
Data-Driven Investigation into Variants of Code
Writing Questions

Liia Butler∗, Geoffrey Challen∗, and Tao Xie†
∗Department of Computer Science, University of Illinois at Urbana-Champaign

{liiamb2, challen}@illinois.edu
†Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

taoxie@pku.edu.cn

Index Terms—Question variants, code writing, exam questions,
assessment

Abstract—To defend against collaborative cheating in code
writing questions, instructors of courses with online, asyn-
chronous exams can use the strategy of question variants. These
question variants are manually written questions to be selected
at random during exam time to assess the same learning goal. In
order to create these variants, currently the instructors have to
rely on intuition to accomplish the competing goals of ensuring
that variants are different enough to defend against collaborative
cheating, and yet similar enough where students are assessed
fairly. In this paper, we propose data-driven investigation into
these variants. We apply our data-driven investigation into a
dataset of three midterm exams from a large introductory pro-
gramming course. Our results show that (1) observable inequal-
ities of student performance exist between variants and (2) these
differences are not just limited to score. Our results also show
that the information gathered from our data-driven investigation
can be used to provide recommendations for improving design
of future variants.

I. INTRODUCTION

In programming or software engineering courses, exams
remain an integral part of assessing student knowledge. In
recent years, the practice of paper-based exams has been
disrupted by online assessments. In paper-based exams, ques-
tions that require code writing to solve, in short as code
writing questions, require tedious manual grading, which is
prone to grading inconsistencies across student submissions.
In contrast, in exams based on online assessments (in short
as online exams), a code editor, compiler, and automated test
cases not only take the grading burden off instructors but also
provide consistent grading and feedback to students. Physical
facilities (e.g., computerized assessment centers) designated
for these online exams also lift the burden off instructors from
the overhead of holding an exam during an instructional period
while still having consistency in exam administration.

Asynchronous exams, where students are not taking a partic-
ular assessment at the same time, help address an assessment
facility’s inability to support exams for a large class all at once.
Asynchronous exams can be held over a given time period, and
a student may choose a time slot during this period to take
his/her exam. This form offers flexibility for a student to take
an exam at a time most convenient for the student.

However, a major drawback of asynchronous exams is
that they are more vulnerable to collaborative cheating than

synchronous ones. Collaborative cheating is when one student
who has taken the exam supplies information about the exam
to another student who has yet to take it. This information
creates a clear advantage for the student going into the exam.

In order to defend against collaborative cheating, one strat-
egy of exam design is varying an asked question from student
to student by means of question variants. We specifically
address question variants that are manually written questions
being put into a pool with other variants (typically two to four
in total) and aim to assess the same learning goal. During exam
time, one variant is then randomly assigned to a student from
the pool for the particular question. The student sees only that
variant but no other variants. Figure 1 shows an example of
the flow from question variants to the assigned question.

Although the idea of having multiple variants of a question
is desirable, instructors who prepare question variants struggle
to accomplish two competing goals: effectively defending
against collaborative cheating (e.g., making the variants suffi-
ciently different) and fairly assessing students’ same specific
knowledge or skill (e.g., making the variants sufficiently simi-
lar). In particular, while creating sufficiently different variants
for a question to fulfill effective defense, the instructors need
to ensure that the variants can maintain fairness of the as-
sessment, regardless of the presence of collaborative cheating.
For example, the variants should be sufficiently similar where
each variant captures similar knowledge requirements needed
to succeed in answering the question. To accomplish these two
competing goals, the instructors currently have to rely on only
gut feeling or intuition.

Although previous research [1] shows that providing ques-
tion variants can help defend against collaborative cheating
(i.e., the first goal), there exists no previous research on
whether and how well question variants can accomplish fair as-
sessment in the context of online asynchronous exam settings
(i.e., the second goal) for courses. In practice, the instructors
may check to see whether scores attained by students across
question variants are roughly equal, but doing so does not offer
sufficient insights on the extent of how question variants can
impact student performance in the course.

As the first attempt toward designing question variants
to accomplish fair assessment in courses, in this paper, we
propose to conduct data-driven investigation into analyzing
question variants based on the set of submissions produced

Fig. 1: Example of Linked List variant flow

by all the students in a class for these question variants. We
first consider the overall distribution of the scores. We then
consider the distribution of time spent on a given variant.
Finally, we break down the duration into the amount of time
spent in a given student activity such as resolving compiler
error and other actions in response to assessment feedback.

We conduct our data-driven investigation into the ques-
tion variants from three midterm exams from the Fall 2018
semester of a large introductory programming course. Our re-
sults show that (1) there are observable inequalities of student
performance between variants, (2) variants whose scores are
equal can still have significant differences in performance and
effort required, indicating that relying on only scores may not
be sufficient. Our results also show how information gathered
from our data-driven investigation can be used to provide
recommendations for improving design of future variants.

II. BACKGROUND AND RELATED WORK

Programming or software engineering education poses its
own unique challenges and opportunities in terms of exam
creation possibilities and best practices. Our work touches
on a number of areas related to programming or software
engineering education, including test measurement, question
variants, and code writing analysis.

