
An Empirical Study of Testing File-System-Dependent Software with Mock
Objects

Madhuri R. Marri1, Tao Xie1, Nikolai Tillmann2, Jonathan de Halleux2, Wolfram Schulte2
1Department of Computer Science, North Carolina State University, Raleigh, NC

2Microsoft Research, One Microsoft Way, Redmond, WA
1{mrmarri, txie}@ncsu.edu,2{nikolait, jhalleux, schulte}@microsoft.com

Abstract

Unit testing is a technique of testing a single unit of a
program in isolation. The testability of the unit under test
can be reduced when the unit interacts with its environment.
The construction of high-covering unit tests and their execu-
tion require appropriate interactions with the environment
such as a file system or database. To help set up the required
environment, developers can use mock objects to simulate
the behavior of the environment. In this paper, we present
an empirical study to analyze the use of mock objects to test
file-system-dependent software. We use a mock object of the
FileSystem API provided with the Pex automatic testing
tool in our study. We share our insights gained on the ben-
efits of using mock objects in unit testing and discuss the
faced challenges.

1 Introduction

Unit testing aims to test a single unit in isolation, such
as a class, independent of other units [6]. Often, it is diffi-
cult to test units in isolation when they interact with other
units or environment such as a database. Test generation for
such units requires much effort to achieve a required state of
the environment. For instance, testing a unit that interacts
with theFileSystem API [2] requires “real” files to exist
or be created in order to ensure comprehensive testing of
the unit (e.g., achieving high structural coverage). In such
cases, automated test generation tools would fail to gener-
ate high-covering tests. To simulate and model the required
environment to test the unit under test, developers can use
mock objects[9].

A mock object1 is an implementation for simulating the
required environment. A mock object is not the unit un-
der test in unit testing, but is essential for test generation or
execution. There exist frameworks [3] that generate mock

1Unlike the traditional definition of an object, which is an instance of a
class, we refer to a simulating class as a mock object.

objects by providing trivial method implementations of an
actual object. The generated methods of these mock ob-
jects provide some default return values without reflecting
the logic of the actual object. To generate necessary en-
vironments to sufficiently test the unit, developers need to
specify and model the behavior of the mock methods2. Fur-
thermore, developers have to manually include all the ex-
pected return values of the methods in the mock objects.

Parameterized mock objects[11] can be used to general-
ize mock objects and address the preceding issue by simu-
lating the various possible return values automatically. Pa-
rameterized mock objects are related toParameterized Unit
Tests(PUTs) [13] used by Pex [12] in test generation. PUTs
are unit tests with parameters. Developers can write PUTs,
which can be used to generate numerous conventional unit
tests. Pex is an automated white-box testing tool that ac-
cepts PUTs and generates conventional unit tests by sym-
bolically executing the code [7]. Pex generates a set of con-
ventional unit tests that try to achieve high block coverage
of the code under test.

As PUTs can be used to generalize conventional unit
tests, parameterized mock objects can be used to generalize
mock objects. Developers can write parameterized mock
objects so that a single call to a mock method of mock ob-
jects can return different values expected by the unit un-
der test. Pex uses symbolic execution [7] to track how the
value returned by a method of parameterized mock objects
is used. Depending on the subsequent branching conditions
on the value returned by a mock method, Pex executes the
PUT multiple times, trying different return values to explore
new execution paths.

In this paper, we present an empirical study of using a
parameterized model3 of the FileSystem API [2] to test
the CodePlex Client[1] project. We present the benefits
of using mock objects (especially the parameterized model)
and the challenges of using mock objects.

2Methods in mock objects are referred to asmock methods.
3A parameterized mock object is referred to as a parameterized model

throughout the rest of the paper.

The rest of the paper is organized as follows. Section
2 presents background on mock objects. Section 3 presents
details on the software under study and presents an example.
Section 4 presents the benefits of mock objects. Section 5
presents challenges of using mock objects. Finally, Section
6 concludes.

2 Background on Mock Objects

In this section, we present background information on
mock objects. There are two major purposes of using mock
objects: (1) to test if the code under test interacts in an
expected manner with the surrounding objects in the sys-
tem [4] and (2) to provide the required environment for a
test generation tool to generate high-covering tests for the
unit under test. This paper focuses on a study of using mock
objects primarily for the second purpose, i.e., to provide the
required environment for a test generation tool to generate
high-covering tests.

