
Crowdsourcing Code and Process via Code Hunt

Tao Xie∗, Judith Bishop†, R. Nigel Horspool‡, Nikolai Tillmann†, and Jonathan de Halleux†
∗University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

†Microsoft Research, Redmond, WA 98052, USA
‡University of Victoria, Victoria, BC V8W 2Y2, Canada

Email: taoxie@illinois.edu, {nikolait,jhalleux,jbishop}@microsoft.com, nigelh@cs.uvic.ca

Abstract—Crowdsourcing programming relies on active par-
ticipation. One way to get such participation is through an
engaging game. Code Hunt (https://www.codehunt.com/) from
Microsoft Research is a web-based serious gaming platform with
the potential to be leveraged as a crowdsourcing system. In
Code Hunt, players create programs by re-engineering against
a changing set of test cases. The game has been played by over
100,000 players in world-wide contests, and to practice coding
skills. The vast collected data of code modified by players and the
process taken to succeed could be used by others for software
construction, teaching, or learning. In this position paper, we
discuss these existing crowdsourcing activities in Code Hunt and
a future game type for crowdsourcing.

I. INTRODUCTION

In recent years, crowdsourcing systems [3] have increas-

ingly gained popularity for solving various problems. In the

software engineering domain, crowdsourcing has also been

used to solve programming, verification, and design problems.

However, most crowdsourcing systems for software engineer-

ing are research prototypes and are typically deployed and

evaluated on a relatively small scale of crowd with typically

not more than 20 individuals [4], [5], [2]. Given the nature

of the crowdsourcing domain and often diverse behavioral or

capability characteristics of individuals, there is a strong need

for a crowdsourcing system deployed in real usage with a large

number of users and contributed solutions.

In this position paper, we propose that Code Hunt (https:

//www.codehunt.com/) [1] from Microsoft Research can serve

as such an example of a crowdsourcing system for the research

community. Code Hunt is a web-based serious gaming plat-

form where players write code to advance through levels. Since

its release in early 2014, Code Hunt has attracted over 100,000

users and accumulated their contributed solutions when play-

ing coding duel games. In April 2014, Code Hunt was used

at a very large competition called Beauty of Programming

in the Greater China Region. In three rounds, 2,353 students

scored in the game, with an average 55.7% puzzles solved

across this large number. Code Hunt is being offered for more

competitions, as ongoing efforts. The Code Hunt Challenge

being run as part of Microsoft Imagine Cup (https://www.

imaginecup.com/codehunt) has hundreds of participants per

month from all around the world. Code Hunt’s predecessor

Pex4Fun [8] also gained popularity in the community: since

it was released to the public in June 2010, the number of

clicks of the “Ask Pex!” button (indicating the attempts made

by users to solve games at Pex4Fun) has reached over 1.6

millions as of January 2015.

Fig. 1. User interface of game playing in Code Hunt

II. CODE HUNT

The main game type in Code Hunt is a coding duel [8],

represented as two code segments - a secret solution and one

with a matching signature, but empty in content. To solve a

coding duel, a player iteratively modifies the empty segment

to match the functional behaviors of the secret code segment.

Code Hunt relies on test cases generated by a state-of-the-

art white box test generation tool (Pex [6], [7]) to characterize

the functional behaviors of the secret code segment. These test

cases are presented to the player as clues. The game aspect in

Code Hunt is to recognize a pattern from the test cases, and

to re-engineer the code to meet the expected behaviors.

The back end of Code Hunt runs in the cloud on Windows

Azure, and games in Code Hunt can be played by players

via any modern Internet browser. It supports writing code in

both C# and Java when playing games. To play games, a

player walks through a series of sectors, each of which further

contains a series of levels. In a level, the player modifies

the given code to solve a coding duel. Figure 1 shows the

user interface of game playing in Code Hunt. When solving

a coding duel, the player iteratively modifies the given code

(displayed on the left hand side of the user interface) to

match the functional behaviors of a secret code segment (not

shown in the user interface). After the player clicks the button

“Capture Code” (displayed on the top-middle part of the user

interface), Code Hunt relies on the test cases generated by

a state-of-the-art test generation tool (Pex) to characterize the

functional behaviors of the secret code segment along with the

code modified by the player. To guide the player to modify

the given code, sample generated test cases are displayed (on

the right hand side of the user interface) to the player to report

same or different sample functional behaviors between the



secret code segment and the code modified by the player. The

game aspect in Code Hunt is essentially re-engineering from

sample expected behaviors observed from the generated test

cases.

III. CROWDSOURCING CODE AND PROCESS

Code Hunt can be leveraged as a crowdsourcing system for

specific problems in software construction. In particular, by

designing a coding duel, the duel designer can leverage the

crowd to provide alternative implementations sharing the same

functional behaviors as the given code segment (i.e., the secret

code segment in the coding duel). After the crowd successfully

contributes solutions for the coding duel, the duel designer can

leverage tool automation to analyze these solutions and select

the most desirable one(s) to use according to some metrics.

