
Database State Generation via Dynamic Symbolic Execution for Coverage Criteria

Kai Pan, Xintao Wu
University of North Carolina at Charlotte

{kpan,xwu}@uncc.edu

Tao Xie
North Carolina State University

xie@csc.ncsu.edu

ABSTRACT
Automatically generating sufficient database states is imperative to
reduce human efforts in testing database applications. Comple-
menting the traditional block or branch coverage, we develop an ap-
proach that generates database states to achieve advanced code cov-
erage including boundary value coverage(BVC) and logical cover-
age(LC) for source code under test. In our approach, we leverage
dynamic symbolic execution to examine close relationships among
host variables, embedded SQL query statements, and branch con-
ditions in source code. We then derive constraints such that data
satisfying those constraints can achieve the target coverage criteria.
We implement our approach upon Pex, which is a state-of-the-art
DSE-based test-generation tool for .NET. Empirical evaluations on
two real database applications show that our approach assists Pex to
generate test database states that can effectively achieve both BVC
and LC, complementing the block or branch coverage.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Symbol-
ic execution, testing tools

General Terms
Algorithms, Design, Reliability, Verification

Keywords
dynamic symbolic execution, database state generation, coverage
criteria

1. INTRODUCTION
Database application testing has attracted much attention recent-

ly in both academia and industry. Generating database states as
well as test inputs to achieve high branch coverage of source code
has been widely studied [5,7,12,16]. An effective approach for au-
tomatic test-input generation based on Dynamic Symbolic Execu-
tion (DSE) was proposed for testing database applications [1,8,12,
15] and various tools for different languages have been developed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest ’11 June 13, 2011 Athens, Greece
Copyright 2011 ACM 978-1-4503-0655-3/11/06 ...$10.00.

(e.g., C [15], Java [12], and C# [1]). DSE uses symbolic constraints
in conjunction with a constraint solver to generate database states.
The approach involves running the program simultaneously on de-
fault or random program inputs as well as on symbolic inputs and a
symbolic database. When DSE is applied on database applications,
the symbolic execution generates path constraints over the sym-
bolic program inputs along the execution path and then generates
database constraints over the symbolic database by symbolically
tracking the concrete SQL queries executed along the execution
path [12].

In this paper, we leverage DSE as a supporting technique to gen-
erate database states to achieve advanced coverage criteria in ad-
dition to branch coverage. In database applications, close relation-
ships exist among program inputs, host variables, branch condi-
tions, embedded SQL queries, and database states. For example,
program inputs and host variables often appear in the embedded
SQL queries and branch conditions in source code after executing
SQL queries are often logical expressions that involve comparison-
s with retrieved values from database states. It is imperative to
enforce advanced structural coverage criteria such as Logical Cov-
erage (LC) and Boundary Value Coverage (BVC) for effective test-
ing. In particular, BVC requires to execute programs using values
from both the input range and boundary conditions and requires
multiple test inputs at boundaries [10]. The reason is that errors
tend to occur at extreme or boundary points. LC criteria involve
instantiating clauses in a logical expression with concrete truth val-
ues. Researchers have focused on active clause coverage criteria
to construct a test such that the value of a logical expression is di-
rectly dependent on the value of the clause that we want to test.
Among these active clause coverage criteria, the Correlated Active
Clause Coverage (CACC) [2] is equivalent to masking Modified
Condition/Decision Coverage (MC/DC), of which the MC/DC has
been chosen by US Federal Aviation Administration [4] as a rec-
ommended test-generation criterion among logical criteria.

1.1 Illustrating Example
The example in Figure 1 shows a portion of C# source code

from a database application that counts the number of mortgage
customers according to their profiles. The corresponding database
contains two tables: customer and mortgage. Their schema-level
descriptions and constraints are given in Table 1. The calcStat

method described in the example code receives two parameters:
type that determines the years of mortgages, inputAge that de-
termines the age from customer profiles. The database query is
then constructed dynamically (Lines 07). If the input age is greater
than 25, a variable fAge is computed with fAge=inputAge+10

and the query string is updated (Lines 08-10). We use the expres-
sion fAge=inputAge+10 to illustrate that host variables appear-
ing in the executed queries may be derived from program inputs

01: public int calcStat(int type, int inputAge) {

02: int years = 0, count = 0;

