
Isolating Failure-Inducing Combinations in Combinatorial Testing using Test
Augmentation and Classification

Kiran Shakya Tao Xie
North Carolina State University

{kshakya,txie}@ncsu.edu

Nuo Li
ABB Robotics

nuo.li@cn.abb.com

Yu Lei
University of Texas at Arlington

ylei@cse.uta.edu

Raghu Kacker Richard Kuhn
Information Technology Lab, NIST
{raghu.kacker,kuhn}@nist.gov

Abstract—Combinatorial Testing (CT) is a systematic way of
sampling input parameters of the software under test (SUT).
A t-way combinatorial test set can exercise all behaviors of
the SUT caused by interactions between t input parameters or
less. Although combinatorial testing can provide fault detection
capability, it is often desirable to isolate the input combinations
that cause failures. Isolating these failure-inducing combina-
tions aids developers in understanding the causes of failures.
Previous work directly uses classification tree analysis on the
results of combinatorial testing to model the failure inducing
combinations. But in many scenarios, the effectiveness of classi-
fication depends upon whether the analyzed test set is sufficient
for classification. In addition, generating combinatorial tests
for more-than-6-way combination is generally expensive. To
address these issues, we propose an approach that uses existing
combinatorial testing results to generate additional tests that
enhance the effectiveness of classification. In addition, our
approach also includes a technique to reduce the complexity
of the resulting classification tree so that developers can
understand the nature of failure-inducing combinations. We
present the preliminary results of our approach applied on the
TCAS benchmark.

I. INTRODUCTION

A modern software system that is both large and complex
has in general many parameters affecting the behavior of
the overall system (such as configuration values). While
validating the correctness of a software system across its
entire input parameters is desirable, exhaustive testing of
all combinations is not feasible. One practical and efficient
way of dealing with this problem is Combinatorial Testing
(CT) [1]. Given the input parameters that are properly
modeled, t-way CT guarantees that a failure will be detected
if this failure is caused by interaction among t parameters
or less. Although CT can detect failures, it provides little
support for diagnosing causes of failures. Specifically, dur-
ing debugging, developers are interested in those specific
combinations that induce the failures in the software under
test (SUT). We call these combinations failure-inducing
combinations or faulty combinations. Detecting these faulty
combinations manually is generally a difficult task due to
the large input space.

Previous work [2], [3], [4] on diagnosing the causes
of failure has focused on using decision tree classification
to characterize the faulty interactions. But much of the

previous work focuses on applying classification after the
tests have been generated and executed on the SUT. A
common assumption made by the previous work is that the
classification algorithm [5] performs well on combinatorial
testing results. But in certain cases, the number of failing
combinatorial tests might be very small, causing the classi-
fication algorithm to perform poorly. It is well known that
decision tree classification can be biased if the dataset is
highly unbalanced. Furthermore, developers may not know
beforehand the number of parameters that can cause failures
in the SUT. This kind of scenario is common when the SUT
has a large number of parameters that affect its behavior and
failures are caused by interaction among many parameters.
In such cases, CT of higher strength can require more
resources.

In order to address these challenges, we propose an
approach that aids developers in situations where CT alone
cannot enable effective failure diagnosis. We do not make
any assumption regarding the size of faulty combinations
and their natures (such as overlapping between faulty com-
binations). This characteristic makes our approach general
and can be applied in many cases. The only assumption that
we make is that the SUT is deterministic in nature (i.e.,
running the same test multiple times causes the execution
of the SUT to produce the same test output).

In order to improve the effectiveness of classification, our
approach includes a test augmentation technique that gener-
ates new tests using the available failing tests. Typically, the
generated tests are mostly failing tests, thus improving the
result of classification. In addition, our approach includes a
feature selection technique that reduces the complexity of
the resulting decision tree. We measure the complexity of
the resulting decision tree in terms of the number of nodes
in the tree. Developers use the decision tree not only to
predict the fail or pass outcome of a test but also to analyze
it manually for studying the nature of faulty interactions.
Therefore, it is desirable to have a simple decision tree over
a complex one.

This paper makes the following main contributions:
• We propose a test augmentation technique that aids a

classification algorithm in situations where combinato-
rial test results are highly unbalanced.



Figure 1: Overview of our approach

• We propose a feature selection technique to reduce the
complexity of the resulting decision tree.

• We conduct a preliminary study to evaluate our ap-
proach.