Recent efforts in assessment, such as exam question ran-
domization [2], parameterized questions for variant generation
[3], [4], and autograding [5]–[8], have added appeal toward
utilizing online and computer-assisted assessment, particularly
in computer science settings [9], [10]. These efforts have
brought a wave of work related to test measurement that both
challenges and/or validates assumptions made regarding these
innovations in terms of improving the assessment process, as
well as making use of more easily accessible, richer data
from the actual online assessments. Numerous efforts have
taken a critical eye and evaluated these innovative approaches
and revealed lessons and precautions related to these types of
assessments, demonstrating that there is a strong need for such
studies and that not all technological influence is positive [11].
Jordan et al. [12] point out a number of factors that should
be of concern when considering variants of computer-marked
questions that can lead to a question becoming unfair in

terms of its variants, such as spelling in written responses and
rounding in numerical responses. In addition to efforts more
prominent in online assessments, a number of other efforts
show points of concerns in the e-assessment environments
themselves [13], as well as instructor shortcomings when
utilizing these assessment approaches [14].

There exists a study of evaluating open-ended question
variants [15]. Similar to coding question variants, several open-
ended variants are derived from a base question, but question
variants are evaluated in the context of natural language
questions in a high-stake exam, where the time allowed for
completing the essays is controlled and separate from other
sections of the exam.

To the best of our knowledge, there exists no prior related
work of studying code writing variants in online, asynchronous
exams. However, code writing analysis has been widely stud-
ied in other aspects outside of our context and serves as
important pillars to build upon. Logs and other programming
data [16], [17], as well as considering students’ perceived level
of difficulty [18], provide valuable insight to instructors.

III. EXAMPLE QUESTION VARIANTS

In this section, we illustrate an example question for a linked
list and its four variants selected from the third exam of our
dataset described in Section IV.

The value of each item in the linked list of items is stored
in an object named “value” and the item includes a reference
pointing (named “next”) to the next item. The LinkedList class
has a member variable named “start” to point to the head of
the linked list. The assessment purpose for this question is to
assess whether a student could write code to traverse a linked
list. The task for each of the variants is to return the count of
the number of the items that satisfy a certain criterion specified
in the particular variant.

For Variants 1, 2, 3, and 4, students are instructed to count
the number of items with even values, odd values, positive
values, and negative values, respectively, in the linked list.
A sample solution for each of the four variants is shown in
Figures 2-5, respectively. In this question, the sample solutions
for the four variants can be similarly structured to accomplish
the respective variant tasks. Transforming the sample solution
from one variant to another requires only a change to Line 8
to express how the current item’s value should be compared
(to select out those items satisfying the specified criterion) to
increase the count variable.

IV. DATA CONTEXT

We analyze the coding submissions from three 50-minute
long, instructor-written midterm exams from the Fall 2018
semester of a large introductory programming course taught
in Java. The midterms are taken in a special computerized
assessment center (Section IV-A) on an online homework and
testing platform (Section IV-B). In addition to evaluating the
correctness of code, the course also evaluates code quality by
utilizing Checkstyle [19], a linting tool that statically checks
code against a specified coding standard (e.g., limiting the
number of characters on a single line of source code).

1 protected int countEven() {
2 int count = 0;
3 Item temp = start;
4 if (temp == null) {
5 return 0;
6 }
7 while (temp != null) {
8 if (temp.value % 2 == 0) {
9 count++;

10 }
11 temp = temp.next;
12 }
13 return count;
14 }

Fig. 2: Example solution of count even variant

1 protected int countOdd() {
2 int count = 0;
3 Item temp = start;
4 if (temp == null) {
5 return 0;
6 }
7 while (temp != null) {
8 if (temp.value % 2 != 0) {
9 count++;

10 }
11 temp = temp.next;
12 }
13 return count;
14 }

Fig. 3: Example solution of count odd variant

1 protected int countPositive() {
2 int count = 0;
3 Item temp = start;
4 if (temp == null) {
5 return 0;
6 }
7 while (temp != null) {
8 if (temp.value > 0) {
9 count++;

10 }
11 temp = temp.next;
12 }
13 return count;
14 }

Fig. 4: Example solution of count positive variant

1 protected int countOdd() {
2 int count = 0;
3 Item temp = start;
4 if (temp == null) {
5 return 0;
6 }
7 while (temp != null) {
8 if (temp.value < 0) {
9 count++;

10 }
11 temp = temp.next;
12 }
13 return count;
14 }

Fig. 5: Example solution of count negative variant

A. Computer-Based Testing Facility

The Computer-Based Testing Facility (CBTF) [20] allows
students to asynchronously take computerized assessments in
a controlled environment. Instructors of a course set a range
of days when the assessment is open for students to take,
typically 3-5 days. From that range, a student may then

select any available time slot over the exam period to go
to the facility and take the exam. Multiple courses can have
overlapping exam periods and exams from different classes
can occur in the facility at the same time.

The facility is a computer lab that supports over 80 students
at a time. The facility takes measures to decrease cheating
risks. The facility staff verify student identities, ensuring that
the correct students are at the correct time slot. The students
must stow all belongings before heading to their randomly
assigned seats. The staff then proctor once the examination pe-
riod begins. In addition to the physical facility, the computers
are also equipped with special control measures in attempt to
prevent any unfair advantages including limited and controlled
network and file system access, disabled access to removable
storage (e.g., flash drives), and special screens on the monitors
to prevent neighboring students from seeing what is on the
screen.