03: if (type == 0)

04: years = 15;

05: else

06: years = 30;

07: string query = "SELECT C.SSN,C.jobStatus,

C.marriage,M.balance FROM customer C,mortgage M

WHERE M.year=’" + years + "’ AND C.SSN = M.SSN";

08: if (inputAge > 25){

09: fAge = inputAge + 10;

10: query = query + " AND C.age=’" + fAge +"’";}

11: SqlConnection sc = new SqlConnection();

12: sc.ConnectionString = "..";

13: sc.Open();

14: SqlCommand cmd = new SqlCommand(query, sc);

15: SqlDataReader results = cmd.ExecuteReader();

16: while (results.Read()){

17: int bal = int.Parse(results["balance"]);

18: bool employed = bool.Parse(results["jobStatus"]);

19: bool married = bool.Parse(results["marriage"]);

20: if (bal >= 250000||employed && married){

21: count++;}

22: else {...}}

23: return count;}

Figure 1: An example code snippet from a database application
under test
or other host variables via complex chains of computations. Then
the database connection is set up (Lines 11-13) and the constructed
query is executed (Line 14). The tuples from the returned result
set are iterated (Lines 16-22). For each tuple, if the value of the
balance field is greater than or equal to 250000, or if the cus-
tomer is both employed and married, a counter variable count is
increased by one (Line 21). Otherwise, the program does other
computations. The method finally returns the calculation result.

Table 1: Database schema

customer table mortgage table
Attribute Type Constraint Attribute Type Constraint

SSN Int Primary Key SSN Int Primary Key
name String Foreign Key
age Int age > 0 year Int

income Int
jobStatus bool balance Int balance > 1000
marriage bool

1.2 Problem Formalization
To test the program calcStat in the preceding example or the

entire database application, we need to generate sufficient database
states as well as desirable values for program inputs. The input pa-
rameters often determine the embedded SQL statement in Line 14
and the database states determine whether the branches in Lines 16,
20, and 22 can be entered. Our approach uses Dynamic Symbol-
ic Execution(DSE) [8, 15] to track how the inputs to the program
under test are transformed before appearing in the executed queries
and how the constraints on query results affect the later program
execution. We use Pex [1], a state-of-the-art DSE tool for .NET to
illustrate our idea.

During its execution, Pex maintains the symbolic expressions for
all variables. DSE involves running the program simultaneously on
default or random inputs and some initial database state as well as
on symbolic inputs and a symbolic database. The symbolic exe-

cution generates path constraints over the symbolic program inputs
along the execution path and then generates database constraints
over the symbolic database by symbolically tracking the concrete
SQL queries executed along the execution path.

When the execution along one path terminates, Pex has collect-
ed all the preceding path constraints to form the path condition.
Pex also provides a set of APIs that help access the intermediate
information of its DSE process1. For example, with type = 0,

inputAge = 30 as input values, for the path P where branch con-
ditions in Lines 03, 08, 16, and 20 are true.

To satisfy the branch condition in Line 20, we need to generate
a sufficient database state such that the execution of the embedded
query returns sufficient records to satisfy the branch condition in
Line 20. Approaches [12] have been proposed to generate both pro-
gram inputs and suitable database states to cover a feasible path, in-
cluding the executions depending on the executed query’s returned
result set.

Our work focuses on how to generate sufficient database states to
satisfy advanced coverage criteria including BVC and CACC cri-
teria. For example, the variable inputAge is indirectly involved
in the embedded SQL through variable fage and is also involved
in the branch condition of Line 8, inputAge > 25. The bound-
ary values from where the range starts and ends are imperative for
testing critical domains. The branch condition (bal >= 250000

|| employed && married) == true involves a predicate with
three clauses, and variables bal, employed, and married retrieve
values from the attribute values in the returned query result set. We
need to generate sufficient data records in the database such that
the branch condition can be evaluated as true and false, respective-
ly. Furthermore, to achieve CACC criteria, we need to generate
data records such that the value of this logical expression is direct-
ly dependent on the value of a particular clause that we want to
test.