2.1 Complexity Levels of Mock Objects

Developers can implement mock objects with various
levels of complexity, providing various levels of accuracy
in simulating actual object behaviors. Based on the pat-
terns proposed by Tillmann and Halleux [11], mock objects
can be implemented to be a lightweight simulation (called
structural simulation) or a complex simulation (called struc-
tural and logical simulation) of a real environment. The
lightweight simulation can accept any input values and re-
turn default or random values for mock methods. A logi-
cal simulation can impose restrictions on the input values
and the return values of mock methods. An implementa-
tion with such constraints can specify that there is a spe-
cific return value for a given input value. A more sophisti-
cated implementation of a mock object maintains the state
of the mock object instance and behaves consistently. The
state of an instance is defined by information maintained
by the instance (e.g., the existence of a file with the name
xyzcan be maintained by an instance of a mock object of
FileSystem).

2.2 Parameterized Model

ThePFileSystem [8] parameterized model used in our
study is an example of a sophisticated mock object imple-
mentation that maintains its state. This type of implemen-
tation maintains an internal state and assures consistent be-
havior. An instance of thePFileSystem model logs infor-
mation about any created file or directory. The state of the
PFileSystem instance is defined by the file and directory
information maintained by that instance and is only internal
to that instance. When the parameterized model’s state does

01: bool DirectoryExists(string path)
02: {.......
03: / * dirStack all the directories that
04: need to exist for the path to exist * /
05: foreach(var dirPath in dirStack)
06: {//check if exists already
07: var dirInfo = Locate(dirPath);
08:
09: if (dirInfo.DirectoryCreated)
10: {
11: check = false;//set to false if found
12: break;
13: }
14: }
15: // Create if possible
16: if (check) {
17: // Ask it to Pex
18: var call = PexChoose.FromCall(this);
19: if (call.ChooseValue<bool>("Create Directory

"̈ + path + "¨ or Not")) {
20: // Ensure path to file
21: foreach (var dirPath in dirStack) {
22: var dirInfo = Locate(dirPath);
23:
24: CreateSingleDirectory(dirPath, false);
.........

Figure 1. A method from PFileSystem that
checks if a directory exists

not contain information needed to return a specific value,
the parameterized model is implemented in such a way that
Pex can choose to return a value based on how it is used in
the subsequent code.

We next illustrate the behavior of the parameter-
ized model with an example. Figure 1 shows the
DirectoryExists method of thePFileSystem . In the
method, when the information about the directory be-
ing looked up is not found (Lines 11 and 16), the used
PexChoose 4 API (Line 18) can provide values to de-
cide whether to create a directory. In the method, a
choice provider is obtained by invoking the static method
PexChoose.FromCall (Line 18). When Pex identifies
the method call to choose a value (the method call to
ChooseValue shown in Line 19) on the choice provider
call , Pex generates a value of thebool datatype. Pex
indentifies a condition check on the generated value (Line
19) and in the following executions, Pex generates values to
cover other paths in the code. Therefore, Pex can generate
various necessary states of an instance of the parameterized
model to test the code under test.

In our study, we show that there is a need for an enhanced
model of mock objects. When multiple APIs invoked by
the unit under test interact with the same environment, then
all these APIs need to be mocked and information needs to
be maintained for assuring consistent states for their cor-
responding multiple mock objects. The enhanced model
should allow all therelated mock objects to behave con-
sistently. For example,PFileSystem is a mock object of
the FileSystem API and PDirectory is a mock object

4Pex choices APIs supply relevant values to trigger different execution
paths in the code [11].

of the Directory API. Since both APIs deal with direc-
tory operations (interacting with the same environment), the
state maintained by an instance ofPFileSystem should be
consistent with that of an instance ofPDirectory , e.g., if
PFileSystem.DirectoryExists() returnstrue , then
theDirectory.isExists() should also return true.