B. PrairieLearn

The course uses PrairieLearn [21], an online educational
system, for both homework assignments and as the platform
for the online assessments held in the CBTF. The system
shows an overview of all questions in the assessment, and a
student can select which question to work on. The student can
go to the next question from the previous question, or can go
back to the overview and choose which question to work on
next, so the student does not have to go in the chronological
order and can switch between questions freely. The student
can see the point value of the question and how many points
the student has been awarded for the question at that time.

When a programming question is presented, the interface
displays the question, prompt written by the instructor, and
a simple code editor with optional starter code. The student
can save, or save and submit for grading. When the student
submits for grading, the submission is sent to an external
server for grading, compiled and run against a set of test
cases, and the results are sent back; the process takes just
several seconds. The test cases are instructor-defined for the
question. These test cases consist of both a large number of
randomly generated inputs and manually defined inputs for
explicitly checking edge cases, depending on appropriateness
for the specific question.

There is some available feedback returned to the student.
The student can see the output from the compiler if there is
a syntax error, stack traces from runtime errors, Checkstyle
errors, and assertion errors for failed test cases run against the
autograder (students see only the Assertion Exception stack
trace with the expected value and the actual value in the
test case, but they do not see the test input or code of the
actual test case). The students are allowed unlimited attempts
at programming questions.

C. Exam Descriptions and Question Variants

In this section, we provide descriptions of the exams as well
as a description of the questions and corresponding variants.

1) Exam 1: The first exam assessed imperative program-
ming skills. 827 students attempted the exam. The exam was
17 questions long, with 12 multiple choice, 1 free response,
and 4 programming questions, presented in that order to
students. 3 of the 4 programming questions were written in
variant format with 4 variants each, and were the 14th, 15th,
and 16th questions on the exam. Partial credit was not available
on the programming questions. The question breakdown is as
follows:

• E1Q1 Arrays - Ability to traverse an array

– E1Q1V1 Even Array Sum - Sum even values in array
– E1Q1V2 Odd Array Sum - Sum odd values in array
– E1Q1V3 Even Index Array Sum - Sum values from

even indices in array
– E1Q1V4 Odd Index Array Sum - Sum values from

odd indices in array

• E1Q2 2D Arrays - Ability to traverse a 2D array

– E1Q2V1 Count Equal - Count all array values equal
to reference value

– E1Q2V2 Count Not Equal - Count all array values
not equal to reference value

– E1Q2V3 Count Greater Than - Count all array
values greater than reference value

– E1Q2V4 Count Less Than - Count all array values
less than reference value

• E1Q3 String Parsing - Ability to parse a string

– E1Q3V1 Get Salary “:” - Get salary from record
formatted “Name:Position:Salary”

– E1Q3V2 Get Salary “;” - Get salary from record
formatted “Name;Position;Salary”

– E1Q3V3 Get Yearly Salary “:” - Get salary from
record formatted “Name:Position:Weekly Salary”
and multiply by a 50 week working year

– E1Q3V4 Get Yearly Salary “;” - Get salary from
record formatted “Name;Position;Weekly Salary”
and multiply by a 50 week working year

2) Exam 2: The second exam assessed object-oriented pro-
gramming skills. 735 students attempted the exam. The exam
was 13 questions long with 10 multiple choice questions and
3 programming questions presented in that order to students. 2
of the 3 programming questions were written in variant format
with 4 variants each, and were the 11th and 12th questions on
the exam. Partial credit was available on the programming
questions. The question breakdown is as follows:

• E2Q1 Class Design - Ability to create class, implement
constructor, area method, and override equals method.

– E2Q1V1 Equilateral Triangle - instance variable side
length

– E2Q1V2 Rectangle - instance variables width and
height

– E2Q1V3 Right Isosceles Triangle - instance variable
side length

– E2Q1V4 Circle - instance variable radius

• E2Q2 Comparable Object - Ability to create class to
extend Comparable, implement constructor, getter and
setter methods, and compare method.

– E2Q2V1 Dog - instance variable age
– E2Q2V2 Cat - instance variable height
– E2Q2V3 Turtle - instance variable speed
– E2Q2V4 Ferret - instance variable length

3) Exam 3: The third exam assessed knowledge over basic
data structures and algorithms. 722 students attempted the
exam. The exam was 16 questions long with 13 multiple
choice questions and 3 programming questions. 2 of the 3
programming questions were written in variant format with
4 variants each, and were the 14th and 15th questions on
the exam. Partial credit was available on the programming
questions. The question breakdown is as follows:

• E3Q1 Linked List - Ability to traverse a linked list
– E3Q1V1 Count Even - Count number of even-value

items
– E3Q1V2 Count Odd - Count number of odd-value

items
– E3Q1V3 Count Positive - Count number of positive-

value items
– E3Q1V4 Count Negative - Count number of

negative-value items
• E3Q2 Binary Tree - Ability to traverse a binary tree

– E3Q2V1 Count Equal - Count number of nodes
equal to reference value

– E3Q2V2 Count Not Equal - Count number of nodes
not equal to reference value

– E3Q2V3 Count Greater Than - Count number of
nodes greater than reference value

– E3Q2V4 Count Less Than - Count number of nodes
less than reference value

V. SUBMISSION STRUCTURE

Each raw entry from the online educational system de-
scribed in Section IV-B is processed into a Submission Data
Type representation. Each Submission has the question id,
user id, the score received, the actual submission code, the
timestamp of when it was submitted, and Result of submission
(discussed in more detail next). We also store the feedback that
the student receives (Checkstyle errors, compiler errors, stack
traces from exceptions, failed assertions from test cases) for
use in manual examination, but is not required as part of our
data-driven investigation.