2. APPROACH

2.1 Overview of Our Approach
We present our approach to generating database states such that

the executed query can return sufficient records to satisfy coverage
criteria. Algorithm 1 shows details about our approach. The al-
gorithm is invoked when the DSE process encounters one branch
condition that either contains host variables data-dependent on the
attributes of the query’s returned result set (directly or after chain-
s of computations) or is related with accessing the query-returned
result set. We treat the access to the query-returned result set as a
query execution point.

Pex has provided a package of APIs that help users fetch in-
termediate results inside its DSE process2. We mainly use the
methods from the class PexSymbolicValue (shortened as PexS

thereafter). We insert a call to API method PexS.ToString()

at each execution point to get the target query string. We call
PexS.GetRelevantInputNames<Type>() to detect the data de-
pendency between this execution point and program input parame-
ters. To retrieve the path condition at the execution point, we call
the method PexS.GetPathConditionString().

Throughout this section, we use path P (where branch condi-
tions in Lines 03, 08, 16, and 20 are true) and program inputs
(type = 0, inputAge = 30) to illustrate our algorithm. When
the DSE process encounters one branch condition, we call the Pex
API method PexS.GetPathConditionString() to get the path

1http://research.microsoft.com/en-us/projects/pex/
2http://research.microsoft.com/en-us/projects/pex/

Algorithm 1 Database State Generation in Achieving CACC and
BVC

Input: database schema S, schema level constraint CS

path condition PC = pc1 ∧ pc2 ∧ ... ∧ pcs
Output: database state D

1: Find query execution point T , get concrete query Q and its symbolic
expression Qsym;

2: Decompose Q and Qsym with a SQL parser;
3: Create a constraint set CQ = {(A11 AND ... AND A1n) OR ... OR

(Am1 AND ... AND Amn)} from Qsym’s WHERE clause;
4: Create a variable set VQ = ∅;
5: for each Aij ∈ CQ do
6: if Aij contains any host variable v then
7: if v is related with branch conditions before T then
8: Add v to VQ;
9: Replace v with its symbolic expression expressed by variables

in the related branch conditions;
10: else
11: Replace v with its corresponding concrete value in the con-

crete query Q;
12: end if
13: end if
14: end for
15: for each branch condition pc ∈ PC before T do
16: if pc contains variables related with VQ then
17: Ipc = EnforceCriteria(pc, true); [Algorithm 2]
18: CQ = CQ × Ipc;
19: end if
20: end for
21: Create a variable set VR that contains variables directly dependent on

attributes C1, C2, ..., Ch;
22: Create a constraint set CR = {1=1};
23: for each branch condition pc ∈ PC after T do
24: if pc contains variables in or dependent on VR then
25: Ipc = EnforceCriteria(pc, true); [Algorithm 2]
26: Replace the variables expressed by VR in Ipc with their corre-

sponding database attributes;
27: CR = CR × Ipc;
28: end if
29: end for
30: Create a constraint set C = CQ×CR;
31: Call a constraint solver to instantiate C and CS , get database state D;
32: return Database state D;

condition along this path. In our example, we get PC = pc1 ∧ pc2
∧ pc3 ∧ pc4, where pc1 = (type == 0), pc2 = (inputAge >

25), pc3 = (results.Read() == true), and pc4 = ((bal >=

250000 || employed && married) == true). Some branch
conditions are related with the database state via the dynamically
constructed embedded query or the query’s returned result set. In
our algorithm, we call the Pex API method PexS.ToString(...)
to get the concrete executed query string Q and the symbolic query
string Qsym. We decompose Qsym using the SQL parser3 and get
its clauses. We assume the embedded SQL query takes the canoni-
cal DPNF form 4:

SELECT C1, C2, ..., Ch
FROM from-list
WHERE (A11 AND ... AND A1n) OR ...

OR (Am1 AND ... AND Amn)

In the SELECT clause, there is a list of h strings where each may
correspond to a column name or with arithmetic or string expres-
sions over column names and constants following the SQL syntax.
3http://zql.sourceforge.net/
4In general, there are two types of canonical queries: DPNF with
the WHERE clause consisting of a disjunction of conjunctions, and
CPNF with the WHERE clause consisting of a conjunction of dis-
junctions.

