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Abstract—To assure high quality of database applications,
testing database applications remains the most popularly used
approach. In testing database applications, tests consist of both
program inputs and database states. Assessing the adequacy
of tests allows targeted generation of new tests for improving
their adequacy (e.g., fault-detection capabilities). Comparing to
code coverage criteria, mutation testing has been a stronger
criterion for assessing the adequacy of tests. Mutation testing
would produce a set of mutants (each being the software under
test systematically seeded with a small fault) and then measure
how high percentage of these mutants are killed (i.e., detected)
by the tests under assessment. However, existing test-generation
approaches for database applications do not provide sufficient
support for killing mutants in database applications (in either
program code or its embedded or resulted SQL queries). To
address such issues, in this paper, we propose an approach
called MutaGen that conducts test generation for mutation testing
on database applications. In our approach, we first apply an
existing approach that correlates various constraints within a
database application through constructing synthesized database
interactions and transforming the constraints from SQL queries
into normal program code. Based on the transformed code, we
generate program-code mutants and SQL-query mutants, and
then derive and incorporate query-mutant-killing constraints
into the transformed code. Then, we generate tests to satisfy
query-mutant-killing constraints. Evaluation results show that
MutaGen can effectively kill mutants in database applications,
and MutaGen outperforms existing test-generation approaches
for database applications in terms of strong mutant killing.

I. INTRODUCTION

To assure high quality of database applications, testing

database applications remains the most popularly used ap-

proach. In testing database applications, tests consist of both

program inputs and database states. Assessing the adequacy

of tests allows targeted generation of new tests for improving

their adequacy (e.g., fault-detection capabilities). In particular,

assessing the adequacy of tests could indicate the weakness

of tests in terms of satisfying the target testing requirements.

Comparing to code coverage criteria (a popular type of testing

requirements), mutation testing has been a stronger criterion

for assessing the adequacy of tests. Mutation testing would

produce a set of mutants (each being the software under test

systematically seeded with a small fault) and then measure

how high percentage of these mutants are killed (i.e., detected)

by the tests under assessment. Other than traditional mutation

testing where mutants exist in normal program code, Tuya

et al. [13], [14] proposed a set of mutation operators for

SQL queries and developed a tool called SQLMutation that

implements these mutation operators to generate SQL-query

mutants. To assess the adequacy of tests for Java database

applications, Zhou and Frankl [18] developed a tool called

JDAMA based on the mutation operators for SQL queries [14].

To kill generated mutants, test generation for mutation

testing has been addressed [1], [17]. However, for mutation

testing on database applications, tests consist of both program

inputs and database states. Thus, these approaches become

inapplicable for database applications because sufficient and

supportive back-end database states are required for generated

tests. Focusing on test generation for testing database appli-

cations, some recent approaches [2], [8], [11] have been pro-

posed to automatically generate database states and program

inputs to achieve various testing requirements such as high

code coverage. However, these approaches do not consider

mutation testing as the main goal and cannot provide effective

support for killing mutants in database applications.

For a database application, a mutant may occur in either

normal program code or SQL queries. Generating appropriate

program inputs and sufficient database states to kill a mutant

requires collecting and satisfying constraints for killing that

mutant. Typically, within a database application, a mutant in

normal program code can affect the query-construction con-

straints (where constraints come from the sub-paths explored

before the query execution) and query-result-manipulation

constraints (where constraints come from the sub-paths ex-

plored for iterating through the query result), while a mutant in

SQL queries can affect the query constraints (where constraints

come from conditions in a query’s WHERE clause). Test

generation by applying a constraint solver on the collected

constraints faces great challenges because a constraint solver

can deal with program-execution constraints (e.g., query-

construction constraints and query-result-manipulation con-

straints) but cannot directly handle environment constraints

(e.g., query constraints).

Existing test-generation approaches [2], [11] for database

applications choose to consider program-execution constraints

and environment constraints separately. Thus, when applying

existing approaches [2], [11] for mutation testing on database

applications, the design decision of these approaches requires

a whole constraint system for each mutant’s killing, making

the whole process costly or even infeasible [9]. On the other



hand, although a recent approach called PexMutator [17]

incorporates all the mutant-killing constraints into the program

under test, the approach still cannot directly correlate program-

execution constraints and environment constraints for database

applications, thus not being able to generate sufficient database

states.