Each Submission contains a Result categorizing the end
result of the submission into one of five results: CheckstyleEr-
ror, CompilerError, RuntimeException, FailedTestCase,
and CorrectSolution. We provide a brief description of each
result below:

• CheckstyleError - The submission contained code for-
matted not in compliance with a Checkstyle rule.

• CompilerError - The submission contained at least one
compiler error.

• RuntimeException - An exception was thrown at run-
time while test cases were executed on the submission.

• FailedTestCase - The submission failed at least one test
case, i.e., an assertion in the test case is violated.

• CorrectSolution - The submission was considered cor-
rect.

Exactly one Result is determined for each submission by
examining the score and parsing the grading results and
feedback as stored in the raw entry.

VI. INVESTIGATED DIMENSIONS OF STUDENT
PERFORMANCE

In this section, we discuss how we use three different
dimensions of student performance to guide our data-driven
investigation into these variants. Since we compare variants in
terms of student performance, we do not include students who
were assigned to a variant, but never attempted it. We provide
the breakdown of overall students assigned and students who
attempted in Table I, but during the investigation we consider
only the students who attempted the question at least once.

We use the three dimensions to answer the following
research questions:

• RQ1: What inequalities of observed student performance
exist among question variants?

• RQ2: How can investigation results be used to derive
recommendations for writing future question variants?

We next explain each of the three dimensions used in our
data-driven investigation.

A. Score

We first consider the overall distribution of the highest
scores of those who attempted a variant at least once. Since
the score that a student can receive on a question is discrete,
we perform a chi-squared test with α value 0.05 and the
null hypothesis that there is no difference between scores
received from the variants. Should the result show statistical
significance, we then perform post-hoc pairwise comparisons
of all variant combinations for the given question using the
Bonferroni correction [22] where α is divided by the number
of comparisons, in order to control the error rate of multiple
comparisons. In this particular investigation, all questions
have four variants, so we make 6 additional comparisons, so
our threshold of statistical significance becomes 0.05/6, i.e.,
0.0083.

B. Solving Duration

We approximate duration of attempting a question variant
in order to understand whether there are differences in perfor-
mance among variants behind the final score. Recall that for
each exam question, there exists exactly one question variant
(among all the question variants for the question) selected
for this student to solve in the exam. An exam consists of
a sequence of question variants.

1) Solving Duration of a Question Variant by a Student:
Assume that a particular student submitted in total n sub-
missions for all question variants in an exam. Then we first
order (1) the exam start (treated as a fake submission denoted
as start in index 0, whose timestamp is the same as the
timestamp of the student’s first submission among all of her
submissions), (2) all submissions from the student based on
their timestamps (in index 1 till index n), and (2) the exam
end (treated as a fake submission denoted as end in index
n + 1, whose timestamp is the same as the timestamp of the
student’s last submission among all of her submissions) to
form a sequence. Then we identify each location denoted as
a vector < i − 1, i > in between two nearby submissions
si−1 and si where Q(si−1) ! = Q(si) where Q(s) returns
the question variant for which submission s is submitted, and
Q(s0) and Q(sn+1) (recall that so and sn+1 indicate the
exam start and end, respectively) return special fake question
variants that are different from any real question variant. These
locations form a new sequence L.

Note that for each pair of nearby locations in L, denoted as
< i − 1, i > and < j − 1, j >, there is a property: for each
submission k where i <= k <= j − 1, Q(k) remains the
same, denoted as question variant q being attempted during
the pair of nearby locations. For a pair of nearby locations,
we calculate the solving duration of q as below. The start time
for q, denoted as Startq , is the timestamp for si−1; here we
assume that the student starts working on solving q as soon as
the student submits si−1. The end time for q, denoted as Endq ,
is the timestamp for sj−1; here we assume that the student
stops working on solving q as soon as the student submits
sj−1. The solving duration for q during this pair of nearby
locations is (Endq - Startq), i.e., the difference between q’s
start time and end time.

Given that a student may switch back and forth between
attempting different question variants, one question variant can
be attempted during multiple pairs of nearby locations in L.
To calculate the solving duration of q during the whole exam,
we sum up q’s durations calculated for all pairs of nearby
locations where q is attempted. Figure 6 depicts this process.

2) Average Solving Duration for All Students: After we
calculate a student’s solving duration for question variant q,
we further derive the average solving duration for q across all
students who attempted to solve q. After we derive the average
solving duration for each variant of a question, we perform a
one-way ANOVA to test the null hypothesis that the average
durations between these variants are equal. We again use α
value 0.05. Again should the result show statistical signifi-
cance, we then perform post-hoc pairwise comparisons using
Bonferroni correction for an adjusted threshold of 0.0083.

C. Distribution of Effort

We further break down duration by looking at the dis-
tribution of efforts during the time that a student spent on
a question variant. We identify five types of student efforts
during attempting a question variant based on our Result
categorization identified in Section V:

Fig. 6: Duration process

Fig. 7: Example distribution of effort for a submission timeline

• First Submission
• Resolving Checkstyle Error
• Resolving Compiler Error
• Resolving Runtime Exception
• Resolving Failed Test Case

We use the same submission sequence as the one con-
structed to approximate solving duration (Section VI-B). Re-
call that we insert the exam start and exam end as two fake
submissions at index 0 and index n + 1. We again identify
each location (in between submissions) denoted as a vector
< i − 1, i > where submission Q(si) returns the question
variant q currently under investigation.