In the FROM clause, there is a from-list that consists of a list of ta-
bles. In the WHERE clause, there is a disjunction of conjunctions.
Each condition (e.g., A11) is of the form expression op expression,
where op is a comparison operator (=, <>, >, >=, <, <=) or
a membership operator (IN, NOT IN) and expression is a column
name, a constant or an (arithmetic or string) expression. In practice,
the queries could be very complex such as sub-queries can appear in
the WHERE clause. There are extensive studies [9] on how to map
complex queries such as nested queries to their canonical forms.

In our example, we have the concrete query Q

SELECT C.SSN, C.jobStatus, C.marriage, M.balance
FROM customer C, mortgage M
WHERE M.year=15 AND C.SSN=M.SSN And C.age=40

and its corresponding symbolic string Qsym

SELECT C.SSN, C.jobStatus, C.marriage, M.balance
FROM customer C, mortgage M
WHERE M.year=:years AND C.SSN=M.SSN AND C.age=:fAge

We observe that conditions in the WHERE clause often contain
host variables from the program under test and some of those host
variables may appear directly in branch conditions or are depen-
dent on host variables in branch conditions. For example, the con-
dition C.age=:fAge in the WHERE clause of Qsym contains host
variable fAge. The fAge’s symbolic expression is calculated as
fage=inputAge+10 and host variable inputAge involves in the
branch condition pc2 = (inputAge > 25). Hence enforcing BVC
on this branch condition incurs constraints on the generated data.
Lines 5-20 in Algorithm 1 give details about how to derive the con-
straints CQ by examining the conditions in the WHERE clause and
the branch conditions before the query’s execution. We discuss de-
tails in Section 2.3.

We also observe that the attribute strings (C1,...,Ch) in the S-
ELECT clause may indirectly involve in branch conditions after the
query execution. For example, the branch condition pc4 = ((bal

>= 250000 || employed && married) == true) contains
three host variables (bal, employed, and married) that retrieve
values from three database attributes (M.balance, C.jobStatus,

C.marriage) in the returned result set. To enforce CACC and B-
VC on the branch condition pc4, we incur new constraints on the
generated data. Lines 21-29 in Algorithm 1 give details about how
to derive the constraints CR by examining the attribute strings in
the SELECT clause and the branch conditions after the query’s ex-
ecution. Finally, we combine the derived constraints (CQ and CR)
with the database constraints (CS) specified at the schema level and
call a constraint solver to generate database states.

2.2 Instantiating a Predicate to Satisfy BVC
and CACC

A predicate is an expression that evaluates to a boolean value. A
predicate may consist of a list of clauses that are joined with logical
operators (e.g., NOT, AND, OR). Each clause contains a boolean
variable, a non-boolean variable that is compared with a constant or
another variable via relational operators, or even a call to a function
that returns a boolean value. The predicate bal>=250000||empl-
oyed&&married in branch condition pc4 contains three clauses: a
relational expression bal>=250000, a boolean variable employed,
and another boolean variable married.

Test coverage is evaluated in terms of test criteria, as specified
by test requirements. Test requirements are specific elements that
must be satisfied or covered for software artifacts. Predicate cover-
age requires that for each p there are instantiations that evaluate p to
be true and instantiations that evaluate p to be false. Clause cov-
erage ensures that for each clause c ∈ p there are instantiations that

evaluate c to be true and instantiations that evaluate c to be false.
Predicate coverage is equivalent to the branch coverage criterion for
testing source code while clause coverage is equivalent to the con-
dition coverage. However, neither predicate coverage nor clause
coverage subsumes the other. To test both individual clauses and
predicates, combinatorial coverage (also called Multiple Condition
Coverage) is used to evaluate clauses to each possible combination
of truth values. We can see, for a predicate p with n independen-
t clauses, there are 2n possible combinations; thus, combinatorial
coverage is often infeasible in practice.

Active clause criteria such as CACC have been widely adopted
to construct a test such that the value of the predicate is directly
dependent on the value of the clause that we want to test. CACC
is defined in previous work [2]: For each p and each major clause
ci ∈ p, choose minor clauses cj , j ̸= i so that ci determines p.
There are two requirements for each ci: ci evaluates to true and ci
evaluates to false. The values chosen for the minor clauses cj must
cause p to be true for one value of the major clause ci and false for
the other, that is, it is required that p(ci = true) ̸= p(ci = false).