For example, developers can use tool automation to select

alternative implementations (of the same functional behaviors)

that are more efficient (judged with an execution-cost metric)

or of higher design quality (judged with a design quality

metric) than the developers’ existing code segment. Note that

when designing a coding duel, the duel designer has the

freedom of adding comments (which can include full or partial

specification description of the functionalities implemented by

the secret code segment) in the code given to the players;

adding such comments may facilitate code crowdsourcing.

In addition, by designing a coding duel, the duel designer

can leverage the crowd to contribute problem/duel-solving

processes. Such problem-solving processes consist of every

single attempt (code version) made by a player, being recorded

in the Code Hunt platform. The problem-solving processes

can be used in various ways, e.g., in educational software

engineering [4], [9]. The teachers who assign the coding duel

to their students in class can have a good understanding of

common struggles or mistakes to be made by students ahead

of time. The students in class solving the coding duel can

also benefit from such problem-solving processes indirectly

by leveraging hints produced by a hint generation engine that

mines these problem-solving processes.

We next illustrate four key challenges that Code Hunt as a

crowdsourcing system addresses [3]:

• How to recruit contributors. The crowdsourcing feature is

piggybacked on Code Hunt, which itself is not explicitly a

crowdsourcing system. So there is no need to recruit con-

tributors but just rely on the contributors to Code Hunt.

Code Hunt has been used in 15 programming contests.

In such contests, contributors make contributions in order

to compete. Code Hunt has also been used by players

who would like to challenge themselves and improve

their learning while having some fun. This usage is in

the default zone of Code Hunt and has had over 90,000

players who start the graded duels.

• What they can do. The players of Code Hunt play a

coding duel to modify the given code to match the

functional behaviors of the secret code segment.

• How to combine their contributions. The collaborations

among contributors are implicit. When code is crowd-

sourced, the contributions by various players for a coding

duel are evaluated to select the most desirable one(s)

with respect to the target metric. When processes are

crowdsourced, problem-solving processes are mined all

together. Some approaches such as program boosting [2]

can also be used to blend these crowd-contributed duel

solutions to produce even more-desirable solutions.

• How to manage abuse. Code Hunt leverages Pex [6],

[7] as the checking engine to assure that the crowd-

contributed duel solutions indeed have the same func-

tional behaviors as the secret code segment. So there

is little chance of being abused, such as contributing

a solution that has different functional behaviors (e.g.,

seeded with code-level security vulnerabilities) than the

secret code segment.

IV. FUTURE PLAN

In the future, we plan to explore a new game type to

allow explicit collaboration and competition among players.

In particular, instead of keeping the secret code segment

secret, we can make the (secret) code segment visible to the

players. Then the goal of the players is to modify the given

code segment to achieve more desirable metric values than

other players’ solutions according to the specified metric (such

as a design quality metric). The “best” player solution can

be even displayed to the players. Pex is still used to make

sure that crowd-contributed solutions have the same functional

behaviors as the given code segment. In a current coding duel,

if secret code segments are too complex, it is possible that

few players can reverse-engineer the functional behaviors of

the secret code segments. With this new game type, more-

complex code segments can be used in the gaming.

Acknowledgments. Tao Xie’s work is supported in part by a Mi-

crosoft Research Award, NSF grants CNS-1434582, CNS-1439481,

CCF-1349666, CCF-1409423, CCF-1434590, and CCF-1434596.

REFERENCES

[1] J. Bishop, N. Horspool, T. Xie, N. Tillmann, and J. de Halleux. Code
Hunt: Experience with coding contests at scale. In Proc. ICSE, JSEET,
2015.

[2] R. A. Cochran, L. DAntoni, B. Livshits, D. Molnar, and M. Veanes.
Program boosting: Program synthesis via crowd-sourcing. In Proc. POPL,
pages 677–688, 2015.

[3] A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing systems
on the world-wide web. Commun. ACM, 54(4):86–96, Apr. 2011.

[4] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. What would
other programmers do: Suggesting solutions to error messages. In Proc.

CHI, pages 1019–1028, 2010.
[5] T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der Hoek.

Microtask programming: Building software with a crowd. In Proc. UIST,
pages 43–54, 2014.

[6] N. Tillmann and J. de Halleux. Pex – white box test generation for .NET.
In Proc. TAP, pages 134–153, 2008.

[7] N. Tillmann, J. de Halleux, and T. Xie. Transferring an automated test
generation tool to practice: From Pex to Fakes and Code Digger. In Proc.

ASE, Experience Papers, pages 385–396, 2014.
[8] N. Tillmann, J. de Halleux, T. Xie, S. Gulwani, and J. Bishop. Teach-

ing and learning programming and software engineering via interactive
gaming. In Proc. ICSE SEE, pages 1117–1126, 2013.

[9] T. Xie, N. Tillmann, J. de Halleux, and J. Bishop. Educational software
engineering: Where software engineering, education, and gaming meet.
In Computer Games and Software Engineering. Taylor & Francis Group,

2015.