II. BACKGROUND

Covering Array. If we assume that the SUT has k input
parameters and each parameter ci has ai discrete possible
values, the total number of possible inputs is

∏i=k
i=1 ai. CT

uses a covering array (CA) to systematically sample the large
input space. A CA(N, k, t, s) is an array of N rows and k
columns, where N is the size of test set, k is the number
of parameters, s is the number of possible values of each
parameter, and t is the strength of CA. Given a strength
t, for any t sub-columns of C, the sub-array covers all the
possible combinations of the corresponding t parameters.
Similarly, a mixed-level covering array (MCA) allows the
parameters to have different number of possible values i.e.
s = {v1, v2, ..., vk} where each ith parameter can take vi
distinct possible values.

Classification Tree. Classification tree [5] is a recursive
partitioning approach to build models that predict class
membership of an input. The input dataset is split according
to the value of an attribute that maximizes the Gain in
information. This splitting of the dataset continues until
no further splitting is possible. There are many possible
definitions for the Gain. We use a popular decision tree
learning algorithm C4.5 [5], which defines the Gain function
for feature ci at node t as Gain(ci, t) = H(t) − H(ci, t),
where H(t) denotes binary entropy at node t. If the prior
probability of a parameter p taking certain value i is pi, then
the entropy for that parameter is given by −

∑
i log2pi.

III. APPROACH

Figure 1 shows an overview of our approach. Our ap-
proach consists of four components: Test Augmentation,
Feature Selection, Test Classification, and Ranking. We next
present the details of each component.

A. Test Augmentation

Test Augmentation (TA) is used to improve the dataset
when the classification algorithm performs poorly on the
combinatorial test results. TA is particularly useful when

the classification algorithm is unable to build a decision tree
due to a small number of failing tests compared to passing
tests. Given a failing test, TA uses the one factor one time
(OFOT) [6] technique for generating additional test inputs.
Specifically, if t = (v1, v2, ..., vk) is a test that fails, the
TA generates new tests by replacing each vi with another
values of parameter ci while keeping other parameter values
the same. The rationale is that since the new test generated
by the TA are similar to the failing test, these new test will
also likely be failing tests, thus balancing the combinatorial
test result set. We repeat this step for every failing test. In
order to reduce the overhead, all the existing tests are kept
in a cache, and the redundant tests generated by the TA (if
any) are detected and discarded. If there are m failing tests,
then the TA will generate at most m×

(∑k
i=1 ai − k

)
tests

that in general will be far less than the additional number of
tests required to generate higher strength CT sets. The new
tests are then executed and classified as failing or passing
based on the execution.

B. Feature selection

Not all the parameters of the SUT correlate with the
failures. If the SUT has a large number of parameters, it
is necessary to prune the parameters (or features) in order
to improve the effectiveness of the classification algorithm.
Feature subset selection (FSS) is the process of identifying
and removing irrelevant and redundant information as much
as possible. This process reduces the dimensionality of
the dataset and improves both speed and accuracy of the
learning algorithm. There are a number of feature selection
algorithms in the data mining literature [5]. In our current
work, we have used correlation based feature selection
(CFS) [7]. CFS takes into account the usefulness of indi-
vidual parameters for predicting the class label along with
the level of intercorrelation among them.

C. Test Classification

We use classification tree analysis (CTA) to model fault
combinations. CTA classifies the labeled tests obtained from
both the covering array and test augmentation. The classifi-
cation is based on only the parameters selected by the feature
selection component. The rationale is that classification
based on selected features would result in a simpler decision
tree which can be analyzed by the developers more easily.
We use CTA because it has been used in previous work [2],
[3], [4]. In order to reduce the overfitting problem commonly
found in classification, we use n-fold cross validation [5].
Cross validation essentially builds multiple models from
different subsets of input data and uses the results to
identify the best model. We measure the effectiveness of
the classification tree using F-score, which is a well known
metric computed using two standard metrics:
Recall(R) = #of correctly predicted failing tests

total # of failing tests

Precision(P ) = # of correctly predicted failing tests
total # of predicted failingtests



Table I: Characteristics of faults

Version 2-way 3-way 4-way 5-way
v16 0/156 1/461 6/1450 14/4309
v26 0/156 0/461 1/1450 18/4309

F -score = 2PR
P+R

D. Ranking

Given a decision tree model, we enumerate all likely
faulty combinations of the SUT. For each leaf node that
indicates a failure, a corresponding likely faulty combination
is computed by taking the conjunction of the parameter
values found in the path from the root node to the leaf node.
We then collect these faulty combinations and rank them
before presenting to the developers. The rank of a faulty
combination is determined by computing its F-ratio. If n is
the total number of tests classified with a combination and m
is the total number of failing tests correctly classified with
this combination, then we define its F-ratio as m/n. The
combinations are then sorted by their F-ratios in descending
order and shown to the developers. We speculate that the
actual faulty combinations are within top ten results.