If submission si is the first submission for question variant
q, we use the timestamp from submission si−1 as the Start
for student effort’s First Submission.

In the sequence of submissions by a student during an
exam, if two nearby submissions si−1 and si attempt the
same question variant q, i.e., Q(si−1) == Q(si) == q,
the Resolving effort of this student for question variant q is
the difference in timestamps T (si) − T (si−1). We classify
this Resolving effort into one of the four types listed earlier:
Resolving Checkstyle Error, Resolving Compiler Error, Re-
solving Runtime Exception, and Resolving Failed Test Case,
based on the Result of si−1 (see Section V for the five
possible results). Note that the Result of si−1 shall not be
CorrectSolution give that the student attempted the same
question variant again in si.

In the sequence of submissions by a student during an exam,
consider that two submissions si and sj for attempting the
same specific question variant q are not nearby but separated
by other submissions for attempting other question variants,
i.e., si, si+1, ..., sj−1, sj , where (1) Q(si) == Q(sj) == q
and (2) ∀ k, Q(sk) ! = q where i+1 <= k <= j − 1. Here
the Resolving effort of this student for question variant q is
the difference in timestamps T (sj)−T (sj−1). We classify this

Resolving effort into one of the four types listed earlier based
on the Result of si. Here we assume that the student resumed
effort on question variant q starting at timestamp T (sj−1),
and that effort produced sj to address the issue encountered in
submission si. Figure 7 shows an example submission timeline
with each of the five student efforts for question variant q.

We sum up the time that a student spent in each resolving-
effort category for a given question variant. We then record
the average time and percentage time spent on a resolving-
effort category for all students who attempted a given question
variant. This metric helps provide us with further insight on
a particular sticking point on a particular variant compared to
its alternatives, as well as providing quick insight on student
behaviors toward a particular question variant as a whole. We
represent this dimension graphically.

VII. RESULTS

We investigate via each of the three dimensions into the
dataset described in Section IV. In this section, we describe
the results and observations found from conducting our data-
driven investigation.

A. Score Results

We apply the Score dimension onto the dataset. We provide
the full statistics in Table I and then show the calculated p-
values for each question in Table II.

As shown in Table II, one question, E3Q1, has a statistically
significant difference in score among those who attempted
question variants for this question. We therefore reject the
null hypothesis that there is no difference between scores
received from the variants for this question. We apply post-
hoc Bonferroni tests to this question. We make comparisons
between each of the 6 pairs of variants giving the Bonferroni-
adjusted p-value of 0.0083 and find that there is statistically
significant difference between variants 1 and 2, and between

TABLE I: Statistics of scores across question variants

Question # Students Assigned # Students Attempted % Attempted Avg Score Avg Score Attempted

E1Q1V1 182 182 100 93.4 93.4
E1Q1V2 225 223 99.1 88.4 89.2
E1Q1V3 197 195 99.0 92.9 93.3
E1Q1V4 224 219 97.7 87.4 89.0
E1Q1 Total 827 819
E1Q2V1 194 187 96.4 84.5 87.7
E1Q2V2 210 203 96.7 86.7 89.7
E1Q2V3 218 217 99.5 84.9 85.3
E1Q2V4 205 201 98.0 88.3 90.0
E1Q2 Total 827 808
E1Q3V1 203 154 75.9 43.5 56.5
E1Q3V2 210 182 86.7 51.9 59.9
E1Q3V3 203 155 76.4 37.4 49.0
E1Q3V4 211 163 77.3 38.9 50.3
E1Q3 Total 827 654
E2Q1V1 189 187 98.9 91.1 91.9
E2Q1V2 178 176 98.9 90.8 91.8
E2Q1V3 188 186 98.9 93.5 94.5
E2Q1V4 180 178 98.9 93.8 94.8
E2Q1 Total 735 727
E2Q2V1 181 179 98.9 81.8 82.7
E2Q2V2 177 176 99.4 81.5 81.9
E2Q2V3 187 185 98.9 80.4 81.3
E2Q2V4 190 188 98.9 81.6 82.4
E2Q2 Total 735 728
E3Q1V1 177 173 97.7 88.1 90.2
E3Q1V2 192 187 97.4 82.7 84.9
E3Q1V3 181 177 97.8 89.6 91.6
E3Q1V4 172 170 98.8 89.9 90.1
E3Q1 Total 722 707
E3Q2V1 178 175 98.3 82.8 84.2
E3Q2V2 163 159 97.5 80.6 82.6
E3Q2V3 194 191 98.5 84.9 86.2
E3Q2V4 187 181 96.8 81.2 83.9
E3Q2 Total 722 706

TABLE II: Question score p-values for attempted

Question p-value
E1Q1 0.213
E1Q2 0.406
E1Q3 0.197
E2Q1 0.682
E2Q2 0.743
E3Q1 0.013
E3Q2 0.161

TABLE III: E3Q1 - Score pairwise p-values for attempted

E3Q1 Variant pair p-value
V1 vs. V2 0.0016
V1 vs. V3 0.2745
V1 vs. V4 0.5662
V2 vs. V3 0.0006
V2 vs. V4 0.0345
V3 vs. V4 0.1317

variants 2 and 3. We provide all calculated p-values for these
pairs of question variants in Table III.