BVC requires multiple test inputs at boundaries [10] because er-
rors tend to occur at extreme or boundary points. For different data
types, various boundary values are considered. We use the integer
data type for illustration. Suppose that the conditional statement
takes the form [AopB] where A is a variable’s expression, B is a
constant, and op is a comparison operator (==, ! =, >, >=, <,
<=). Depending on the comparison operator, we seek to choose
values for A coming from the minimum boundary, immediately
above minimum, between minimum and maximum (nominal), im-
mediately below maximum, or the maximum boundary. We list the
choices in Table 2. For other data types, we omit details.

Table 2: BVC enforcement for integer

Condition BVC requirements
A == B A == B
A != B A == B + 1, A == maximum

A == B − 1, A == minimum
A > B A == B + 1, A > B + 1, A == maximum

A >= B A == B , A > B, A == maximum
A < B A == B − 1, A < B − 1, A == minimum

A <= B A == B , A < B, A == minimum

Algorithm 2 shows how to generate instantiations satisfying both
CACC and BVC for a given predicate. The algorithm accepts a
predicate and a boolean evaluation as input and generates a list of
instantiations as output. Lines 2-6 in Algorithm 2 enforce CAC-
C by iterating each clause to be the major one and generating as-

Algorithm 2 EnforceCriteria: CACC and BVC enforcement
Input: Predicate p = {c1 op c2 ... op cm}, target evaluation E for p

Output: Instantiations I for p

1: Instantiation set I = ∅;
2: for each clause ci ∈ p do
3: Ci =(p(ci = true) ̸= p(ci = false)) ∧ p = E;
4: Send Ci to a constraint solver and get instantiations Ii;
5: I = I ∪ Ii;
6: end for
7: for each instantiation in I do
8: for each clause c do
9: if BVC should be satisfied then

10: Enforce BVC;
11: Add new instantiations in I;
12: end if
13: end for
14: end for
15: return I;

Table 3: Truth table for predicate (bal>=250000 ||
employed && married)=true to satisfy CACC. We choose
one instantiation from No.1-3 for bal>=250000 and an instan-
tiation No.4 or No. 5 for employed and married

major clause No. bal>=250000 employed married
1 T T F

bal>=250000 2 T F T
3 T F F

employed 4 F T T
married 5 F T T

signments for all other minor clauses. Recall that a major clause
should determine the predicate for a given instantiation of other
clauses. Consider the predicate pc4 = bal>=250000||employed

&& married with the target evaluation result as true. When we
choose bal>=250000 as the major clause, Line 3 generates
(true||employed && married) ̸= (false||employed &&

married) ∧ (p=true). By calling a constraint solver, we can
generate instantiations shown in rows 1-3 in Table 3. Similarly we
can get instantiations shown in rows 4-5 when choosing employed

(married) as the major clauses. Note that the assignments in rows
4-5 are the same. To enforce CACC for this predicate, we only need
one instantiation from rows 1-3 and another instantiation from ei-
ther row 4 or 5. For example, by choosing rows 1 and 4, we have
{(bal>=250000)=true, employed=true, married=false},
{(bal>=250000)=false, employed=true, married=true}.

After further enforcing BVC on the clause bal>=250000 (Lines
7-14 of Algorithm 2), we have the following six instantiations:

{bal=250000, employed=true, married=false},
{bal>250000, employed=true, married=false},
{bal=maximum, employed=true, married=false},
{bal=250000-1, employed=true, married=true},
{bal<250000-1, employed=true, married=true},
{bal=minimum, employed=true, married=true}.

2.3 Deriving Constraints of Database States
Algorithm 1 is invoked when DSE encounters a branch condi-

tion. In the illustrative example, the last branch condition pc4 in-
vokes our algorithm. Using various APIs provided by Pex, we re-
trieve all branch conditions along the execution of the current path,
the query execution point T , the concrete executed query Q and its
corresponding symbolic query Qsym, and symbolic expressions of
host variables appeared in branch conditions and Qsym.

