violations of inserted asser-

tions do not necessarily indicate real regression faults. For example, consider that the

program under test contains a fault, which is not exposed by the initial test suite. Orstra

runs the test suite on the current (faulty) version and create assertions, some of which

assert wrong behavior. Later developers find the fault and fix the program. When run-

ning the Orstra-augmented test suite on the new program version, assertion violations

are reported but there are no regression faults. In addition, although Orstra has been

carefully designed to assert as few implementation details in object-state representation

as possible, some program changes may violate inserted assertions but still preserve

program behavior that developers care about. To help developers to determine whether

an assertion violation in an augmented test suite indicates real regression faults, we

can use change impact analysis tools such as Chianti [33] to identify a set of affecting

changes that were responsible for the assertion violation.

Some types of programs (such as multi-threaded programs or programs whose be-

haviors are related to time) may exhibit nondeterministic or different behaviors across

multiple runs: running the same test suite twice may produce different observer returns

or receiver-object states. For example, a getTimemethod returns the current time and a

getRandomNumbermethod returns a random number. After we add assertions for these

types of method returns in a test suite, running the augmented test suite on the current

or new program version can report assertion violations, which do not indicate real faults

or regression faults. To address this issue, we can run a test suite multiple times on the

current program version and remove those assertions that are not consistently satisfied

across multiple runs.

6.3 Availability of Observers

Orstra creates assertions for the returns of observers of the class under test. These ob-

server calls may already exist in the initial test suite or may be invoked by Orstra to

assert object-state behavior. Although observers are common in a class interface, there

are situations where a class interface includes few or no observers. Even when a class in-

terface includes no observer, we can still apply Orstra to augment a test suite generated

for the class by asserting that a receiver-object state produced by a method sequence is

equivalent to another receiver-object state produced by a different method sequence.

398

6.4 Iterations of Augmentation

Orstra runs an automatically generated test suite and then adds assertions to the test suite

to produce an augmented test suite. When some observer methods are state-modifying

methods, running them for preparing assertion checking in the augmented test suite

can produce new receiver-object states that are not exercised by the initial test suite.

Therefore, if we apply Orstra on the augmented test suite again, the second iteration

of augmentation can produce a test suite with more assertion checking and thus often

stronger oracle checking. However, if the augmented test suite after the first iteration

does not produce any new receiver-object state, the second or later iteration of augmen-

tation adds no new assertions to the test suite.

6.5 Quality of Automatically Generated Unit-Test Suites

The tests generated by JCrasher and Jtest (the two third-party test-generation tools used

in the experiment) include a relatively high number of redundant tests [43], which do

not contribute to achieving new structural coverage or better fault-detection capability.

Rostra and Symstra (two test-generation tools developed in our previous work [43,44])

can generate a test suite of higher quality (e.g., higher structural coverage) than a test

suite generated by JCrasher or Jtest. Augmenting a test suite generated by Rostra or

Symstra can achieve a higher improvement factor than augmenting a test suite gener-

ated by JCrasher or Jtest. In general, the higher quality a test suite is of, the higher

improvement factor Orstra can achieve when augmenting the test suite.

6.6 Augmentation of Other Types of Test Suites

Although Orstra focuses on augmenting a unit-test suite, it is straightforward to extend

Orstra to augment an integration-test suite, which intends to test the interactions of mul-

tiple classes. When we assert the return values of a method execution in an integration-

test suite, we can directly apply Orstra without any modification. When we assert the

receiver-object state at a method exit, we can adapt Orstra to invoke on the receiver

object the observer methods of the receiver-object class rather than the observer meth-

ods of all the classes under test because there are multiple classes under test for an

integration-test suite.

So far Orstra has been evaluated on augmenting an automatically generated test

suite. Generally Orstra can also be used to augment a manually generated test suite,

because the input to Orstra is simply a JUnit test class no matter whether it is generated

automatically or manually. Because it is tedious to manually write comprehensive as-

sertions for a test suite, a manually written test suite often does not have comprehensive

assertions. We hypothesize that applying Orstra to augment a manually generated test

suite can also improve the test suite’s fault-detection capability. We plan to validate this

hypothesis in our future experiments.