To address these issues, in this paper, we propose a new

approach called MutaGen for killing mutants in database

applications based on a newly developed framework [9] called

SynDB. The SynDB framework is built on Dynamic Symbolic

Execution (DSE) [3], [12] and correlates program-execution

constraints and environment constraints in a database ap-

plication. It constructs synthesized database interactions and

transforms the original program under test into another form

that the synthesized database interactions can operate on.

Meanwhile, a synthesized object is constructed to replace the

physical database state and the query constraints are trans-

formed into normal program code. The framework focuses

on generating program inputs and database states to achieve

high program code coverage. In MutaGen, we leverage SynDB

as a supporting mechanism for mutation testing on database

applications.

To generate mutants that occur in the program code, we

apply an existing code-mutation tool [17] on the code trans-

formed with the SynDB framework. To generate SQL-query

mutants, we apply an existing SQL-query-mutation tool [13]

to generate SQL-query mutants at query-issuing points. We

then derive query-mutant-killing constraints by considering

both the original query and its mutants. We finally incorporate

the derived constraints into the transformed code. Specifically,

solving these query-mutant-killing constraints helps produce

a database state on which running the original query and

its mutants can cause different query results, thus killing the

corresponding SQL-query mutants. The transformed code is

able to guide DSE to collect constraints for both program

inputs and database states. By applying a constraint solver on

the collected constraints, we generate effective tests for killing

both program-code mutants and SQL-query mutants.

II. BACKGROUND

In this section, we present some technical background about

mutation testing. We leave the discussion of the SynDB

framework in Section III-B.

Mutation testing is a fault-based software-testing technique

that has been intensively studied for evaluating the adequacy

of tests. The original program under test is mutated into a set

of new programs, called mutants, caused by syntactic changes

following a set of rules. The mutants are (strongly) killed

if running the mutants against given tests produces different

results than the results of the original program. Killing more

mutants reflects better adequacy of the tests under assessment.

However, automatically producing tests that can kill mu-

tants could be very time-consuming and even intractable [1],

because there can be a large number of mutants produced for

a short program. To deal with the expensiveness of mutation

testing, Howden et al. [4] proposed weak mutation testing that

focuses on intermediate results or outputs from components

of the program under test. Instead of checking mutants after

the execution of the entire program, weak mutation testing

checks the mutants immediately after the mutated components.

Researchers also selected a subset of mutation operators [6]

or mutants [16] to reduce time or space resources exhausted

by a large number of mutants. For example, Offutt et al. [6]

reported that 5 mutation operators could perform as effectively

as all 22 mutation operators.

Mutation testing was also applied to detect faults in SQL

queries. Tuya et al. [14] proposed a set of mutation operators

and developed SQLMutation [13] that implements this set

of mutation operators to generate SQL-query mutants. These

mutation operators are organized into four categories:

SC - SQL clause mutation operators: mutation of the most

distinctive features of SQL (e.g., clauses, aggregate functions).

OR - Operator replacement mutation operators: extension of

the expression modification operators.

NL - NULL mutation operators: mutation related to incorrect

treatment of NULL values.

IR - Identifier replacement mutation operators: replacement

of operands and operators (e.g., replacement of columns or

constants).

In our approach, for database applications, SQL queries are

considered as components of the program under test. Thus,

applying weak mutation testing by seeding faults [14] to the

queries can reflect the adequacy of the associated test database

states.

III. APPROACH

In this section, we present details of the MutaGen approach.

We first give a motivating example to illustrate the necessity

of generating sufficient database states for mutation testing on

database applications.

A. A Motivating Example

The example code in Figure 1 is a portion of C# code from

a database application that calculates some statistics related to

customers’ mortgages. The schema of the associated database

is shown in Table I. The method calcStat sets up database

connection (Lines 03-05), constructs a query (Line 06), and

executes the query (Lines 07-08). The query contains two

program variables: a local variable zip and a program-input

parameter inputAge. The returned records are then iterated

(Lines 09-14). For each record, a variable diff is calculated

from the values of the columns C.income and M.balance.

If diff is greater than 50000, a counter variable count is

increased (Line 14). The method finally returns the value of

count (Line 15).