Conditional expressions in the WHERE clause contain constraints
of the generated database state. Formally, we call a SQL parser to
decompose Qsym and set CQ = {(A11 AND ... AND A1n) OR
... OR (Am1 AND ... AND Amn)} from the Qsym. We create
an empty variable set VQ. For each Aij ∈ CQ, we check whether
Aij contains host variables. For each contained host variable, if
it is related with any branch condition before the query execution
point T , we add it to VQ and replace it with its symbolic string ex-
pressed by variables in the related branch conditions. If not, we re-
place the variable with its corresponding concrete value contained
in the concrete query Q. In our example, we get the constraints CQ

= {M.year=:years AND C.SSN= M.SSN AND C.age=:fAge}.
For M.year=:years, we replace years with the value 15. For
C.age=:fAge, we replace fAge with inputAge + 10. We leave
C.SSN= M.SSN unchanged since it does not contain any host vari-
able. The variable set VQ = {fAge} and CQ = {M.year=15 AND

C.SSN= M.SSN AND C.age=:inputAge + 10}.
Next, for each branch condition pc along this path, we check

whether pc contains host variables related with the set VQ. If yes,
we enforce it with both CACC and BVC by calling Algorithm 2.

Algorithm 2 returns instantiations Ipc that make pc =true. The
returned instantiations incur further constraints on the generated
database state. We refine CQ as CQ = CQ × Ipc.

In our example, the branch condition pc2 (inputAge> 25) is
related with host variable fAge. Algorithm 2 returns new instantia-
tions as {inputAge=25+1, inputAge>25+1, inputAge=max-

imum}. The constraint set CQ is updated with three constraints:

{M.year=15 AND C.SSN= M.SSN AND
C.age=:inputAge+10 AND inputAge=25+1},
{M.year=15 AND C.SSN= M.SSN AND
C.age=:inputAge+10 AND inputAge>25+1},
{M.year=15 AND C.SSN= M.SSN AND
C.age=:inputAge+10 AND inputAge=maximum}.

Note that branch conditions after the SQL’s execution point T
may contain host variables that are dependent on database attributes
in the SELECT clause. Enforcing CACC and BVC on those branch
conditions further incur constraints on the generated database s-
tate. We first identify host variables VR that are directly depen-
dent on attributes of the returned query result set. For example,
we get that the variable bal is directly dependent on the attribute
M.balance in Line 17 in our illustrative example. Then, for each
branch condition that contains host variables in or dependent on
VR, we treat pc as a predicate and call Algorithm 2 to enforce
both CACC and BVC requirements. In our example, pc4 = ((bal

>= 250000 || employed && married) == true) and VR =
{bal, married, employed}. The returned six instantiations are
shown in the last paragraph of Section 2.2. Note that the returned
instantiations contain host variables related with variables VR. We
need to replace them with their corresponding database attributes.
In our example, host variables bal, employed, married are re-
placed with database attributes M.balance, M.marriage, and
M.jobStatus, respectively.

Finally, the set C = CQ×CR contains constraints on the gener-
ated database state to enforce CACC and BVC on the source code
under test. We also collect basic constraints CS at the database
schema level (e.g., not-NULL, uniqueness, referential integrity con-
straints, domain constraints, and semantic constraints). For exam-
ple, attribute balance in table mortgage must be greater than 0.
We then send C together with the schema level constraints CS to
a constraint solver to conduct the data instantiation on the symbol-
ic database. In our prototype system, we use the constraint solver
Z3 5, which is integrated into Pex. Z3 is a high-performance the-
orem prover being developed at Microsoft Research. Z3 supports
linear real and integer arithmetic, fixed-size bit-vectors, extensional
arrays, uninterpreted functions, and quantifiers.

3. EVALUATION
Our approach is to provide an assistance to the DSE-based test-

generation tools (e.g., Pex [1,17] for .NET) to improve code cover-
age with respect to CACC and BVC in database application testing.

We conduct evaluations on two open source database applica-
tions: RiskIt6 and UnixUsage7. RiskIt is an insurance quote
application that makes estimation based on users’ personal infor-
mation, such as zipcode and income. Programs in RiskIt have
about 4.3K non-commented lines of code and have a database con-
taining 13 tables, 57 attributes, and more than 1.2 million records.
UnixUsage is an application to obtain statistics about how users in-
teract with the Unix systems using different commands. Programs

5http://research.microsoft.com/en-us/um/redmond/projects/z3/
6https://riskitinsurance.svn.sourceforge.net
7http://sourceforge.net/projects/se549unixusage

in UnixUsage have about 2.8K non-commented lines of code and
have a database containing 8 tables, 31 attributes, and more than
0.25 million records. Both applications were originally written in
Java. To test them in the Pex environment, we convert their Java
source code into C# using a tool called Java2CSharpTranslator8.