3 Software under Study

CodePlexClient [1] is a source control client that en-
ables users to edit workspace offline and synchronize with
the server when connected. We tested 8 methods belong-
ing to the TfsLibrary and CodePlexClientLibrary

namespaces in the CodePlexClient project. The rationale
behind choosing these methods is that they involved inter-
actions with theIFileSystem interface.FileSystem [2]
is one commonly used API in file-system-dependent soft-
ware. The latest Pex release [8] provides a model of
FileSystem called PFileSystem with its release pack-
age. PFileSystem is a mock implementation of the
FileSystem API built on top of theIFileSystem in-
terface. ThePFileSystem model uses the Pex choices
API [11] to generate various possible states of a mock
object instance. WhenPFileSystem is used in a PUT
to test a unit, Pex generates different object states of the
PFileSystem . We usedPFileSystem API to test the 8
methods and achieved 58% block coverage.

We next show an example to illustrate how we use the
parameterized model in our testing. When a folder is shared
with the server (i.e., the folder istracked), a metadata folder
and an entry file are created locally to indicate that the
folder is tracked. Figure 2 shows a PUT to test the method
UntrackFolder of theTfsState class. This method un-
der test is responsible for untracking a folder, i.e., removing
any associated metadata folder or the entry file that holds in-
formation about the folder being tracked. To test the code,
we carry out the following procedure to write a PUT. We
pass test inputs as parameters to the PUT; in our exam-
ple, the test input is the path of the folder that was actu-
ally deleted (and needs to be untracked). In the body of the
PUT, we create an instance of thePFileSystem and pass it
as the parameter to the constructor ofTfsState . The con-
structor ofTfsState accepts an instance of a class imple-
menting theIFileSystem interface; this scenario shows
that using an abstraction layer such as theIFileSystem

interface is one way of improving the testability of the unit
under test. We then assert that the metadata folder was suc-
cessfully deleted. On executing the PUT, we achieve 70%
block coverage, covering most of the cases related to the
PFileSystem .

01: public void testDeleteMetadataPUT(
02: [PexAssumeUnderTest]string value) {
03: PexAssume.IsTrue(value.Length > 0);
04: PexAssume.IsTrue(

value.StartsWith(@"A"));
05: PFileSystem system = new PFileSystem();
06: TfsState state = new TfsState(system);
07: state.UntrackFolder(value);
08: string st = state.GetMetadataFolder(value);
09: PFileInfo info = system.Locate(st);
10: PexAssert.IsFalse(info.DirectoryExists,
11: "File was not successfully deleted"); }

Figure 2. PUT to test the method
UntrackFolder of the TfsState class

4 Benefits of Using Mock Objects

We next present the benefits of using mock objects in
general and parameterized models in particular. Our study
identifies the following two benefits: (1) mock objects en-
able unit testing of the code that interacts with external APIs
related to the environment such as a file system, and (2) a
parameterized model helps generate various possible states
of mock objects to enable the generation of high-covering
unit tests. We next elaborate on these benefits with the ex-
ample shown in Section 3.

The PUT shown in Figure 2 tests the method
UntrackFolder . The methodUntrackFolder initially
checks whether the folder is tracked by checking whether a
particular entry file exists (using theFileExists method
of IFileSystem) and whether a metadata folder exists
(using theDirectoryExists method ofIFileSystem).
Therefore, the number of tests depends on the various com-
binations of whether the metadata folder and the entry file
exist. For Pex to generate high-covering tests, there are two
requirements with respect to the interactions of the code un-
der test with theIFileSystem : (1) Pex needs to carry out
symbolic execution when the actual file and directory do not
exist, (2) Pex needs to generate high-covering tests for var-
ious combinations of whether a particular file or directory
exists. These two requirements can be fulfilled by using the
PFileSystem , a parameterized model of theFileSystem .
In the PFileSystem model, theDirectoryExists and
FileExists methods returntrue if a directory or file
already exists (reflected by the state maintained by the
PFileSystem instance). However, when the directory or
file does not exist, due to the use of Pex choices APIs, Pex
chooses to either create the required directory or file and re-
turn true or returnfalse (as shown in Section 2.2). Con-
sequently, Pex generates various states of the parameterized
model for testing the code under test.

Through our example, we show that mock objects enable
unit testing of the code that interacts with external APIs
such asFileSystem , and mock objects provide an easy
way to generate a complex object state that is essential to
test a unit. With a parameterized model, the concern of be-

ing able to generate various possiblestatesof the mock ob-
ject (such as the states with different combinations of the
file and directory existences in our example) is reduced in
the way shown in our example.