Variant Count Odd is the variant that remains consistent
in the two pairwise significant differences, but there is no
significant difference for score pairwise against variant 4,
Count Negative. We suspect that this result is due to a
misconception that exists with the “%” operator in Java. In
Java, “%” is the remainder operator, which is different than

1 public static int evenArraySum(int[] array) {
2 int sum = 0;
3 if (array == null) {
4 return 0;
5 }
6
7 for (int i = 0; i < array.length; i++) {
8 if (array[i] % 2 == 0) {
9 sum += array[i];

10 }
11 }
12 return sum;
13 }

Fig. 8: E1Q1V1 example solution

the mathematical modulus. The difference between the two
reveals itself when students have to check for odd values.
Students who fall into the common pitfall of using “n % 2
== 1” to check for odd values fail any test cases where n is
negative; therefore, the result of “n % 2” is -1.

We are able to use results from the subsequent dimensions
to better understand the effect of this pitfall.

B. Results of Solving Duration and Distribution of Effort

We apply the dimension of Solving Duration onto the
dataset. We provide all p-values in Table IV. As shown in the
table, four questions, E1Q1, E1Q3, E2Q1, and E3Q1, have

1 public static int oddArraySum(int[] array) {
2 int sum = 0;
3 if (array == null) {
4 return 0;
5 }
6
7 for (int i = 0; i < array.length; i++) {
8 if (array[i] % 2 != 0) {
9 sum += array[i];

10 }
11 }
12 return sum;
13 }

Fig. 9: E1Q1V2 example solution

1 public static int oddIndexArraySum(int[] array) {
2 int sum = 0;
3 if (array == null) {
4 return 0;
5 }
6
7 for (int i = 0; i < array.length; i++) {
8 if (i % 2 != 0) {
9 sum += array[i];

10 }
11 }
12 return sum;
13 }

Fig. 10: E1Q1V4 example solution

a statistically significant difference in duration and we reject
the null hypothesis that the durations between these variants
are equal for these four questions. We then apply post-hoc
Bonferroni tests to the questions. Table V shows pairwise p-
values for these four questions.

For E1Q1, we find that there is a statistically significant
difference in duration between V1 and V2, as well as V1
and V4. The question across variants is to assess the ability
to iterate through an array, access array elements, and using
basic operators appropriately. However, we offer a possible
explanation for the differences between variants. Programmat-
ically testing for odd numbers can be less intuitive for a novice
programmer than testing for an even or multiple of a number,
which might require less time to think through. Therefore,
the variants that require testing for odd may take more time.
We note that variant V1 is the variant that requires a check
on whether the value in the current index is even. Checking
the value at the index aligns more with typical examples of
array usage, rather than caring about the index. This factor
could explain why there is statistical significance pairwise with
variant V1. Using this duration information and looking at
the distribution of efforts, instructors may opt to be mindful
of these differences and ensure sufficient time to complete
the exam, particularly since the question’s average solving
duration is about 4 to 6 minutes across the variants. However,
there may be other cases where it would be more appropriate to
modify variants to offer the same challenges (e.g., all variants
require checking for the same remainder value).

For E1Q3, we find no statistically significant differences
when comparing pairs of variants. However, we observe over-

1 public class Rectangle extends Shape {
2 private int width;
3 private int height;
4
5 public Rectangle(int w, int h) {
6 super("rectangle");
7 this.width = w;
8 this.height = h;
9 }

10
11 public double area() {
12 return this.width * this.height;
13 }
14
15 public boolean equals(Object other) {
16 if (other == null || !(other instanceof Rectangle

)) {
17 return false;
18 }
19
20 Rectangle r = (Rectangle) other;
21
22 return (this.area() == r.area());
23 }
24
25 }

Fig. 11: E2Q1V2 example solution

1 public class Circle extends Shape {
2 private int radius;
3 Circle(int r) {
4 super("circle");
5 this.radius = r;
6 }
7 public double area() {
8 return Math.PI * radius * radius;
9 }

10 public boolean equals(Object other) {
11 if (other == null
12 || !(other instanceof Circle)) {
13 return false;
14 }
15 Circle circle = (Circle) other;
16 return (this.radius == circle.radius);
17 }
18 }

Fig. 12: E2Q1V4 example solution

all that the question has the greatest amount of invested time
among the code writing questions for the first exam and the
lowest performing as shown in Table I. Therefore, during exam
construction, instructors shall watch out for cases of adding
extra specifications to variants, such as those added to variants
V3 and V4.

For E2Q1, there is a statistically significant difference
in duration between V2 and V4. A possible explanation is
Rectangle being the only variant with two member variables
while students may be more familiar with working around
circles than other shapes. While for this particular question,
instructors may just ensure sufficient time, future variants on
class design may require instructors to be mindful of the types
of classes to be designed.

Finally, for E3Q1, we find that there is a statistically
significant difference in duration between V1 and V2, V2 and
V3, and V2 and V4, respectively. Recall that this question is
the same as the one with statistical significance in the score
dimension.