To test the preceding method in Figure 1 for achieving high

code coverage, existing test-generation approaches [2], [11]

can generate both program inputs and database states to cover

feasible paths. For example, the generated values for input

inputAge and corresponding database records shown in Table

II could achieve full code coverage: a default value inputAge

= 0 and an empty database state covers the path where Line



01:public int calcStat(int inputAge) {

02: int zip = 28223, count = 0;

03: SqlConnection sc = new SqlConnection();

04: sc.ConnectionString = "..";

05: sc.Open();

06: string query = "SELECT C.SSN, C.income,"

+" M.balance FROM customer C, mortgage M"

+" WHERE C.age=’" + inputAge +"’ AND"

+" C.zipcode=’"+ zip + "’ AND C.SSN = M.SSN";

07: SqlCommand cmd = new SqlCommand(query, sc);

08: SqlDataReader results = cmd.ExecuteReader();

09: while (results.Read()){

10: int income = results.GetInt(1);

11: int balance = results.GetInt(2);

12: int diff = income - balance;

13: if (diff > 50000){

14: count++;}}

15: return count;}

Fig. 1. Example code from a database application in C#

TABLE I
DATABASE SCHEMA

customer table mortgage table

Attribute Type Constraint Attribute Type Constraint

SSN Int Primary Key SSN Int Primary Key
name String Not null Foreign Key

gender String ∈ {F, M} year Int ∈ {10, 20, 30}
zipcode Int [00001, 99999]

age Int [0, 100] balance Int [2000, Max)
income Int [10000, Max)

09 = false; inputAge = 30 and the record whose column

SSN = 001 covers the path where Line 09 = true, Line

13 = false; inputAge = 40 and the record whose column

SSN = 002 covers the path where Line 09 = true, Line

13 = true.

However, in terms of mutation testing, tests in Table II

are not sufficient. Killing mutants in database applications

requires more program inputs and multiple database records

so that executing the program and its mutants with these

inputs against the database could produce different results.

For example, in Figure 1, for a mutant in Line 13 where

diff > 50000 is mutated to diff >= 50000, none of the

values for inputAge in Table II could kill this mutant because

the original program’s output and the mutant’s output are the

same. Similarly, for a mutant of the query in Line 06 where

the condition C.age = ‘inputAge’ is mutated to C.age

<= ‘inputAge’, none of the values for inputAge could

kill this SQL-query mutant1. Hence, for database applications,

achieving mutant killing requires both effective program inputs

and sufficient database states.

B. SynDB Framework Revisited

MutaGen is based on the newly developed SynDB frame-

work [9]. SynDB transforms the original program under test

into another form to correlate program-execution constraints

and environment constraints. It constructs new synthesized

database interactions to replace the original ones for the

1Indeed, for inputAge = 40, the mutant C.age <=
‘inputAge’ is weakly killed because executions of the original
query and this mutant on Table II produce different result sets.

TABLE II
PROGRAM INPUTS AND DATABASE STATES TO COVER PATHS FOR

PROGRAM CODE IN FIGURE 1

input customer table mortgage table

inputAge SSN zipcode name gender age income SSN year balance

30 001 28223 Alice F 30 70000 001 20 30000

40 002 28223 Bob M 40 90000 002 20 30000

01:public int calcStat(int inputAge,

DatabaseState dbState) {

02: int zip = 28223, count = 0;

03: SynSqlConnection sc = new SynSqlConnection(dbState);

04: sc.ConnectionString = "..";

05: sc.Open();

06: string query = "SELECT C.SSN, C.income,"

+" M.balance FROM customer C, mortgage M"

+" WHERE C.age=’" + inputAge + "’ AND"

+" C.zipcode=’" + zip + "’ AND C.SSN = M.SSN";

07: SynSqlCommand cmd = new SynSqlCommand(query, sc);

08: SynSqlDataReader results = cmd.ExecuteReader();

09: while (results.Read()){

10: int income = results.GetInt(1);

11: int balance = results.GetInt(2);

12: int diff = income - balance;

13: if (diff > 50000){

14: count++;}}

15: return count;}

Fig. 2. Transformed code for the example code in Figure 1

program under test. Figure 2 shows the transformed code of

the example code in Figure 1.