IV. EVALUATION

In our evaluation, we have used a module of the Traffic
Collision Avoidance System (TCAS) benchmark. TCAS has
been used in other evaluations of testing approaches [8].
TCAS program takes 12 inputs and produces an output that
can be either 0, 1, or 2. The total input combination of the
TCAS is 3× 23 × 3× 2× 4× 102 × 3× 2× 3 = 1036800,
which is extremely large motivating the use of CT. Kuhn
and Okun [8] generated a large number of combinatorial
tests and produced corresponding testing results for 41 faulty
versions of the TCAS program. For each faulty version,
the testing result as failing or passing is determined by
comparing the output of the faulty version with the correct
version. We have used the same versions and test results in
our evaluation.

Next, we present the preliminary results of our approach
on two faulty versions of the TCAS program via version
16 and 26. From the results, we intend to answer following
research questions:

1) RQ1. Does our test augmentation improve the classi-
fication?

2) RQ2. Does feature selection help in reducing the
complexity of the resulting decision tree without com-
promising accuracy?

3) RQ3. Does our overall approach find the faulty com-
binations?

Table I shows the number of failing tests generated by
CT from t = 2 way to t = 5 way tests for versions 16 and
26 of TCAS. We can see that the number of failing tests is
very low compared to the number of passing tests.

In order to answer the research questions, we first ran the
5-way tests and generated an arff file, which is a format
required by Weka [9]. Weka is an open source collection
of algorithms for data mining tasks. We have used Weka’s
J48 tree classification component to generate the decision
tree. Table II shows our evaluation results. We found that
in both versions, Weka (with default settings) could not
generate a decision tree model due to small number of failing
tests. Next, we feed the arff files into our test augmentation
component. Column “TA” shows the total number of new
tests (only unique tests that did not exist in the current CT
suite) generated as well as the number of tests that failed. We
then added the new tests into the original data set and re-ran
the classification algorithm. Column “F1” shows the F-score
of the decision tree in addition to the precision and recall.
The values for these metrics have been shown in format
Precision/Recall/F -Score. This result shows that the test
augmentation can improve the classification, answering our
RQ1.

Table II: Evaluation Results

V TA F1 S1 FS S2 F2
v16 302/357 .81/.67/.73 36/56 8 22/31 0.71/.59/.65
v26 407/407 .81/.79/.80 56/85 10 20/28 0.78/0.72/.74

Furthermore, we measured the complexity of the decision
tree in terms of the number of leaves and nodes in it.
Column “S1” shows the the complexity of the decision tree
in format #leaves/#nodes. For example, for version 26,
the total number of leaves was 56 and the total number
of nodes was 85. Although the classification with the tree
was effective, we found that size of the decision tree was
too huge to be understood by the developers. We then ran
the feature selection algorithm on the dataset. We used
Weka’s implementation of correlation-based feature selec-
tion algorithm (CfsSubsetEval) for feature selection. Column
“FS” shows the number of attributes selected by the feature
selection component. Next, we ran classification using only
the attributes selected by the feature selection. Column “S2”
shows the size of the resulting decision tree and its standard
metric is shown in column “F2”. For version 26, the result
shows that the complexity of the decision tree is reduced
from 85 to 28 nodes. Although the precision, recall, and
F-score were a bit reduced by feature selection, the loss
was not that significant. In addition, the decision tree was
more compact and simpler than the previous decision tree
answering our RQ2.

Finally, to answer RQ3, we used the final decision tree
to enumerate the faulty combinations and rank the com-
binations according to their F-ratios. To verify the results,
we manually analyzed the faulty versions of TCAS to find
faulty combinations. We found it challenging to find the
exact preconditions for failures due to the complexity of
the program code. Therefore, we calculated only necessary
conditions for the failures. For example, Figure 2 shows



tcas.c /* v26*/

1. int alt_sep_test(){
2. ...
3. enabled = High_Confidence &&
4. /*(Own_Tracked_Alt_Rate <= OLEV) && BUG */
5. (Cur_Vertical_Sep > MAXALTDIFF);
6. ...

Figure 2: Fault in TCAS version 26
the fault in version 26 of TCAS. Here the fault lies at
Line 4 where the code is commented out. Therefore, the
fault will cause a failure observed at the output only when
HighConfidence=1, OwnTrackedAltRate>OLEV(=600)
and CurVerticalSep>MAXALTDIFF(=600). This combi-
nation was indeed within top 5 in the list generated by
the ranking component. For version 16, our approach could
catch one faulty combination out of two presented in the
code.

