
Security Policy Testing via Automated Program Code
Generation (Extended Abstract)

Ting Yu
North Carolina State

University
yu@csc.ncsu.edu

Dhivya Sivasubramanian
North Carolina State

University
dsivasu@ncsu.edu

Tao Xie
North Carolina State

University
xie@csc.ncsu.edu

1. INTRODUCTION
Access control is one of the fundamental security mechanisms

for information systems. It determines the availability of resources
to principals, operations that can be performed, and under what cir-
cumstances. Traditionally the enforcement of access control is of-
ten hardcoded in applications or systems; such hardcoding makes it
hard to verify the correctness of access control and to accommodate
changes of security requirements. Recently, access control policies
have been increasingly separated from enforcement mechanisms.
An access control policy is explicitly specified using certain policy
languages with well-defined syntax and semantics. An application
then consults the policy during runtime to determine whether an
access request from a principal should be allowed or denied. There
are two main advantages of this approach. First, security officers
can now perform systematic and formal security analysis on access
control policies. Second, by separating policies from enforcement
mechanisms, it is possible to change policies without affecting the
underlying mechanisms, and vice versa.

One challenging problem in access control is to ensure the cor-
rect specification of access control policies. A large number of
security problems are caused by policy misconfigurations. Manual
inspection of policies for correctness is tedious and often incompre-
hensive for today’s sophisticated access control policies. Similar
to quality assurance of software systems, testing techniques [4–6]
have been proposed recently to ensure the correctness of access
control policies, including policy-language-specific coverage crite-
ria [5, 6] and test generation algorithms [4, 5]. One limitation of
these previous testing techniques is that for every different policy
language, a different set of coverage criteria and test generation al-
gorithms need to be specifically defined and developed.

In this paper, we propose a new general policy-language-independent
framework for policy testing. In our new framework, we view an
access control policy as a software module, which, when given an
access request from a principal, returns permit or deny. Then
for each policy language, we develop a translator that automati-
cally translates a policy written in that policy language to a soft-
ware module (e.g., a Java class or a Java method). We can then
directly reuse existing software testing tools to test the policy. Note
that during this process, we do not need to define coverage criteria

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSIIRW’09, April 13–15, Oak Ridge, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-518-5 ...$5.00.

or develop specific test generation algorithms or tools for each lan-
guage, as the translated software module already encodes the im-
portant structure of the policy, and existing software testing tools
can take the structure into consideration when conducting software
testing.

The rest of the paper is organized as follows. Section 2 presents
our general framework for policy testing through automated pro-
gram code generation. Section 3 illustrates how to use the proposed
framework to test XACML policies. Section 4 reports the prelimi-
nary evaluation results. Section 5 concludes.

2. PROPOSED FRAMEWORK
Figure 1 shows the major functional components of a typical ac-

cess control system [1]. The Policy Enforcement Point (PEP) inter-
acts directly with users. When a user tries to access a resource, the
PEP forms an appropriate access request that includes the attributes
of the requester, the requested action, and the requested resource,
and passes the request to the Policy Decision Points (PDP). The
PDP looks up the access control policy that applies to the request,
and returns a response to the PEP. The PEP then correspondingly
permits or denies the user’s action. If the access control policy
contains faults, it can cause either unauthorized access or denial
of intended access, even when the PEP and the PDP are correctly
implemented.

The idea of policy testing is to generate a comprehensive set of
test inputs (each of which is an access request) and feed them to the
PDP to see whether the decisions from the PDP are as expected.
The key problem is how to generate high-quality test inputs, so that
policy faults can be detected.