SynDB identifies and replaces the original database interac-

tions with renamed API methods (e.g., by adding “Syn” before

each method name). SynDB then constructs a synthesized

database state to replace the physical one according to the

given database schema. It defines tables and attributes within

the synthesized database state and uses auxiliary methods to

enforce schema constraints. It treats the synthesized database

state as an object and adds it as an input to the program under

test. For example, according to the schema in Table I, SynDB

constructs a synthesized database state shown in Figure 3. In

Figure 2, SynDB adds a new input dbState with the type

DatabaseState to the program. It then passes the synthe-

sized database state within the synthesized database interac-

tions. For each database-interacting interface (e.g., database

connection, query construction, and query execution), SynDB

adds a new field to represent the synthesized database state

and uses auxiliary methods to pass it. The synthesized database

interfaces help implement basic interacting functionalities with

the synthesized database state. For example, the interface

SynSqlCommand integrates a query to be executed and uses

its method ExecuteReader() to implement database opera-

tions. SynDB incorporates the query constraints as program-

execution constraints in normal program code by parsing

the symbolic query and transforming the constraints from

conditions in the WHERE clause into normal program code.

Then SynDB applies DSE [3], [12] on the transformed

code to collect constraints of the associated database and

generate tests. DSE is an automatic test-generation technique

that extends traditional symbolic execution [5] by executing



public class customerTable {

public class customer {//define attributes;}

public List<customer> customerRecords;

public void checkConstraints() {

/*method for checking schema constraints*/;}}

public class mortgageTable {

public class mortgage {//define attributes;}

public List<mortgage> mortgageRecords;

public void checkConstraints() {

/*method for checking schema constraints*/;}}

public class DatabaseState {

public customerTable customerT = new customerTable( );

public mortgageTable mortgageT = new mortgageTable( );

public void checkConstraints(){

/*check constraints for each table*/;}}

Fig. 3. Synthesized database state

a program under test with concrete inputs and collecting

concrete and symbolic information at runtime [3], [12]. In

the SynDB framework, DSE’s exploration on the transformed

code is guided to track the synthesized database state symbol-

ically through synthesized database interactions and collect

constraints of the synthesized database state when exploring

path conditions from query constraints.

SynDB [9] mainly focused on generating tests to achieve

high program code coverage. In MutaGen, we leverage SynDB

as a supporting mechanism for mutation testing.

C. Mutant Killing

Based on the transformed code produced by the SynDB

framework [9], MutaGen conducts mutant killing for database

applications from two aspects: killing mutants in original

normal program code and killing SQL-query mutants. For the

transformed code, MutaGen seeds code-mutant-killing con-

straints by applying an existing mutant-generation tool [17].

To kill SQL-query mutants, MutaGen invokes a query-mutant-

generation tool [13] to generate SQL-query mutants at query-

issuing points, derives query-mutant-killing constraints, and

inserts the constraints into the transformed code. Thus, ap-

plying a DSE engine on the modified transformed code to

satisfy the weak-mutant-killing constraints is able to generate

both effective program inputs and sufficient database states to

weakly kill program-code mutants and SQL-query mutants.

1) Killing Program-Code Mutants: Mutants in original

program code may affect test generation of database states

because variables in the mutated statements may be data-

dependant on the database attributes of the returned query

result. For example, in Figure 1, the value of variable diff

in Line 13 is derived from the values of database attributes

C.income and M.balance. Hence, mutants of the statement

in Line 13 would cause changes to the constraints for gener-

ating database states.

MutaGen applies a tool called PexMutator [17] on the trans-

formed code of the original program under test. PexMutator

is a mutant-generation tool that constructs weak-mutant-killing

constraints to guide test generation.

Note that in the transformed code, program-execution con-

straints affected by mutants of original program code have

12: ...

13a: if(((diff>50000) && !(diff>=50000)) ||

(!(diff>50000) && (diff>=50000)));

//to weakly kill the mutant diff>=50000

13b: if(((diff>50000) && !(diff==50000)) ||

(!(diff>50000) && (diff==50000)));

//to weakly kill the mutant diff==50000

13c: if(((diff>50000) && !(diff!=50000)) ||

(!(diff>50000) && (diff!=50000)));

//to weakly kill the mutant diff!=50000

...