6.7 Incorporation of Oracle Augmentation in Test Generation

Orstra has been developed as an independent component that can augment any test suite

in the form of a JUnit test class. Orstra can also be incorporated into the test-generation

399

process of an existing test-generation tool as a two-step process. In the first step, the tool

generates test inputs and runs these generated test inputs to collect method returns and

object states. This step combines the existing test-generation process and Orstra’s state

capturing phase. The second step includes Orstra’s assertion-building phase. Some ex-

isting test-generation tools such as JCrasher do not run generated test inputs during their

test-generation process. Then these tools can loosely incorporate Orstra by adopting this

two-step process. Some existing tools such as Jtest, Rostra [43], and Symstra [44] actu-

ally run generated test inputs during their test-generation process. Then these tools can

tightly incorporate Orstra by including Orstra’s state-capturing and assertion-building

phases when these tools run the generated test inputs during the test-generation process.

In fact, Orstra has been incorporated into Rostra and Symstra as an optional component

for adding assertions to their generated tests.

7 Related Work

Richardson [34] developed the TAOS (Testing with Analysis and Oracle Support)

toolkit, which provides different levels of test oracle support. For example, in lower

levels, developers can write down expected outputs for a test input, specify ranges for

variable values, or manually inspect actual outputs. The oracle support provided by our

Orstra tool is in TAOS’ lower levels: generating expected outputs for test inputs. In

higher levels, developers can use specification languages (such as Graphical Interval

Logic Langauge and Real-Time Interval Logic Language) to specify temporal proper-

ties. There exist a number of proposed approaches for providing oracle supports based

on different types of specifications [9, 14, 26, 32, 35]. In particular, for testing Java pro-

grams, Cheon and Leavens [9] developed a runtime verification tool for Java Modelling

Language (JML) [23] and then provided oracle supports for automatically generated

tests. This oracle checking approach was also adopted by automatic specification-based

test generation tools such as Korat [8]. Different from these specification-based oracle

supports, Orstra does not require specifications but Orstra can enhance oracle checking

only for exposing regression faults.

When specifications do not exist, automatic test-generation tools such as

JCrasher [11] and CnC [12] use program crashes or uncaught exceptions as symptoms

of the current program version’s faulty behavior. Like Orstra, Jtest [31] can also cre-

ate some assertions for its generated tests. Orstra differs from Jtest in several ways.

Jtest creates assertions for its own generated tests only, whereas Orstra can augment

any third-party test suite. Jtest creates assertions for method invocations whose return

values are of primitive types, whereas Orstra creates more types of assertions, such

as asserting returns with non-primitive types and asserting behavior of receiver-object

states. Unlike Orstra, Jtest does not systematically or exhaustively create assertions to

assert exercised program behavior. Our experimental results (shown in Section 5.3) in-

dicate that Orstra can still effectively augment a Jtest-generated test suite, which has

been equipped with Jtest-generated assertions.

Saff and Ernst [38] as well as Orso and Kennedy [29] developed techniques for

capturing and replaying interactions between a selected subsystem (such as a class) and

the rest of the application. Their techniques focus on creating fast, focused unit tests

400

from slow system-wide tests, whereas our Orstra tool focuses on adding more assertions

to an existing unit-test suite. In addition, Orstra’s techniques go beyond capturing and

replaying, because Orstra creates new helper-method invocations for assertion checking

and these new method invocations might not be exercised in the original test suite.

Memon et al. [25] model a GUI state in terms of the widgets that the GUI con-

tains, their properties, and the values of the properties. Their experimental results show

that comparing more-detailed GUI states (e.g., GUI states associated with all or visible

windows) from two versions can detect faults more effectively than comparing less-

detailed GUI states (e.g., GUI states associated with the active window or widget). Our

experiment shows a similar result: checking more-detailed behavior (with augmented

test suites) can more effectively expose regression faults.

Both Harrold et al’s spectra comparison approach [21] and our previous value-

spectra comparison approach [47] also focus on exposing regression faults. Program

spectra usually capture internal program execution information and these approaches

compare program spectra from two program versions in order to expose regression

faults. Our new Orstra tool compares interface-visible behavior of two versions without

comparing internal execution information. On one hand, Orstra may not report behav-

ioral differences that are reported by spectra comparison approaches, if these internal

behavioral differences cannot cause behavioral differences in the interface. On the other

hand, Orstra may report behavioral differences that are not reported by spectra com-

parison approaches, if these behavioral differences are exhibited only by new Orstra-

invoked observers (spectra comparison approaches do not create any new method invo-

cation).

When there are no oracles for a large number of automatically generated tests, devel-

opers cannot afford to inspect the results of such a large number of tests. Our previous

operational violation approach [45] selects a small subset of automatically generated

tests for inspection; these selected tests violates the operational abstractions [17] in-

ferred from the existing test suite. Pacheco and Ernst [30] extended the approach by

additionally using heuristics to filter out illegal test inputs. Agitar Agitator [1] automat-

ically generates initial tests, infers operational-abstraction-like observations, lets devel-

opers confirm these observations to assertions, and generates more tests to violate these

inferred and confirmed observations. The operational violation approach primarily in-

tends to expose faulty behavior exhibited by new generated tests on the current program

version, whereas Orstra intends to enhance the oracle checking of an existing test suite

so that it has an improved capability of exposing faulty behavior exhibited by the same

test suite on future program versions.