TABLE IV: Question average duration p-values

Question p-value
E1Q1 9.250E-05
E1Q2 0.272
E1Q3 0.019
E2Q1 0.049
E2Q2 0.747
E3Q1 6.213E-08
E3Q2 0.246

TABLE V: Question average duration pairwise p-values

Question Variant pair p-value
E1Q1 V1 vs. V2 0.0004

V1 vs. V3 0.0529
V1 vs. V4 0.0001
V2 vs. V3 0.0399
V2 vs. V4 0.7840
V3 vs. V4 0.0144

E1Q3 V1 vs. V2 0.7974
V1 vs. V3 0.0116
V1 vs. V4 0.0399
V2 vs. V3 0.0163
V2 vs. V4 0.0539
V3 vs. V4 0.7176

E2Q1 V1 vs. V2 0.1584
V1 vs. V3 0.9534
V1 vs. V4 0.1471
V2 vs. V3 0.1480
V2 vs. V4 0.0077
V3 vs. V4 0.1687

E3Q1 V1 vs. V2 4.7794E-05
V1 vs. V3 0.6189
V1 vs. V4 0.6828
V2 vs. V3 2.8454E-06
V2 vs. V4 5.4979E-06
V3 vs. V4 0.9289

We again see that variant 2, Count Odd, remains consistent
in the pairwise comparisons across all those with significant
differences. We are able to use this dimension and results
of the third dimension, visualizing the distribution of effort,
shown in Figure 13, to better understand and narrow down
the focus to confirm our suspicions of the misconception of
the “%” operator as suggested in the previous section. When
we utilize the third dimension and examine Figure 13 and the
percentage of time spent on various types of resolving effort,
we see that considerably more effort is spent on resolving
failed test cases than other types of resolving effort. For
this variant, upon manual inspection of randomly selected
submissions that result in a FailedTestCase result, we see that
the pitfall of misunderstanding the “%” is indeed present.

We provide our recommendation toward future questions
that contain variants requiring use of the remainder operator
but are not purposefully assessing the ability to use the
remainder operator. We suggest that these questions use the
operator consistently across variants (e.g., testing for multiples
of a given number).

VIII. DISCUSSION

While only requiring information extractable from submis-
sion records does allow our data-driven investigation to be
more generally applicable, external and human factors are not
captured in this analysis, with two major limitations.

Fig. 13: Distribution of effort results

First, since our analysis requires submissions from a student
to analyze, and thus we exclude those variants that do not have
any submission, we do not know whether an excluded variant
has influence on why a student does not submit. For example,
a student could have looked at the prompt and deliberately
skip it, run out of time, and do not even see the question, or
even attempt to solve the question and simply forget to submit.

Second, our duration approximation is limited. We made the
decision that the start time of attempting a question variant
begins at the end of the preceding submission or when the
student begins the exam. This decision naturally makes the
assumption that students immediately begin focusing on the
next question variant, while during the exam, there may have
been other events that happen before the student begins at-
tempting the question variant, such as deciding which question
variant to attempt next. Likewise, duration between attempts
for the same question variant considers all time invested on
the next attempt, while there may have been other occurrences
unaccounted for, such as a student’s thinking about a previous
question variant while still working on the current question
variant. This decision would lead our analysis to overestimate
solving duration, particularly for when a student first begins
a question variant, as more time is likely to pass during this
period that the student is assumed working on the attempt.
Likewise, the student may be addressing issues other than/in
addition to the issue as indicated in a submission’s Result used
in the Distribution of Effort dimension.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented our data-driven investi-
gation for analyzing variants of code writing questions in a
setting. We use three dimensions to analyze these variants:
Score, Solving Duration, and Distribution of Effort. We have
found that there exist observable differences among the vari-
ants. Moreover, we have shown that question variants that

may be considered equivalent in terms of score could still
contain differences in terms of student effort. Finally, we
have used information derived from applying our data-driven
investigation into a dataset of exam question variants to show
that results from our data-driven investigation can be used to
provide recommendations for improving future variants.

While our work offers the first step, there is still much
more to be done in future work to understand variants of code
writing questions. The natural next step would be to attempt
to understand how effective these variants are in defending
against collaborative cheating. When we sufficiently under-
stand defense effectiveness and fair assessment, respectively,
and the relationship between them, we can begin to construct
best practices for designing these variants.

ACKNOWLEDGMENT

This work is supported in part by by NSF under grant no.
CNS-1564274, CCF-1816615. Tao Xie is the corresponding
author.

REFERENCES

[1] B. Chen, M. West, and C. Zilles, “How Much Randomization
is Needed to Deter Collaborative Cheating on Asynchronous
Exams?” in Proceedings of the Fifth Annual ACM Conference
on Learning at Scale, 2018, pp. 62:1–62:10. [Online]. Available:
http://doi.acm.org/10.1145/3231644.3231664

[2] M. West, M. Silva, and G. L. Herman, “Randomized Exams for Large
STEM Courses Spread via Communities of Practice,” in 2015 ASEE
Annual Conference & Exposition, 2015, pp. 26.1302.1–26.1302.15.
[Online]. Available: https://peer.asee.org/24639

[3] S. Sosnovsky, O. Shcherbinina, and P. Brusilovsky, “Web-based
Parameterized Questions as a Tool for Learning,” in Proceedings of
E-Learn: World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education, 2003, pp. 309–316. [Online].
Available: https://www.learntechlib.org/p/14944