13: if (diff > 50000){

14: count++;}}

15: return count;}

Fig. 4. Code resulted from applying PexMutator on the transformed code in
Figure 2

TABLE III
GENERATED TESTS FOR PROGRAM CODE IN FIGURE 2 TO WEAKLY KILL

THE THREE MUTANTS SHOWN IN FIGURE 4

int DatabaseState dbState
inputAge dbState.Customer dbState.Mortgage

SSN name gender zipcode age income SSN year balance

50 003 AAA F 28223 50 100000 003 30 50000

50 004 BBB M 28223 50 100000 004 30 40000

50 005 CCC M 28223 50 100000 005 30 60000

been correlated with query constraints. Thus, satisfying these

generated weak-mutant-killing constraints provides sufficient

constraints for generating database states to help kill cor-

responding program-code mutants. In MutaGen, applying

PexMutator on the transformed code would not affect the

implementations of the constructed synthesized database in-

teractions, because PexMutator focuses on only the specific

program (i.e., the program under test) indicated by MutaGen.

After introducing the weak-mutant-killing constraints, we ap-

ply a DSE engine (e.g., Pex [12], [15] for .NET) on the

transformed code to generate database records.

Figure 4 shows the code resulted from applying Pex-

Mutator on the transformed code shown in Figure 2. At

the mutation point in Line 13, the generated weak-mutant-

killing constraints (we list three of them) for the statement

if(diff>50000) are inserted before Line 13. The value

of variable diff is calculated from the values of attributes

C.income and M.balance. Then, applying a DSE engine on

the modified transformed code generates appropriate values

for program inputs inputAge and dbState to cover the

true branches of Lines 13a, 13b, and 13c, weakly killing the

corresponding three mutants diff>=50000, diff==50000,

and diff!=50000. We show tests to kill the three mutants in

Table III.

Note that although PexMutator provides a general way

of inserting weak-mutant-killing constraints into the program

code, combining PexMutator with existing test-generation

approaches [2], [11] cannot help directly generate tests to

kill program-code mutants in database applications. Program-

execution constraints and query constraints are still not cor-

related, causing that a whole constraint system is needed for

each mutant’s killing.



2) Killing SQL-Query Mutants: Mutants occurring in SQL

queries directly affect constraints for generating database

states. To weakly kill a SQL-query mutant, MutaGen generates

database records to expose the difference between the original

query and the mutant so that their executions produce different

results.

In MutaGen, the transformed code has incorporated the

query constraints into normal program code. We first identify

query-issuing points by finding corresponding method signa-

tures (e.g., SynSqlCommand.ExecuteReader()). Then, at

each query-issuing point, we get the symbolic query and

invoke the tool SQLMutation [13] to generate its mutants.

SQLMutation automatically generates SQL-query mutants

(providing each mutant’s form, type, and generation rule)

based on a set of mutation operators [14] for SQL queries. As

mentioned in Section II, the mutation operators are organized

into four categories of which the SC operators mainly focus

on the main clauses (e.g., SELECT clause) and the other

operators (OR, NL, and IR) focus on the conditions in the

WHERE clause. For example, one of the mutants generated

by the OR operators using SQLMutation for the query in

Figure 2 is shown in Figure 5, where the condition C.age

= ‘inputAge’ is mutated to C.age >= ‘inputAge’.

Next, we derive query-mutant-killing constraints based on

the original query and its mutants, and insert these constraints

into the transformed code. To avoid causing syntactic errors,

in the transformed code, we insert these constraints before the

original query. Algorithm 1 gives details of how to derive the

query-mutant-killing constraints. The algorithm mainly deals

with mutants generated by OR, NL, and IR operators (e.g.,

mutating operators or column names in the WHERE clause).

In Algorithm 1, the inputs consist of a constructed synthesized

database state SynDB and a symbolic query Q, and the

output is a set of program statements that contain conditions

whose exploration helps derive constraints for killing mutants

of the given query. In Algorithm 1, we construct an empty

statement set S (Line 1) and a SQL-query mutant set Qm by

calling SQLMutation(Q) (Line 2). We retrieve Q’s WHERE

clause s1 using a SQL parser (Line 4). In Lines 5-17, for

each mutant q in Qm, if q is generated by the mutation

operators OR, NL, or IR, we retrieve its WHERE clause

s2 and construct a query-mutant-killing constraint s = (!s1
AND s2) OR (s1 AND !s2). Note that if a record r satisfies

conditions in s, then r can satisfy only either s1 or s2, causing

different execution results when executing Q and q against r.