To set up the evaluation, we choose methods that have bound-
ary values and/or logical expressions in branch conditions from the
applications. Since there are no tools to measure CACC and BVC
directly, we apply a tool [14] that transforms the problem of achiev-
ing CACC and BVC to the problem of achieving block coverage
by introducing new blocks through code instrumentation. We use
PexGoal.Reached() to identify whether each introduced block is
covered.

For example, the statement if (inputAge > 25) {...} in
Line 08 in our illustrative example becomes

08a: if (inputAge == 25+1)
{PexGoal.Reached()...}

08b: else if (inputAge > 25+1)
{PexGoal.Reached()...}

08: if (inputAge > 25){...}

after the code instrumentation.
Tables 4 show the results of our evaluation. We use n to de-

note the number of PexGoal.Reached() statements introduced
in each method. The coverage of all n introduced blocks indi-
cates the full achievement of CACC and BVC. Given a database
state, the current Pex cannot generate sufficient program inputs to
achieve higher code coverage especially when program inputs are
directly or indirectly involved in embedded SQL statements. In our
experiment, we also apply our previous approach [13] to assist Pex
generate sufficient input values for program parameters.

We first run Pex (in addition to our program input generation
tool [13]) without applying Algorithm 1 to generate new records.
We use n1 to denote the number of covered PexGoal.Reached()

statements in this experiment. We then apply Algorithm 1 to gen-
erate new database records and run Pex in addition to our program
input generation tool [13]. We use n2 to denote the number of cov-
ered PexGoal.Reached() statements during this step. The value
of (n2 - n1)/n captures the increase gained by Pex assisted by our
new approach in achieving CACC and BVC. We see from Tables
4 that the n2 values are equal to n for all methods, indicating that
our new approach assists Pex to reach the full CACC and BVC
coverage (a 21.21% increase on average for RiskIt and a 46.43%
increase for UnixUsage). The detailed evaluation subjects and re-
sults can be found on our project website9.

4. RELATED WORK
Various coverage criteria [2, 10] have been proposed to generate

test inputs for traditional (non-database) applications. BVC and L-
C are criteria that complement the widely used branch coverage.
Most recently, Pandita et al. [14] developed a general approach
that instruments transformed branch conditions to source code and
guides DSE to reach high BVC and LC for traditional applications.
However, those criteria have not been supported in testing database
applications.

Database application testing has attracted much attention recent-
ly [5, 7, 12, 16, 19]. Most approaches aim to achieve high branch
coverage of source code under test by either generating database s-
tates from scratch [5,12,16] or using existing database states to gen-
erate sufficient program inputs [11, 13]. Query-aware test database
8http://sourceforge.net/projects/j2cstranslator/
9http://www.sis.uncc.edu/∼xwu/DBGen

Table 4: Evaluation results
parameter total covered(blocks) increase

No. method class type name n n1 n2 (n2-n1)/n
1 filterZipcode UserManager String zip 23 20 23 13.04%
2 filterEducation UserManager String edu 4 2 4 50.00%
3 filterOccupation UserManager String occupation 4 2 4 50.00%
4 filterMaritalStatus UserManager String status 4 2 4 50.00%

RiskIt 5 filterEstimatedIncome UserManager String getIncome 7 5 7 28.57%
6 browseUserProperties UserManager ArrayList<> prop 100 81 100 19.00%
7 getValues EstimateIncome int ssn 52 44 52 15.38%
8 calculateUnemploymentRate UserManager String stateName 4 0 4 100.00%

all methods (total) 198 156 198 21.21%
1 computeFileToNetworkRatio CourseInfoManager int, int, int courseId, startSession, 4 0 4 100.00%

ForCourseAndSessions endSession
2 computeBeforeAfterRatioByDept DeptInfoManager int, String deptid, date 8 0 8 100.00%
3 computeFileToNetworkRatioForDept DeptInfoManager int deptId 11 0 11 100.00%
4 courseIdExists TranscriptManager int courseId 4 0 4 100.00%

Unix 5 doesUserIdExist UserInfoManager String userId 11 10 11 9.09%
Usage 6 isDepartmentIdValid UserInfoManager int departmentId 10 9 10 10.00%

7 isOfficeIdValid UserInfoManager int officeId 10 9 10 10.00%
8 isRaceIdValid UserInfoManager int raceId 10 9 10 10.00%
9 getGPAForAllUsers UserInfoManager N/A N/A 12 8 12 25.00%

10 officeIdExists OfficeInfoManager int officeId 4 0 4 100.00%
all methods (total) 84 45 84 46.43 %

generation approaches [3], which consider both queries and schema
level constraints, were also investigated with the aim of DBM-
S performance testing. Generating database states for achieving
advanced coverage criteria such as CACC and BVC has not been
explored.