[4] I.-H. Hsiao, P. Brusilovsky, and S. Sosnovsky, “Web-based
Parameterized Questions for Object-Oriented Programming,” in
Proceedings of E-Learn: World Conference on E-Learning in
Corporate, Government, Healthcare, and Higher Education, 2008, pp.
3728–3735. [Online]. Available: https://www.learntechlib.org/p/30206

[5] M. Sherman, S. Bassil, D. Lipman, N. Tuck, and F. Martin, “Impact
of Auto-grading on an Introductory Computing Course,” Journal of
Computing Sciences in Colleges, vol. 28, no. 6, pp. 69–75, 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2460156.2460171

[6] D. Jackson and M. Usher, “Grading Student Programs Using ASSYST,”
in Proceedings of the Twenty-eighth SIGCSE Technical Symposium on
Computer Science Education, 1997, pp. 335–339. [Online]. Available:
http://doi.acm.org/10.1145/268084.268210

[7] S.-L. Hung, I.-F. Kwok, and R. Chan, “Automatic Pro-
gramming Assessment,” Computers & Education, vol. 20,
no. 2, pp. 183 – 190, 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/036013159390086X

[8] C. A. Higgins, G. Gray, P. Symeonidis, and A. Tsintsifas, “Automated
Assessment and Experiences of Teaching Programming,” Journal on
Educational Resources in Computing, vol. 5, no. 3, pp. 5:1––5:21,
2005. [Online]. Available: http://doi.acm.org/10.1145/1163405.1163410

[9] R. Lobb and J. Harlow, “Coderunner: A Tool for Assessing Computer
Programming Skills,” ACM Inroads, vol. 7, no. 1, pp. 47–51, 2016.
[Online]. Available: http://doi.acm.org/10.1145/2810041

[10] K. M. Ala-Mutka, “A Survey of Automated Assessment
Approaches for Programming Assignments,” Computer Science
Education, vol. 15, no. 2, pp. 83–102, 2005. [Online]. Available:
https://doi.org/10.1080/08993400500150747

[11] J. Bull, “Computer-Assisted Assessment: Impact on Higher
Education Institutions,” Journal of Educational Technology Society,
vol. 2, no. 3, pp. 123–126, 1999. [Online]. Available:
http://www.jstor.org/stable/jeductechsoci.2.3.123

[12] S. Jordan, H. Jordan, and R. Jordan, “Same But Different,
But Is It Fair? An Analysis of the Use of Variants of
Interactive Computer-marked Questions,” International Journal of
e-Assessment, vol. 2, no. 1, pp. 6:1–6:12, 2012. [Online]. Available:
https://ijea.org.uk/index.php/journal/article/view/28

[13] J. Prather, R. Pettit, K. McMurry, A. Peters, J. Homer, and M. Cohen,
“Metacognitive Difficulties Faced by Novice Programmers in Automated
Assessment Tools,” in Proceedings of the 2018 ACM Conference
on International Computing Education Research, 2018, pp. 41–50.
[Online]. Available: http://doi.acm.org/10.1145/3230977.3230981

[14] J. Wrenn, S. Krishnamurthi, and K. Fisler, “Who Tests the Testers?”
in Proceedings of the 2018 ACM Conference on International
Computing Education Research, 2018, pp. 51–59. [Online]. Available:
http://doi.acm.org/10.1145/3230977.3230999

[15] B. Bridgeman, C. Trapani, and J. Bivens-Tatum, “Comparability
of Essay Question Variants,” Assessing Writing, vol. 16,
no. 4, pp. 237 – 255, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1075293511000328

[16] J. P. Munson, “Metrics for Timely Assessment of Novice
Programmers,” Journal of Computing Sciences in Colleges,
vol. 32, no. 3, pp. 136–148, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3015220.3015256

[17] N. C. C. Brown, A. Altadmri, S. Sentance, and M. Kölling, “Blackbox,
Five Years On: An Evaluation of a Large-scale Programming Data
Collection Project,” in Proceedings of the 2018 ACM Conference
on International Computing Education Research, 2018, pp. 196–204.
[Online]. Available: http://doi.acm.org/10.1145/3230977.3230991

[18] D. Spinellis, P. Zaharias, and A. Vrechopoulos, “Coping with
Plagiarism and Grading Load: Randomized Programming Assignments
and Reflective Grading,” Computer Applications in Engineering
Education, vol. 15, pp. 113 – 123, 2007. [Online]. Available:
https://doi.org/10.1002/cae.20096

[19] O. Burn, “Checkstyle.” [Online]. Available:
http://checkstyle.sourceforge.net/

[20] C. Zilles, R. Deloatch, J. Bailey, B. Khattar, W. Fagen-Ulmschneider,
and C. Heeren, “Computerized Testing: A Vision and Initial
Experiences,” in 2015 ASEE Annual Conference & Exposition, 2015,
pp. 26.387.1–26.387.13. [Online]. Available: https://peer.asee.org/23726

[21] M. West, G. L. Herman, and C. Zilles, “PrairieLearn: Mastery-based
Online Problem Solving with Adaptive Scoring and Recommendations
Driven by Machine Learning,” in 2015 ASEE Annual Conference
& Exposition, 2015, pp. 26.1238.1–26.1238.14. [Online]. Available:
https://peer.asee.org/24575

[22] O. J. Dunn, “Multiple Comparisons Among Means,” Journal of the
American Statistical Association, vol. 56, no. 293, pp. 52–64, 1961.
[Online]. Available: http://www.jstor.org/stable/2282330