We then check the expressions in s and replace the columns

in s with their corresponding names from the constructed

synthesized database state SynDB. We add the query-mutant-

killing constraint s to the set S (Line 15). After dealing with

all the mutants in Qm, the algorithm finally returns the set

S (Line 18). For example, to weakly kill the mutant shown

in the upper part of Figure 5, the constructed query-mutant-

killing constraints based on the query’s WHERE clause are

shown in the lower part of Figure 5.

To deal with SQL-query mutants generated by the SC

operators, we mainly focus on cardinality constraints as killing

Algorithm 1 QMutantGen: Generate query-mutant-killing

constraints

Input: Synthesized database state SynDB, a symbolic query Q
Output: A set of program statements S

1: Statement set S = ∅;
2: Query mutant set Qm = SQLMutation(Q);
3: Mutation operator set OP = {OR, NL, IR};
4: String s1 = Q.whereClause;
5: for each query q in Qm do
6: if q.type ∈ OP then
7: String s2 = q.whereClause;
8: String s = (!s1 AND s2) OR (s1 AND !s2);
9: for each expression e in s do

10: for each column c in e do
11: Variable v = findColumn(c, SynDB);
12: Replace(c, v);
13: end for
14: end for
15: S = S

⋃
s;

16: end if
17: end for
18: return S;

A mutant generated by OR operators using SQLMutation:

OR(query) = "SELECT C.SSN, C.income, M.balance

FROM customer C, mortgage M

WHERE C.age >= ’inputAge’

AND C.zipcode = ’zip’ AND C.SSN = M.SSN

Constructed query-mutant-killing constraints:

((SynDB.customerTable.age == ’inputAge’ AND

SynDB.customerTable.zipcode == ’zip’

AND SynDB.customerTable.SSN == SynDB.mortgageTable.SSN) &&

!(SynDB.customerTable.age >= ’inputAge’ AND

SynDB.customerTable.zipcode == ’zip’

AND SynDB.customerTable.SSN == SynDB.mortgageTable.SSN))||

((!(SynDB.customerTable.age == ’inputAge’ AND

SynDB.customerTable.zipcode == ’zip’

AND SynDB.customerTable.SSN == SynDB.mortgageTable.SSN)) &&

(SynDB.customerTable.age >= ’inputAge’ AND

SynDB.customerTable.zipcode == ’zip’

AND SynDB.customerTable.SSN == SynDB.mortgageTable.SSN))

Fig. 5. Query-mutant-killing constraints generated for the query shown in
Figure 2

mutants generated by the SC operators requires different

sizes of qualified records. For example, a LEFT OUTER

JOIN keyword requires the two joined tables contain different

numbers of qualified records for conditions in the WHERE

clause. To kill such mutants, we specify different cardinality

constraints in the transformed code for the query results.

IV. EVALUATION

In our evaluation, we seek to evaluate the effectiveness

of MutaGen by investigating the following research questions:

RQ1: What is the effectiveness of MutaGen in generating

tests to kill mutants in database applications?

RQ2: What is the effectiveness of MutaGen compared with

two existing test-generation approaches [2], [11] in terms of

mutant killing for testing database applications?



A. Subject Applications and Setup

We conduct the empirical evaluation on two open-

source database applications RiskIt (https://riskitinsurance.

svn.sourceforge.net) and UnixUsage (http://sourceforge.net/

projects/se549unixusage). RiskIt is an insurance-quote ap-

plication that makes estimation based on users’ personal infor-

mation (e.g., age, income). Its database contains 13 tables and

57 attributes. UnixUsage is an application to obtain statistics

about how users interact with the Unix systems using different

commands. Its database contains 8 tables and 31 attributes.

Both applications contain existing records in their databases

but we do not use them because our approach is able to

conduct test generation from scratch.

For the DSE engine, we use Pex [12], [15], a state-of-

the-art tool for .NET programs from Microsoft Research.

To test the subject applications in the Pex environment, we

convert the original Java code into C# code using a tool

called Java2CSharpTranslator (http://sourceforge.net/projects/

j2cstranslator/).

