
Substra: A Framework for Automatic Generation of
Integration Tests

Hai Yuan
Department of Computer Science

North Carolina State University
Raleigh, NC 27695
hyuan3@ncsu.edu

Tao Xie
Department of Computer Science

North Carolina State University
Raleigh, NC 27695
xie@csc.ncsu.edu

ABSTRACT
A component-based software system consists of well-encapsulated
components that interact with each other via their interfaces. Soft-
ware integration tests are generated to test the interactions among
different components. These tests are usually in the form of se-
quences of interface method calls. Although many components are
equipped with documents that provide informal specifications of
individual interface methods, few documents specify component
interaction constraints on the usage of these interface methods, in-
cluding the order in which these methods should be called and
the constraints on the method arguments and returns across mul-
tiple methods. In this paper, we propose Substra, a framework for
automatic generation of software integration tests based on call-
sequence constraints inferred from dynamic executions. Two types
of sequencing constraints are inferred: shared subsystem states and
object define-use relationships. The inferred constraints are used
to guide automatic generation of integration tests. We have imple-
mented Substra with a tool and applied the tool on an ATM ex-
ample. The preliminary results show that the tool can effectively
generate integration tests that exercise new program behaviors.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms: Experimentation, Reliability, Verification.

Keywords: Software Testing, Integration Testing, Test Genera-
tion.

1. INTRODUCTION
In component-based software development [6], a software sys-

tem is built out of well-encapsulated components each of which
has a set of well-defined interfaces. Components interact with each
other by invoking methods through these interfaces. One impor-
tant means of assuring the correctness of component interactions
is through integration testing. In integration testing, integration
tests are generated to test interactions among different components.
These integration tests are usually in the form of sequences of
method calls in the interfaces. However, syntactically correct se-
quences do not necessarily result in valid tests. Specifications can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST’06,May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

be used to create valid method-call sequences as tests. Various ap-
proaches have been developed for generating feasible method-call
sequences from specifications [1,3,10]. However, specifications are
often not available, especial for those legacy systems. Even when
some components are equipped with specifications on their inter-
faces, many of these specifications only specify individual method
calls – a method call’s name, parameters, and return value. A com-
ponent’s document usually does not specify sequencing constraints
on the method calls, including the order in which these interface
methods should be called and the constraints among method argu-
ments and returns across multiple methods.

These sequencing constraints are important for helping assure
correct component usages. For example,cli, one of the jakata
common components1, is a component that is used to parse com-
mand line parameters. When usingcli, programmers must at
first provide a pattern of options by calling theOption class’
constructor:opt = new Option(...). Then a parser is called
trying to match the command line input with the option pattern:
commandline = parser.parse(opt, input). It is crucial
that the option pattern must be constructed before it can be used
to parse a command line input.

Sequencing constraints are also useful in guiding automatic gen-
eration of component integration tests. Without any guidance, ran-
dom test generation would result in method-call sequences that do
not appear in real applications or erroneous sequences, e.g., us-
ing an object before defining it. With the guidance of sequencing
constraints, we can avoid generating invalid tests and focus on gen-
erating meaningful tests that emulate the real usages of multiple
components within a software system.

In this paper, we propose Substra, a framework for automatic
generation of integration tests based on dynamically inferred call-
sequence constraints. These constraints are inferred based on
two types of information: shared subsystem states and define-
use relationships. The first type of information describes that if
a method callm1’s exit state is equivalent [15] to another method
call m2’s entry state, thenm1 andm2 may be invoked consecu-
tively. The second type of information is as follows: if the return
value r of a method callm1 is the receiver or one of the argu-
ments of another method callm2, that is, in the formr.m2(· · ·) or
v.m2(· · · , r, · · ·) (v is an arbitrary object), thenm2 must appear
after m1 in a method call sequence. Substra uses an object state
machine (OSM) to model these constraints. A subsystem’s states
are represented as nodes in the state machine, method calls as tran-
sitions, and define-use relationships as guard conditions of transi-
tions. Substra proposes an iterative process that exploits initial-test
executions or normal runs of the system to dynamically infer se-
quencing constraints, and then uses these constraints to help gen-

1http://jakarta.apache.org/commons/cli/

erate new tests. One iteration includes six steps: collect execution
traces, find boundary calls, infer define-use relationships, construct
basic object state machines, construct a subsystem state machine,
and generate new tests. We have developed a tool for Substra and
applied it on an ATM [4] program. The preliminary results show
that the tool can effectively generate integration tests that exercise
new program behaviors.