5 Challenges When Using Mock Objects

In our study, we identify that using mock objects can
face difficulties when there are other APIs invoked by the
unit under test that depend on theenvironmentcreated or
maintained by an instance of a mock object. In this section,
we highlight that when using mock objects, it is essential
to maintain consistent environment states across multiple
mock objects (if multiple mock objects are used to interact
with the same environment). We next present description of
the challenges and then illustrate them with an example.

5.1 Description of Challenges

Previous work [10, 5] identifies general challenges when
writing mock objects or models in unit testing. A well-
known challenge with mock objects is the amount of effort
required to implement sufficient mock objects. There exist
frameworks [3] that automatically generate a mock object;
however, it is still the responsibility of developers to sim-
ulate possible return values of the mock methods. Pex ad-
dresses the preceding issue with a parameterized model as
shown in our example in Section 4.

However, using mock objects can cause trouble when
the code under test involves interactions with multiple APIs
that use the same data or interact with the same envi-
ronment. An example of such code under test can be
code that involves interactions withFile , Directory and
FileSystem APIs [2] to interact with the same file sys-
tem environment. Using a single mock object can lead to
problems (such as a false failure warning due to invalid test
setup) since there are other APIs that depend on the envi-
ronment created or maintained by an instance of the mock
object. The challenges are two-fold in such a case:

• Challenge 1. Mocking a single API is not sufficient
when the code under test invokes multiple APIs and
these APIs depend on how the mock object for the
mocked API works.

• Challenge 2. Multiple APIs invoked by the code under
test interact with the same data or environment, and if
the APIs are mocked, then their mock objects should
be synchronized with each other.

5.2 Example of Challenges

We next illustrate the challenges with an example.
Figure 3 shows the method responsible for adding files

01: public void Add(string localPath,
bool recursive,SourceItemCallback callback)

02: {
03: Guard.ArgumentNotNullOrEmpty(localPath, "localPat h");
04: if (fileSystem.DirectoryExists(localPath))
05: Add Folder(localPath, recursive, callback, true);
06: else if (fileSystem.FileExists(localPath))
07: Add File(localPath, callback, true);
08:

Figure 3. Code to add a file in the workspace
offline

01: bool OnBeforeAddItem(SourceItem item)
02: {
03: if (alwaysAdd)
04: return true;.....
05: if (answer == "a")
06: alwaysAdd = true;
07: else if (answer == "d")
08: {
09: if (item.ItemType == ItemType.File)
10: File.Delete(item.LocalName);
11: else
12: Directory.Delete(item.LocalName, true);
13: }
14: return (answer == "y" || answer == "a");
15: }

Figure 4. Code to add or delete on synchro-
nizing with the server

or directories locally. Figure 4 shows the method that
deletes the files or directories (if the user chooses to)
on synchronizing with the repository. We write a PUT
to add a directory and check whether the directory is
deleted on synchronizing with the server. The method
to add the directory (Add Folder() in Line 5 of Fig-
ure 3) invokes theIFileSystem.CreateDirectory()

method. In our PUT, we use thePFileSystem model
(recall that PFileSystem is a class implementing the
IFileSystem interface) and therefore theAdd Folder()

method invokes thePFileSystem.CreateDirectory()

method. The method to delete the directory invokes
theDirectory.Delete() method to delete the directory
(Line 12 in Figure 4).

On executing the PUT, the generated unit tests fail
with an exception and Pex shows aTestability Issue(Pex
shows a testability issue if the code under test invokes an
API that depends on the environment). The reason for
the exception is that the method to delete the directory
(Directory.Delete()) does not find the directory path.
The Directory API is not able to find the path since the
PFileSystem does not actually create a directory but only
logs the information locally sincePFileSystem is a mock
object.

The reason for the exception can be mapped to the chal-
lenges described in Section 5.1:

• Challenge 1. Using thePFileSystem mock object
alone was not sufficient to test the unit as there were
other APIs (invoked by the code under test) that inter-
act with the same environment as the mock object.

• Challenge 2. Simply mocking theDirectory API
would not solve the problem, as the same directory in-
formation should be shared by both mock objects, i.e.,
a mock object of theDirectory API should use the
same log used byPFileSystem .