The experimental procedure is as follows. To evaluate

how effectively MutaGen performs in killing program-code

mutants, we generate a compiled file for the program under

test and apply the tool PexMutator [17] on the compiled

file to generate a meta-program that has incorporated weak-

mutant-killing constraints. We then generate compiled files for

the other programs (e.g., synthesized database interfaces con-

structed by the SynDB framework). We send these compiled

files together with the meta-program of the program under test

to Pex for test generation. We insert the generated database

records back to the real database, run the original program

under test using the generated program inputs, and record

the number of weakly killed program-code mutants at each

mutation point.

To evaluate how effectively MutaGen performs in killing

SQL-query mutants, we invoke the tool SQLMutation [13]

to generate SQL-query mutants at each query-issuing point

and use MutaGen to generate tests. We insert the generated

database records back to the real database and run the original

program with our generated program inputs. To measure the

number of weakly killed SQL-query mutants, we compare

the returned result sets from executions of the original query

and its mutants by checking the metadata (e.g., the numbers

of rows, columns, and contents). For both kinds of mutants,

we also record the numbers of strongly killed mutants by

comparing final results of the program and its mutants.

To compare MutaGen with existing test-generation ap-

proaches [2], [11], we simulate these approaches using the

SynDB framework [9], by not incorporating either program-

mutant-killing constraints or query-mutant-killing constraints

into the transformed code. We insert the database records

generated in this step back to the real database and run the

program under test with the generated program inputs to

measure the numbers of weakly and strongly killed mutants

and the code coverage.

B. Results

Table IV shows detailed evaluation results. In the table,

Column 1 lists the subject applications and Column 2 lists

method names; the remaining columns give comparisons of

effectiveness using tests generated by MutaGen and existing

approaches [2], [11] from three perspectives: killing program-

code mutants (Columns 3-9), killing SQL-query mutants

(Columns 10-16), and code coverage (Columns 17-20), re-

spectively. For mutant killing (Columns 3-9 and 10-16), we

list the total number of mutants, the number of weakly

killed mutants, the number of strongly killed mutants, and

percentage increase. For code coverage (Columns 17-20), we

list the number of total blocks, covered blocks, and percentage

increase. For example, for the first method “filterZipcode” in

RiskIt, there are 24 program-code mutants in total, of which

our MutaGen approach weakly kills 22 and strongly kills

16, achieving better mutant-killing ratio (16.7% and 12.5%

increase, respectively) than existing approaches. For the total

14 SQL-query mutants, our MutaGen approach also achieves

better mutant-killing effectiveness (35.7% increase for weak

killing and 14.3% increase for strong killing).

In summary, to answer RQ1, MutaGen can effectively kill

a large portion of both program-code mutants and SQL-query

mutants for database applications, leaving a few hard-to-kill

mutants. To answer RQ2, MutaGen outperforms existing test-

generation approaches in terms of mutant killing. For example,

for RiskIt, MutaGen achieves a 16.3% percentage increase

on average in weakly killing program-code mutants and a

28.9% percentage increase on average in weakly killing SQL-

query mutants, while the average increases are 14.7% and

16.7% in strong mutant killing for the aforementioned two

kinds of mutants, respectively. Meanwhile, we report the

comparisons of corresponding code coverage (21.3% higher

for RiskIt and 33.5% higher for UnixUsage), of which the

increase comes from the merit of the SynDB framework [9].

During the evaluation, we notice that for existing ap-

proaches, the not-killed mutants mainly come from the not-

covered blocks. Such phenomenon is reasonable because to

kill a mutant, at least the mutant must be reachable. We

also notice that among the not-killed mutants for MutaGen,

some are equivalent mutants (mutants that do not change the

semantics of the program and cannot be killed by any test),

which are impossible to kill. Some other mutants are hard to

kill because of the characteristic of the program outputs. For

example, quite a few methods return the number of specific

records from the query result. Although MutaGen is able to

generate different database records to weakly kill the mutants,

such differences cannot be expressed in producing different

final outputs, and thus MutaGen is not able to strongly kill

the mutants.