The rest of the paper is organized as follows. Section 2 presents a
formal description of Substra. Section 3 introduces the implemen-
tation of the approach. Section 4 shows our preliminary results of
applying the tool on an example. Section 5 discusses issues of the
approach and its current implementation. Section 6 presents related
work and Section 7 concludes.

2. FRAMEWORK
In this section, we give a formal description of the Substra

framework, including a formal definition of an object state ma-
chine (OSM) (Section 2.1), subsystem state machine (SSM) (Sec-
tion 2.2), and the concepts and the procedure used by Substra (Sec-
tion 2.3).

2.1 Object State Machine
Xie and Notkin [16] have defined an object state machine for a

class:

DEFINITION 1. Anobject state machine(OSM)M of a compo-
nentc is a sextupleM(c) = (I, O, S, δ, λ, INIT) whereI is a
nonempty set of method calls asc’s interface;O is the set of the re-
turn values of these method calls; andS represents the set of states
of c’s objects.INIT ∈ S is the initial state that the machine is in
before calling any constructor method ofc. δ : S × I → P (S) is
the state transition function andλ : S × I → P (O) is the output
function in whichP (S) andP (O) are the power sets of S and O,
respectively. When the machine is in a current states and receives
a method calli ∈ I, it moves to one of the next states specified
by δ(s, i) and produces one of the method returnsr ∈ O given by
λ(s, i).

There are various ways to define an object’s states. By default,
our framework defines the state of an object based on the values of
all the fields transitively reachable from the object [15].

2.2 Subsystem State Machine

DEFINITION 2. A subsystemS is a triple (SC, SS, SI), where
SC = Ci is the set of components included in the subsystem;SS
is the set of states of the subsystem,SS ⊆

Q
CSi, whereCSi is

the set of states of componentsCi; andSI ⊆
S

CIi, whereCIi is
the set of interfaces of componentCi. Each method callmci ∈ SI
consists of two parts: method signatureMSi and guard conditions
GCi that must be satisfied beforemci can be invoked.

Based on the definition of a subsystem, we can extend the def-
inition of an OSM to the definition of a subsystem state machine
(SSM):

DEFINITION 3. A subsystem state machine for a subsystemS:
(SC, SS, SI) is a sextupleSM = (SI, SO, SS, δ, λ, INIT)
whereSI and SS are nonempty sets of interface and states of S,
respectively. SO is the set of return values of interface method
calls. δ : SS × SI → P (SS) is the state transition function
andλ : SS × SI → P (SO) is the output function,P (SS) and
P (SO) are the power sets ofSS andSO. δ =

S
M(Ci).δ and

λ =
S

M(Ci).λ. INIT ∈ SS is the initial state of the state
machine.

Note that we consider only the return values within the scope of
a subsystem. This constraint helps us to simplify the procedure of
identifying define-use relationships among boundary calls, which
we shall define later.

An integration test case can be described as a triple< Sub,
MS, A >, whereSub is the subsystem under test,MS is the
integration test input, which consists of a sequence of method calls
(MS = (m1, m2, · · · , mk), mi ∈ SI), andA is a set of asser-
tions that are used as test oracles. In this research context, we focus
on generating integration test inputs (in short as integration tests).

One objective of integration-test generation is to generate mean-
ingful method-call sequences to reveal possible bugs in the system
or increase our confidence on the system correctness. However, it
is often infeasible to test all method call combinations in practice.
Then guidelines and constraints could be used to help generate fo-
cused integration tests.

2.3 Substra
We propose Substra, a framework that guides automatic gen-

eration of integration tests with call-sequence constraints inferred
from dynamic executions. Two types of sequencing constraints are
inferred and used by Substra: shared state constraints and define-
use constraints. Based on these constraints, Substra generates inte-
gration tests in the form of sequences of boundary method calls.