Existing techniques to policy testing follow the typical software
testing practice, which defines coverage criteria for policy test-
ing, and then designs test generation algorithms and tools to max-
imize the coverage achieved by generated test inputs. Various pol-
icy languages have been proposed in the literature and often have
quite different structures (e.g., some are rule-based while others
are based on logical inferences), as they are designed for different
types of applications. With these previous techniques to policy test-
ing, we would have to identify different coverage criteria for each
language and design different test generation algorithms and tools
accordingly. Meanwhile, there are already many mature and suc-
cessful techniques and tools for software testing. It would be much
beneficial and cost-effective if we can reuse existing software test-
ing tools to test security policies. Based on this observation, we
propose a policy testing framework based on automated program
code generation.

Figure 2 shows the overview of the framework. One key com-
ponent of the framework is a code generator. This component is
language-specific, i.e., for each policy language, we need to de-

6

Policy
Enforcement
Point

Policy Decision
Point

User
Resource

Access
Request

Access
Decision

Request Response

Access
Granted

Access Control
Policies

Figure 2.1: Functional Components of an Access Control System

abilities, one of the most basic requirement is to ensure that the security policyis specified correctly.

In this thesis, we focus on the problem of ensuring that the access control polices are

specified correctly. A policy is considered to be correctly specified whenit satisfies all the properties

of the system. An example of a property is that a particular subject should not access certain

resources. These properties can be explicitly and formally expressed and formal analysis techniques

like resolution theorem proving can be used to prove if a property holds in apolicy. However, such

properties of a policy do not exist in practice and it is difficult to infer suchproperties in a large

system. Also, the formal analysis techniques are not scalable. A practicalway for ensuring the

correctness of the policy is to test the policy against a set of requests andcheck if the responses

obtained are as expected. This is the policy testing approach which is followed in this work.

2.2 Security Policy

The security policy in an access control system provides a systematic way for specifying

the strategy and practices for ensuring the security, integrity and availabilityof resources in an

information system. In this section, we will give a brief overview of policy specification languages

and describe XACML which we will be using for illustrating our approach to testing.

Figure 1: Major components of an access control system

<policy>
<rule> …</rule>
<rule> …</rule>
<policy>

Code
Generator

Function
(user, action,
resource) {
…
…
}

Access
Control
policy

Software
module

Software
Testing
Tool

access request 1
access request 2
access request 3
access request 4

… … … …

Policy
Decision Point

(PDP)

(1)

(2)

(3)

(3)

Request 1 passed
Request 2 passed
Request 3 failed

… … … … …

Test cases

Testing

Testing results

Figure 2: Proposed policy-testing framework via program code
generation

velop a code generator. Given an access control policy written in
a policy language, the code generator generates a software module
that is semantically equivalent to the policy. Applying this compo-
nent is the first step in our framework. The programming language
for the generated software module can be flexible. Its choice is
largely determined by the software testing tools that are used in the
second step.

In the second step, the generated software module becomes the
program under test for an existing software testing tool, which gen-
erates a set of test inputs. Note that since the software module is se-
mantically equivalent to the access control policy, the output from
the software testing tool (i.e., test inputs) can be straightforwardly
translated to access requests from users with different attributes.

In the third step, we feed each access request to the PDP, which
consults the access control policy to make a decision for each re-
quest. Combination of the outputs from the PDP with the gener-
ated access requests from the second step, we can further perform
manual analysis of the testing results and detect any unexpected be-
havior (when policy properties are available, analysis of the testing
results can be automated).

Compared with existing techniques to policy testing, our frame-
work has only one language-specific component. Note that since
policy languages have well-defined semantics, the translation from
an access control policy to a software module is often straightfor-
ward. The structure of the generated software module inherits that
of the original policy. The coverage of the software-module struc-
ture can be easily mapped back to the coverage of the correspond-
ing policy structure.

3. XACML POLICY TESTING
In this section, we show how we test XACML policies with the

proposed framework. The eXtensible Access Control Markup Lan-
guage (XACML) [8] is an XML-based syntax used to express poli-
cies, requests, and responses. The five basic elements of XACML
policies are PolicySet, Policy, Rule, Target, and Condition. A policy
set is a container that holds other policies or policy sets. A policy
is expressed through a sequence of rules. With multiple policy sets,
policies, and rules, XACML must have a way to reconcile conflict-
ing rules (i.e., multiple applicable rules with different decisions).
A collection of combining algorithms [8] serves this purpose. Each
algorithm defines a different way to combine multiple decisions
into a single decision. Both policy combining algorithms and rule
combining algorithms are provided.