Focusing on an isolated SQL statement, Tuya et al. [18] proposed
a coverage criterion, SQLFpc (short for SQL Full Predicate Cover-
age), based on the Modified Condition/Decision Coverage. Their
approach mutates a given SQL query statement into a set of queries
that satisfy MC/DC with the aim of detecting faults in the SQL
query statement. Riva et al. [6] developed a tool to generate data
to enforce SQLFpc for a SQL statement. Our work leaves the em-
bedded SQL statement unchanged. Instead, we generate database
states with the aim of detecting faults in source code.

5. CONCLUSION AND FUTURE WORK
In this paper, we developed a general approach to generating test

database states that can achieve program BVC and CACC. We im-
plemented our approach in Pex, a DSE tool for .NET. Our evalu-
ation demonstrated the feasibility of our approach. In our future
work, we plan to investigate how to optimize the constraint collec-
tion and data instantiation. We plan to study complex SQL queries
(e.g., GROUPBY queries with aggregations) and extend our tech-
nique to deal with multiple queries in database applications.

Acknowledgment
This work was supported in part by U.S. National Science Foun-
dation under CCF-0915059 for Kai Pan and Xintao Wu, and under
CCF-0915400 for Tao Xie.

6. REFERENCES
[1] Microsoft Research Foundation of Software Engineering

Group, Pex:Dynamic Analysis and Test Generation for
.NET. 2007.

[2] P. Ammann, A. J. Offutt, and H. Huang. Coverage criteria for
logical expressions. In ISSRE, pages 99–107, 2003.

[3] C.Binnig, D.Kossmann, and E.Lo. Reverse query processing.
In ICDE, 2007.

[4] J. Chilenski and S.P.Miller. Applicability of modified
condition/decision coverage to software testing. Software
Engineering Journal, pages 193–200, 1994.

[5] D.Chays and J.Shahid. Query-based test generation for
database applications. In DBTest, 2008.

[6] C. de la Riva, M. J. S. Cabal, and J. Tuya. Constraint-based
test database generation for sql queries. In AST, 2010.

[7] Y. Deng and D. Chays. Testing database transactions with
agenda. In ICSE, 2005.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI, 2005.

[9] W. Kim. On optimizing an sql-like nested query. ACM Trans.
Database Syst., 7(3):443–469, 1982.

[10] N. Kosmatov, B. Legeard, F. Peureux, and M. Utting.
Boundary coverage criteria for test generation from formal
models. In ISSRE, pages 139–150, 2004.

[11] C. Li and C. Csallner. Dynamic symbolic database
application testing. In DBTest 2010.

[12] M.Emmi, R.Majumdar, and K.Sen. Dynamic test input
generation for database applications. In ISSTA, 2007.

[13] K. Pan, X. Wu, and T. Xie. Generating program inputs for
database application testing. Technical Report, UNC
Charlotte, 2011.

[14] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux. Guided
test generation for coverage criteria. In ICSM, 2010.

[15] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. In ESEC/SIGSOFT FSE, 2005.

[16] K. Taneja, Y. Zhang, and T. Xie. MODA: Automated Test
Generation for Database Applications via Mock Objects. In
ASE 2010.

[17] N. Tillmann and J. de Halleux. Pex-white box test generation
for .net. In TAP, pages 134–153, 2008.

[18] J. Tuya, M. J. S. Cabal, and C. de la Riva. Full predicate
coverage for testing sql database queries. volume 20, pages
237–288, 2010.

[19] X. Wu, C. Sanghvi, Y. Wang, and Y. Zheng. Privacy Aware
Data Generation for Testing Database Applications. In
IDEAS, pages 317–326, 2005.