Orstra has been implemented based on our two previous approaches. Our previ-

ous Rostra approach [43] provides state representation and comparison techniques, but

Rostra compares states in order to detect redundant tests out of automatically gener-

ated tests. Our previous Obstra approach [46] also invokes observers on object states

exercised by an existing test suite. Obstra uses the return values of observers to abstract

concrete states and constructs abstract-object-state machines for inspection. Obstra al-

lows developers to inspect the behavior of the current program version, whereas Orstra

uses the return values of observers as well as receiver object states to assert that behav-

ior of future program versions is the same as behavior of the current program version.

401

In contrast to Rostra and Obstra, Orstra makes new contributions in developing an ap-

proach for enhancing the regression oracle checking of an automatically generated test

suite.

8 Conclusion

An automatic test-generation tool can be used to generate a large number of test inputs

for the class under test, complementing manually generated tests. However, without

specifications these automatically generated test inputs do not have test oracles to guard

against faults in the current program version or regression faults in future program ver-

sions. We have developed a new automated approach for augmenting an automatically

generated test suite in guarding against regression faults. In particular, we have pro-

posed a framework for asserting behavior of a method invocation in an object-oriented

unit-test suite. Based on the framework, we have developed an automatic test-oracle-

augmentation tool, called Orstra, that systematically adds assertions into an automati-

cally generated test suite in order to improve its capability of guarding against regres-

sion faults. We have conducted an experiment to assess the effectiveness of augmenting

tests generated by two third-party test-generation tools. The results show that Orstra

can effectively increase the fault-detection capability of automatically generated tests

by augmenting their regression oracle checking.

Acknowledgments

We would like to thank Alex Orso and Andreas Zeller for discussions that lead to the

work described in this paper. We thank Darko Marinov for providing the Ferastrau

mutation testing tool and Korat subjects used in the experiment.

References

1. Agitar Agitatior 2.0, Novermber 2004. http://www.agitar.com/.

2. D. M. Andrews. Using executable assertions for testing and fault tolerance. In Proc. the 9th

International Symposium on Fault-Tolerant Computing, pages 102–105, 1979.

3. J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing

experiments? In Proc. 27th International Conference on Software Engineering, pages 402–

411, 2005.

4. The Jakarta Commons Subproject, 2005. http://jakarta.apache.org/commons/

lang/apidocs/org/apache/commons/lang/builder/EqualsBuilder.

html.

5. K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Addison-Wesley

Longman Publishing Co., Inc., 2000.

6. R. S. Arnold. Software Change Impact Analysis. IEEE Computer Society Press, 1996.

7. K. Beck. Extreme programming explained. Addison-Wesley, 2000.

8. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on Java predicates.

In Proc. International Symposium on Software Testing and Analysis, pages 123–133, 2002.

402

9. Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The JML

and JUnit way. In Proc. 16th European Conference Object-Oriented Programming, pages

231–255, June 2002.

10. M. Clark. Junit primer. Draft manuscript, October 2000.

11. C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for Java. Software:

Practice and Experience, 34:1025–1050, 2004.

12. C. Csallner and Y. Smaragdakis. Check ’n’ Crash: Combining static checking and testing. In

Proc. 27th International Conference on Software Engineering, pages 422–431, May 2005.

13. M. Dahm and J. van Zyl. Byte Code Engineering Library, April 2003. http://jakarta.

apache.org/bcel/.

14. L. K. Dillon and Y. S. Ramakrishna. Generating oracles from your favorite temporal logic

specifications. In Proc. 4th ACM SIGSOFT Symposium on Foundations of Software Engi-

neering, pages 106–117, 1996.

15. H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test case prioritization in a

JUnit testing environment. In Proc. 15th International Symposium on Software Reliability

Engineering, pages 113–124, 2004.

16. R.-K. Doong and P. G. Frankl. The ASTOOT approach to testing object-oriented programs.

ACM Trans. Softw. Eng. Methodol., 3(2):101–130, 1994.

17. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely

program invariants to support program evolution. IEEE Trans. Softw. Eng., 27(2):99–123,

2001.

18. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison Wesley, 1999.