To aid in matching requests with appropriate policies, XACML
provides a target, which is basically a set of simplified conditions
for the subject, resource, and action that must be met for a policy
set, policy, or rule to be applied to a given request. Once a policy
or policy set is found to be applied to a given request, its rules are
evaluated to determine the response.

Attributes describe the subject, resource, and action of an access
request. These attributes are compared with the conditions in poli-
cies or rules to determine whether these attributes can be applied to
a request.

We next show a simplified example of XACML policies:

<Policy PolicyId="univ"
RuleCombinationAlgId="permit-override">

<Target>
<Subjects><AnySubjects/></Subjects>
<Resources><Resource><AnyResource/>
</Resource></Resources>
<Actions> <AnyAction/> </Actions>

</Target>
<Rule RuleId="1" Effect="Permit">
<Target>
<Subjects><Subject>Faculty</Subject>
</Subjects>
<Resources>Grades</Resources>
<Actions><Action>Assign</Action>
<Action>View</Action></Actions>

</Target></Rule>
<Rule RuleId="2" Effect="Deny">
<Target>
<Subjects><Subject>Student</Subject>
</Subjects>
<Resources>Grades</Resources>
<Actions><Action>Assign</Action></Actions>

</Target>
</Rule>
<!-- A final, "fall-through" rule

that always Denies -->
<Rule RuleId="FinalRule" Effect="Deny"/>

</policy>

The preceding policy governs access to grades in a university.
It contains three rules. The first one states that entities with fac-
ulty roles can assign and view grades. The second rule states that
students are not allowed to assign grades. If both rules cannot be
applied to a request (e.g., a request from a staff), the third rule states
that the request should be denied by default. When two rules can be
applied to the same request (e.g., a faculty may be a part-time stu-
dent of another department), then permit rules override deny rules,
since its rule combining algorithm is permit-override.

Due to well-defined semantics of XACML, it is straightforward
to translate a policy in XACML into the source code of a software
module in any programming language. Specifically, an XACML
policy can be viewed as a set of predicates combined by logical
operators. The predicates correspond to rules in the policy, and
the variables in the predicates correspond to attributes in the pol-
icy. Through a parsing pass of an XACML policy, we can easily
identify all the predicates and attributes relevant to policy evalua-
tion. These attributes are then classified according to their types
(subject, resource, or action). A rule can then be translated into a
conditional statement, specifying constraints on different types of
attributes. An entire policy can be mapped to a series of conditional
statements. The ordering of these statements is determined by the
rule combining algorithm in the policy.

To facilitate test generation, we model a request as a sequence
of boolean variables, indicating the presence of each attribute value
(the true value indicating the presence of the attribute value in the
request). In the program code generated for the policy, we encode
this sequence of boolean variables as an array of boolean values,
being the parameter of a method. In particular, we translate the
preceding policy into the following program code:

String univ(boolean[] request) {
int Faculty = 0, Student = 1, OtherRole = 2;
int Grades = 3, OtherResource = 4;
int Assign = 5, View = 6, OtherAction = 7;

if (request[Faculty]}
if (request[Grades])

if (request[Assign] || request[View])
return "permit";

if (request[Student])
if (request[Grades])

if (request[Assign])
return "deny";

return "deny";
}

Note that if there are other permit rules in the policy, these rules
are moved to before all the deny rules to preserve the semantics of
the permit-override rule combining algorithm.