DEFINITION 4. A boundary method call is a callci.m whose
receiverci ∈ SC while its callercj /∈ SC.

The reason for us to define boundary calls is that we only concern
about how a subsystem is manipulated by other subsystems through
its interface, but are not interested in other non-interface related
interactions, such as intra-subsystem interactions. With the notion
of boundary calls, we can reduce the size of subsystem interface
SI, thus reducing the number of method-call combinations.

DEFINITION 5. A shared state constraint is a constraint for two
transitionsδ1 : (ss1, sii) → ss2 andδ2 : (ss2, si2) → ss3, where
transitionsδ1 andδ2 share statess2.

In an SSM, a shared state constraint is expressed as a nodess2

with incoming transitionδ1 and outgoing transitionδ2. The con-
straint prescribes that methodssi1 andsi2 be called consecutively.

The d-u (define-use) constraint is a common constraint used in
test generation. The constraint prescribes that an entity must be
defined before it can be used. According to the constraint, any used
variable (parameter or object field variable) in a method call must
be defined before the method call can be actually invoked. The
method signature of a method call can be characterized by three
parts: the receiverr, method namen, and parameter listp.

DEFINITION 6. A define-use constraint between method calls
mi andmj is a constraint that the return valuereti of mi is equal
to the receiverrj of mj (reti = rj), or reti is used as one ofmj ’s
argument (reti ∈ p).

The define-use constraint prescribes that method callmj must
appear after the method callmi in a test. There are different ways
to define a variable, such as assignment and state-modify method
calls. In our current work, we use only the return value of a method
call as definition. We plan to add other ways of definition into the
framework in our future work.

Figure 1 shows an overview of the Substra process that infers
call-sequence constraints from dynamic executions and uses these
constraints to guide automatic generation of integration tests. In
the iterative process, each iteration consists of six steps: collect

Figure 1: An Overview of Substra Process.

execution traces, find boundary calls, infer define-use relationships,
construct basic object state machines, construct a subsystem state
machine, and generate new tests.

1. From program executions, we collect execution traces in-
cluding executed method calls, object fields’ value at entry
and exit points of method calls, etc.

2. We identify boundary calls by examining the method call in-
formation included in the execution traces.

3. We infer define-use constraints by examining the boundary
call information included in the execution traces.

4. We construct OSMs for individual objects in the subsystem
according to the preceding definition of OSMs.

5. We construct a subsystem state machine (SSM) by com-
bining the states of individual OSMs according to related
boundary calls. That is, if we want to construct the start-
ing stateS of transitionT , and we already know thatT ex-
ists in bothOSM1 and OSM2 with starting statesO1.s1

andO2.s2, respectively, thenS is defined as follows:S =
(O1.s1, O2.s2).

6. We traverse the SSM, collect the transition information along
the traversal, and build a skeleton of method-call sequences
based on the visited transitions and the inferred sequencing
constraints. To generate executable tests, we generate ran-
dom values for method arguments in the skeleton of method-
call sequences. Alternatively the skeleton can be fed into
some test-generation tools such jCUTE [13].

3. IMPLEMENTATION
We have developed a tool to implement our Substra framework.

The tool performs all the steps of the framework except that we use
a third-party tool to collect execution traces and optionally use a
third-party test-generation tool to generate tests based on the gen-
erated test skeleton.

We use the Java front-end of Daikon [5] to collect object states
during program executions. Daikon is a tool that dynamically de-
tects likely program invariants in program executions. It can collect
object-field values during program executions and report properties
that hold true on these fields during the executions. In our approach,
we use Daikon to collect method call sequences and an individual
object’s states at the entry and exit points of a method call. Users
can also specify the object fields that they are not interested in by
providing a file containing fields of no interests. Given the exe-
cution information, we construct basic object state machines that
describe the state transitions of each object.

After the execution traces are collected, our tool starts to identify
boundary calls. As defined in the previous section, a boundary call
is a method call whose caller is outside of the monitoring scope
while the callee is inside. We recognize caller-callee relationships
by traversing method-call entry and exit points.