19. E. Gamma and K. Beck. JUnit, 2003. http://www.junit.org.

20. M. J. Harrold, J. A. Jones, T. Li, D. Liang, and A. Gujarathi. Regression test selection for

Java software. In Proc. 16th ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pages 312–326, 2001.

21. M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An empirical investigation of the

relationship between spectra differences and regression faults. Journal of Software Testing,

Verification and Reliability, 10(3):171–194, 2000.

22. J. Henkel and A. Diwan. Discovering algebraic specifications from Java classes. In Proc.

17th European Conference on Object-Oriented Programming, pages 431–456, 2003.

23. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral inter-

face specification language for Java. Technical Report TR 98-06i, Department of Computer

Science, Iowa State University, June 1998.

24. D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Rinard. An evaluation of ex-

haustive testing for data structures. Technical Report MIT-LCS-TR-921, MIT CSAIL, Cam-

bridge, MA, September 2003.

25. A. M. Memon, I. Banerjee, and A. Nagarajan. What test oracle should I use for effective GUI

testing? In Proc. 18th IEEE International Conference on Automated Software Engineering,

pages 164–173, 2003.

26. A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated test oracles for GUIs. In Proc.

8th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages

30–39, 2000.

27. A. M. Memon and M. L. Soffa. Regression testing of GUIs. In Proc. 9th European Software

Engineering Conference held jointly with 11th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 118–127, 2003.

28. B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

29. A. Orso and B. Kennedy. Selective capture and replay of program executions. In Proc. 3rd

International ICSE Workshop on Dynamic Analysis, pages 29–35, St. Louis, MO, May 2005.

403

30. C. Pacheco and M. D. Ernst. Eclat: Automatic generation and classification of test inputs. In

Proc. 19th European Conference on Object-Oriented Programming, pages 504–527, Glas-

gow, Scotland, July 2005.

31. Parasoft Jtest manuals version 4.5. Online manual, April 2003. http://www.

parasoft.com/.

32. D. Peters and D. L. Parnas. Generating a test oracle from program documentation. In Proc.

1994 Internation Symposium on Software Testing and Analysis, pages 58–65, 1994.

33. X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool for change impact

analysis of Java programs. In Proc. 19th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, pages 432–448, 2004.

34. D. J. Richardson. TAOS: Testing with analysis and oracle support. In Proc. 1994 ACM

SIGSOFT International Symposium on Software Testing and Analysis, pages 138–153, 1994.

35. D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-based test oracles for reactive

systems. In Proc. 14th International Conference on Software Engineering, pages 105–118,

1992.

36. D. S. Rosenblum. Towards a method of programming with assertions. In Proc. 14th Inter-

national Conference on Software Engineering, pages 92–104, 1992.

37. A. Rountev. Precise identification of side-effect-free methods in Java. In Proc. 20th IEEE

International Conference on Software Maintenance, pages 82–91, Sept. 2004.

38. D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test factoring for Java. In Proc.

21st IEEE International Conference on Automated Software Engineering, pages 114–123,

Long Beach, CA, November 2005.

39. A. Salcianu and M. Rinard. Purity and side effect analysis for Java programs. In Proc.

6th International Conference on Verification, Model Checking and Abstract Interpretation,

pages 199–215, Paris, France, January 2005.

40. D. Stotts, M. Lindsey, and A. Antley. An informal formal method for systematic JUnit test

case generation. In Proc. 2002 XP/Agile Universe, pages 131–143, 2002.

41. Sun Microsystems. Java 2 Platform, Standard Edition, v 1.4.2, API Specification. Online

documentation, Nov. 2003. http://java.sun.com/j2se/1.4.2/docs/api/.

42. W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java PathFinder.

In Proc. 2004 ACM SIGSOFT International Symposium on Software Testing and Analysis,

pages 97–107, 2004.

43. T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting redundant object-

oriented unit tests. In Proc. 19th IEEE International Conference on Automated Software

Engineering, pages 196–205, Sept. 2004.

44. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generating object-

oriented unit tests using symbolic execution. In Proc. 11th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, pages 365–381, April 2005.

45. T. Xie and D. Notkin. Tool-assisted unit test selection based on operational violations. In

Proc. 18th IEEE International Conference on Automated Software Engineering, pages 40–

48, 2003.

46. T. Xie and D. Notkin. Automatic extraction of object-oriented observer abstractions from

unit-test executions. In Proc. 6th International Conference on Formal Engineering Methods,

pages 290–305, Nov. 2004.

47. T. Xie and D. Notkin. Checking inside the black box: Regression testing by comparing value

spectra. IEEE Transactions on Software Engineering, 31(10):869–883, October 2005.