Our implementation automatically translates an XACML policy
into a Java class with a single method. We then use jCUTE [7], a
dynamic symbolic execution engine to generate test inputs for this
single method. jCUTE logs generated test inputs that led to new
feasible execution paths in the Java code translated from the policy.
These inputs form optimal, non-redundant test inputs for testing
the Java code (and thus the corresponding policy). We choose a
symbolic-execution-based testing technique for policy testing, be-
cause test inputs generated by this technique are likely to detect
fault types commonly occurring in policy specifications. Specifi-
cally, the rules in a policy are a series of conditional statements and
a symbolic-execution-based testing technique can easily solve each
of the constraints from the conditional statements. Appending new
rules to the end of a policy often may not affect the coverage of
previous rules. Thus, new test inputs can be generated and added
to existing test inputs.

The preceding discussion also shows another benefit of our frame-
work. Once policies are translated to software modules, we can
readily explore existing types of software testing techniques and
tools to find the most appropriate ones in this application context.

Note that we do not need to perform any test request reduction
as in other existing test generation tools. Redundant requests have

policy # set # policy # rule # cond
codeA 5 2 2 0
default-2 1 13 13 12
demo-11 0 1 3 4
demo-26 0 1 2 2
demo-5 0 1 3 4
mod-fedora 1 12 12 10
simple-policy 1 2 2 0

Figure 3: Statistics of policies used in preliminary evaluation

already been removed by jCUTE. This case is another example ben-
efit in reusing existing testing techniques for policy testing.

4. PRELIMINARY EVALUATION
We compare the quality of the test inputs generated by our ap-

proach with that of Targen [4], a policy testing tool specifically de-
signed for XACML. Targen defines a set of coverage criteria [6] for
XACML policies, including policy coverage ratio, rule coverage
ratio, and condition coverage ratio. It can also generate requests
directly to try to maximize different coverage ratios and perform
request reduction. We conduct our preliminary evaluation over var-
ious policies previously used in evaluating policy testing [5]. Fig-
ure 3 shows statistics of these policies, including the numbers of
policy sets, policies, rules, and conditions.

Figure 4 shows the empirical results when comparing Targen
with our approach using jCUTE. Column 1 shows the names of the
policies. Columns 2, 3, and 4 show the policy, rule, and condition
coverage, respectively, when using the Targen approach. Columns
6, 7, and 8 show the policy, rule, and condition coverage, respec-
tively, when using jCUTE. The results show that requests generated
by our approach achieve 100% policy, rule, and condition cover-
age. Targen achieves 100% policy and rule coverage; however, the
achieved condition coverage is not 100% because Targen currently
does not support test generation specifically for conditions. An-
other difference to be noted is that the requests generated by Tar-
gen consist of some redundant cases – requests that do not cause
any increase in any policy, rule, or condition coverage. Targen uses
a greedy reduction to identify requests that can cause an increase
in coverage. This step can cause extra overhead because redundant
requests are generated in the first place and then the generated re-
quests are reduced through some greedy away. In our approach,
however, the request-generation process (on leveraging jCUTE) it-
self ensures that a generated request covers at least one new pol-
icy element that has not been covered by previously generated re-
quests. Such a benefit is due to that in our approach only the con-
straints along the path to a rule are solved. Performing the greedy
reduction implemented in Targen over the requests generated by
our approach showed that there was 0% reduction in the requests
generated by our approach. This result shows that our requests are
optimal since they achieve 100% policy, rule, and condition cov-
erage and no reduction is needed based on the observation of 0%
reduction.

We also use mutation testing [3] to assess the fault-detection ca-
pability of the generated test inputs. Mutation testing seeds simple
faults in the original program, generates programs that are close to
the original program, and sees how high percentage of seeded faults
can be detected with a set of test inputs. Specifically this technique
takes advantage of the coupling effect. In programming, the cou-
pling effect can be defined on the basis of the empirical observation
that complex faults occur due to the combination of simple faults.
So, if we seed simple faults into a program by means of simple
changes based on mutation operators and if these faults can be de-

targen jcute
policy pol % rule % con % mut kill% pol % rule % con % mut kill%
codeA 100 100 n/a 36.36 100 100 n/a 41.8
default-2 100 100 100 50 100 100 100 29.23
demo-11 100 100 75 77.78 100 100 100 83.33
demo-26 100 100 50 78.57 100 100 100 78.57
demo-5 100 100 75 78.95 100 100 100 78.95
mod-fedora 100 100 100 56.67 100 100 100 36.66
simple-policy 100 100 n/a 44.44 100 100 n/a 55.5