A solution to the problem described in our ex-
ample can be to modify the code under test to re-
place the Directory.Delete method call with the
IFileSystem.DeleteDirectory method call for the
purpose of testing. However, the complexity could be el-
evated when the code under test requires invoking a method
of theDirectory API whose functionality is not provided
by thePFileSystem or even its interface, such as access-
ing the date or time information of the directory. In such a
case, a possible solution can be to implement (or extend) a
single mock object to provide all the methods that are re-
quired to interact with a certain environment, which is oth-
erwise accessed using multiple APIs. In our example, we
can extend thePFileSystem to provide methods that can
be used to replace the actual method calls to theDirectory

or File APIs. Pex gives hints on the existence of problem-
atic APIs (that interact with the environment) in the code
under test through the testability flags and suggests that the
testability issues be resolved by writing a mock object5.
However, manually identifying the different APIs that in-
teract with the same data or environment is cumbersome as
the process involves understanding the information depen-
dency among various APIs.

As a result of our study, we find that it is important to
identify all the required objects that need to be mocked or
modeled. In addition, it is essential to identify the depen-
dency among APIs; the dependency need not only be de-
fined by direct interaction such as invoking methods, but
also be defined by indirect interactions such as operations
on the same data or environment. We believe that these
tasks can be achieved by automating the process of iden-
tifying different external APIs used and analyzing the infor-
mation dependency among these APIs.

6 Conclusion

We conducted an empirical study to analyze the use
of mock objects in unit testing, specifically to test a file-
system- dependent software. We used a paramterized model
of theFileSystem API to test the CodePlex Client project.
We showed that using a mock object can ease the process
of unit testing. We also identified the challenges faced in
testing code when there are multiple APIs that need to be
mocked. Additionally, we highlighted the need to automate

5http://research.microsoft.com/en-us/um/
redmond/projects/pex/wiki/testability\%20issue.
html

the process of identifying APIs that need to be mocked and
dependencies between the identified APIs to ease the pro-
cess of testing.

Acknowledgments

This work is supported in part by NSF grant CCF-
0725190, ARO grant W911NF-08-1-0443, and ARO grant
W911NF-08-1-0105 managed by NCSU Secure Open Sys-
tems Initiative (SOSI).

References

[1] Codeplex client. http://www.codeplex.com/
CodePlexClient .

[2] .NET Framework Class Library. http://msdn.
microsoft.com/en-us/library/ms229335.
aspx .

[3] Wiki. mock objects. http://www.mockobjects.
com/ .

[4] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes. Mock
Roles, not Objects. InCompanion to the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 236–246, 2004.

[5] R. Hightower, W. Onstine, P. Visan, D. Payne, J. D.
Gradecki, K. Rhodes, R. Watkins, and E. Meade. Profes-
sional Java Tools for Extreme Programming Ant, XDoclet,
JUnit, Cactus, and Maven. Wiley Publishing, Inc.

[6] IEEE-Standards-Board. IEEE Standard for Software Unit
Testing: An American National Standard, 1999.

[7] J. C. King. Symbolic Execution and Program Testing.Com-
munications of the ACM, 19(7):385–394, 1976.

[8] S. H. Kong, N. Tillmann, and J. de Halleux. Automated
Testing of Environment-Dependent Programs - A case study
of modeling the File System for Pex. InProceedings of the
International Conference on Information Technology - New
Generations (INFG), 2009.

[9] T. Mackinnon, S. Freeman, and P. Craig. Endo-Testing: Unit
Testing with Mock Objects. InProceedings of the Inter-
nation Conference on eXtreme Programming and Flexible
Processes in Software Engineering (XP), pages 287 – 301,
2000.

[10] S. Stewart. Approaches to Mocking. http:
//www.onjava.com/pub/a/onjava/2004/
02/11/mocks.html#Approaches .

[11] N. Tillmann and J. de Halleux. Parameterized
Test Patterns For Effective Testing with Pex.
http://research.microsoft.com/en-us/
projects/pex/pexpatterns.pdf .

[12] N. Tillmann and J. de Halleux. Pex-White Box Test Genera-
tion for .NET. InProceedings of the Internation Conference
on Tests and Proofs (TAP), pages 134–153, 2008.

[13] N. Tillmann and W. Schulte. Parameterized Unit Tests. In
Proceedings of the European Software Engineering Confer-
ence held jointly with ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (ESEC/FSE),
pages 253–262, 2005.