V. RELATED WORK

Yilmaz et al. [4] used classification tree to analyze the
results of CAs and detect potential faulty combinations
for complex configuration spaces. They used the results
of classification to build mixed-strength CAs to further
enhance the efficiency of fault characterization. Fouché
et al. [2] presented an improved algorithm for generating
higher-strength arrays that reduces the cost and improves
flexibility by reusing the tests from lower strength arrays.
Mainly, it uses the results of lower strength covering array to
generate higher strength covering array, saving the resources
needed to run the entire tests. Dumlu et al. [3] conjectured
that CAs may not test all t-combinations due to masking
effects: failures that perturb execution so as to prevent other
combination being exercised. They presented an approach
to detect potential masking effects and then generate addi-
tional new CAs that allow previously masked combinations
to be tested. They also use classification tree to isolate
masking combination. Our work differs from these previous
approaches because we a test augmentation and attribute
selection techniques to improve failure classification.

Besides classification using decision tree, there exist other
approaches that use some other techniques to detect the
faulty combinations. Delta debugging [10] is an adaptive
divide-and-conquer approach to locate faulty combinations.
Similarly, Zhang et al. [11] also propose adaptive test
generation that is similar to delta debugging and uses failing
test as seed test to identify faulty combinations. In contrast,
our approach is based on classification model rather than
search-based techniques. Martı́nez et al. [12] define error
locating arrays (ELAs) that can be used to locate faulty
combinations between parameters under assumption that
each parameter has safe values that do not participate the
failures of the SUT. But finding these safe values may
not be trivial for large-system. Ghandehari et al. [13] use
ranking of sub-combinations in a combinatorial test set to

identify potential faulty combinations and use the rank to
further refine suspicious combinations. In contrast, our work
is mainly based on ranking of classification results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that uses results
of CT to isolate the faulty combinations that cause the SUT
to fail. Specifically, we have proposed a general approach
that can be applied to classify the faulty combinations in
scenarios where failures are not commonly observed. Our
approach includes two techniques, test augmentation and
feature selection in the context of CT to enhance classi-
fication. We also presented some promising results of our
approach.

In future work, we plan to infer the constraints among
the faulty combinations rather than just enumerating them.
For example, it is more insightful to report that the SUT
fails whenever c1 > c2 ∧ c3 < 50 instead of enumerating
all combinations of c1, c2, and c3 satisfying the constraint.
Furthermore, we plan to evaluate our approach on larger
subjects to assess the benefit of our approach.

VII. ACKNOWLEDGMENT

This work is supported by two grants (70NANB9H9178
and 70NANB10H168) from Information Technology Lab of
National Institute of Standards and Technology (NIST) and a
grant (61070013) of National Natural Science Foundation of
China, a grant (CCF-0915400) from U.S. National Science
Foundation.

REFERENCES

[1] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., pp. 11:1–11:29, 2011.

[2] S. Fouché, M. B. Cohen, and A. Porter, “Incremental covering array
failure characterization in large configuration spaces,” ser. ISSTA,
2009, pp. 177–188.

[3] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter, “Feedback driven
adaptive combinatorial testing,” ser. ISSTA, 2011, pp. 243–253.

[4] C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays for efficient
fault characterization in complex configuration spaces,” in ISSTA,
2004, pp. 45–54.

[5] V. K. Pang-Ning Tan, Michael Steinbach, Introduction to Data
Mining. Addison-Wesley, 2006.

[6] C. Nie and H. Leung, “The minimal failure-causing schema of
combinatorial testing,” ACM Trans. Softw. Eng. Methodol., pp. 15:1–
15:38, 2011.

[7] H. A. Mark, “Correlation-based feature selection for machine learn-
ing,” Ph.D. dissertation, Univ of Waikato, 1999.

[8] D. R. Kuhn and V. Okun, “Pseudo-exhaustive testing for software,”
in SEW, 2006, pp. 153–158.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” SIGKDD
Explor. Newsl., 2009.

[10] A. Zeller, “Isolating cause-effect chains from computer programs,”
in FSE, 2002, pp. 1–10.

[11] Z. Zhang and J. Zhang, “Characterizing failure-causing parameter
interactions by adaptive testing,” in ISSTA, 2011, pp. 331–341.

[12] C. Martı́nez, L. Moura, D. Panario, and B. Stevens, “Algorithms to
locate errors using covering arrays,” ser. LATIN, 2008, pp. 504–519.

[13] L. S. G. Ghandehari, Y. Lei, T. Xie, D. R. Kuhn, and R. Kacker,
“Identifying failure-inducing combinations in a combinatorial test
set,” in ICST, 2012.