Figure 4: Comparison of policy coverage ratios and mutant-killing ratio

tected by a set of test inputs, then we can be assured that this set
of test inputs can also be used to detect complex faults that occur
as a combination of these simple faults. In other words, mutation
testing measures the capability of a set of test inputs in detecting
simple faults, which could be used as an indication of its capability
to detect complex faults.

To use this technique in the context of testing access control poli-
cies, it is necessary to identify simple faults in the context of an
XACML policy. For example, a simple fault that a user makes
when writing an XACML policy is to write a policy with a se-
quence of rules but write a target that is not applicable to any valid
request. Here the policy is not applicable to any request. This fault
can be emulated by creating a mutant policy with a target value that
always evaluates to false. Another mutant policy could be one with
the target always being applicable; this fault ensures that all the re-
quests being evaluated are applicable to the policy, and the rules in
the policy are always valuated. Based on this idea, Evan and Xie [5]
have developed a set of mutation operators for an XACML access
control policy, and a mutation testing tool to assess fault-detection
capability of a set of requests.

Based on this mutation testing tool, we compare the fault-detection
capability of our approach and that of Targen. The set of requests
generated by both approaches are evaluated against the original pol-
icy and a mutant policy. If the evaluation results are different, the
mutant policy is said to have been killed. If the evaluation results
remain the same, the mutant policy lives. Columns 5 and 9 in Fig-
ure 4 show the mutation-killing ratios of Targen and our approach,
respectively. We observe that the fault-detection capability of re-
quests generated by our approach performs better or as good as the
ones generated by Targen in most cases.

In summary, we observe a comparable capability of the test in-
puts generated by Targen and those generated by our approach
while our approach brings in the benefits as described earlier.

5. CONCLUSION
In this paper, we have presented a new general framework for

policy testing via automated program code generation. This frame-
work allows to easily reuse existing software testing techniques
and tools to ensure the correctness of security policies. We have
demonstrated the effectiveness of the proposed approach by empir-
ically comparing it with an existing policy testing tool specifically
designed for XACML.

In future work, we plan to further evaluate the effectiveness of
our approach by applying it to other policy languages such as Pon-
der [2]. We also plan to adapt our approach to handel stateful poli-
cies such as those for managing roles in RBAC and stateful firewall
policies.

Acknowledgments
This research was sponsored by the NSF through CyberTrust grants
IIS-0430166, CNS-0716579, and CNS-0716210.

6. REFERENCES
[1] Sun’s XACML implementation.

http://sunxacml.sourceforge.net/, 2005.
[2] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and

Morris Sloman. The Ponder policy specification language. In
Proc. POLICY, pages 18–38, 2001.

[3] Richard A. DeMillo, Richard J. Lipton, and Frederick G.
Sayward. Hints on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41, April 1978.

[4] Evan Martin and Tao Xie. Automated test generation for
access control policies. In Supplemental Proc. ISSRE, 2006.

[5] Evan Martin and Tao Xie. A fault model and mutation testing
of access control policies. In Proc. WWW, pages 667–676,
2007.

[6] Evan Martin, Tao Xie, and Ting Yu. Defining and measuring
policy coverage in testing access control policies. In Proc.
ICICS, pages 139–158, 2006.

[7] Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic unit
testing and explicit path model-checking tools. In Proc. CAV,
pages 419–423, 2006.

[8] OASIS eXtensible Access Control Markup Language
(XACML). http:
//www.oasis-open.org/committees/xacml/,
2005.