V. RELATED WORK

Based on the DSE technique, Zhang et al. [17] developed the

PexMutator approach that automatically generates tests to kill

mutants, by constructing weak-mutant-killing constraints to

guide test generation. However, their approach cannot directly



TABLE IV
EVALUATION RESULTS (NOM: NUMBER OF MUTANTS, MG: MutaGen, EA: EXISTING APPROACHES, INC%: PERCENTAGE INCREASE)

Program-Code Mutants SQL-Query Mutants Coverage
Sub- Weakly Killed Strongly Killed Weakly Killed Strongly Killed (covered blocks)
jects Methods NOM MG EA Inc% MG EA Inc% NOM MG EA Inc% MG EA Inc% Total MG EA Inc%

filterZipcode 24 22 18 16.7 16 13 12.5 14 11 6 35.7 8 6 14.3 42 38 28 23.8
filterEducation 20 18 14 20.0 12 9 15.0 62 43 31 19.4 32 23 14.5 41 37 27 24.4

filterMaritalStatus 20 18 14 20.0 12 9 15.0 14 11 6 35.7 8 6 14.3 41 37 27 24.4
getAllZipcode 27 23 19 14.8 17 14 11.1 85 69 45 28.2 51 33 21.2 39 37 17 51.3

RiskIt filterEstimatedIncome 24 22 18 16.7 16 13 12.5 122 98 68 24.6 70 53 13.9 58 54 44 17.2
getOneZipcode 32 28 25 9.4 21 17 12.5 14 11 6 35.7 8 6 14.3 34 32 23 26.5

getValues 44 38 33 11.4 29 22 15.9 56 44 28 28.6 32 22 22.7 107 99 68 29.0
userinformation 37 33 26 18.9 27 21 16.2 70 58 39 27.1 41 29 17.1 61 57 51 9.8
updatestability 42 37 29 19.0 30 21 21.4 64 50 34 25.0 35 24 17.2 79 67 75 10.1

all methods (total) 270 239 196 16.3 180 140 14.7 501 395 263 28.9 285 202 16.7 502 458 360 21.3

raceExists 12 9 7 16.7 6 5 8.3 16 13 8 31.3 9 6 18.8 11 11 7 36.4
transcriptExist 12 9 7 16.7 6 5 8.3 16 13 8 31.3 9 6 18.8 11 11 7 36.4

Unix- retrieveMaxLineNo 9 9 8 11.1 7 5 22.2 14 11 7 28.6 5 3 14.3 10 10 7 30.0
Usage getUserInfoBy 14 11 9 14.3 7 6 7.1 16 13 8 31.3 9 6 18.8 47 47 15 68.1

doesUserIdExist 12 9 7 16.7 6 5 8.3 12 10 7 25.0 7 4 25.0 10 10 9 10.0
getPrinterUsage 16 14 11 18.8 9 5 25.0 36 32 22 27.8 28 17 30.6 34 34 27 20.1

all methods (total) 75 61 49 15.7 41 31 13.2 110 92 60 29.2 67 42 22.5 123 123 75 33.5

deal with database applications. Mutation testing was also

applied in testing database applications. Tuya et al. [13], [14]

proposed a set of mutation operators for SQL queries and

integrated these operators into a tool called SQLMutation that

generates SQL-query mutants automatically. Shah et al. [10]

proposed an approach that focuses in particular on a class

of join/outer-join mutations, comparison operator mutations,

and aggregation operation mutations. Their approach generates

tests for killing a predefined subclass of mutations. Zhou and

Frankl [18] developed the JDAMA approach that leverages

a set of mutation operators for SQL queries to evaluate the

quality of database states generated by existing test-generation

techniques. However, these previous approaches have difficulty

in handling complex program contexts in database applica-

tions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an approach called Mu-

taGen that generates tests for mutation testing on database

applications. In our approach, we leverage the newly devel-

oped SynDB framework [9] that relates program-execution

constraints and query constraints within a database applica-

tion. We incorporate weak-mutant-killing constraints for the

original program code and query-mutant-killing constraints for

the SQL queries into the transformed code, guiding DSE to

generate both effective program inputs and sufficient database

states to kill mutants. Evaluation results show that MutaGen

achieves high effectiveness and outperforms existing test-

generation approaches in killing both program-code mutants

and SQL-query mutants.

In future work, we plan to investigate how to generate

program inputs based on a given database state for mutation

testing. We also plan to investigate techniques of augmenting

existing tests to detect logical faults [7] in database applica-

tions.
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