When constructing basic object state machines, we also store the
reference of each object constructed during the executions. We use
these object references to identify define-use relationships. By se-
quentially going through the boundary calls, we put return valuer
of each boundary callmi into a monitored object list. Whenever
we identify either a boundary method callmj ’s receive object or an
object assigned as its argument is in the list, a define-use relation-
ship is constructed in the form ofcaller = return mi or parameter
name = returnmi. The relationship is used as a guard condition
of the transition in the constructed subsystem state machine, corre-
sponding to method callmj .

Based on the preceding information, we can construct the sub-
system state machine (SSM). A transition in the SSM is a boundary
method call, using the inferred define-use relationship as its guard
condition. A state of the SSM is the combination of the currently
monitored objects’ states. For example, if there are two objectso1

ando2 in the monitored object list at the exit point of transitionT ,
each in statess1 ands2, respectively, then the subsystem’s state at
the exit point of transitionT is {s1, s2}.

Finally the tool generates tests, which are method-call se-
quences. The tool deems the constructed SSM as a graph, and uses
the depth-first search (DFS) algorithm to traverse the SSM. How-
ever, unlike standard DFS algorithm, the tool does not mark the
visited node. This mechanism makes it possible to traverse loops
for more than one time. A maximum length of method sequence
is used to constrain how many edges the tool should visit. When
the tool reaches a node with several outgoing edges, it randomly
picks one. After traversing each edge, the tool uses the edge’s in-
formation (method name and parameter list) to build a method call,
and then fill the callee and parameter list with local variable names
based on the guard conditions.

The abstraction technique we used makes the resulting SSM a
more general description of the program’s behavior other than just
the summation of the execution traces taken by all the initial tests
or existing normal runs. For example, if the execution of testA
produces traces1s2s3s4s5 (si represents a state in the SSM), and
the execution of testB produces traces0s4s2s6, we can find out in
the resulting SSM there exists a loops2s3s4. Based on the result-
ing SSM, we can generate tests such ass1s2s3s4s2s6, which is a
new trace different from any of the existing traces produced by the
execution of testsA andB. Moreover, we can also manipulate the
values of arguments of a method call to make it possible to expose
more states. For example, in the initial test,v1 is passed as an argu-
ment of method callm1, resulting in subsystem states1. However,
given the same method call, when we supply another valuev2 as
the argument, the method execution may lead to a new subsystem
states2, and may also produce a new trace.

4. PRELIMINARY RESULTS
We applied our tool on an ATM [4] example, which contains a

main program and three packages: thebanking package models
the entities and procedures used by a bank, thesimulation pack-
age provides GUI and passes user inputs to the logic part of the pro-
gram, and theatm package simulates the behaviors of an ATM. The
atm package includes two sub-packages:atm.physical models
the physical parts of an ATM, such as a card reader and a customer
console, andatm.transaction implements the logical function-
ality of an ATM, such as withdrawal and deposit.

Because ATM users may be more concerned about the correct-
ness of an ATM’s capability of performing transactions, in our eval-
uation, we selected theatm.transaction package as our primary
subject. We also included helper classes such asatm.ATM, and
banking.Card in our subsystem scope. Objects of these classes
are passed as arguments in making and performing transactions.
The original ATM example is a concurrent program. Its inputs are
passed only through GUI. To simplify the evaluation procedure,
we made slight changes to the original program. First, we changed
the program to non-concurrent. Because the concurrent mecha-
nism is employed only by theatm.ATM class without affecting the
atm.transaction package, we consider that this change will not
affect the functionality of performing transactions. Second, we
modified some methods in theatm.transaction package. The
modifications include removing the method calls that accept inputs
from GUI when making and performing transactions. Instead, we
used method arguments to pass in these inputs. This modification
separates the application logic from its interface and the modifica-
tion helps us focus on the functionality under test. However, this
modification also brings some side effects. For example, there are
only four valid types of transaction (withdrawal, deposit, transfer,
inquiry) represented as four integers in the ATM example. With
GUI, users can select only one of these four types of transactions.
However, by passing arguments, we may be able to select an in-
valid transaction type when we do not infer constraints on argument
value ranges.

After the modifications, we developed an initial test that with-
draws from an existing account with a correct ATM card number
and PIN. We applied our tool on the modified ATM example with
the developed test. Figure 2 shows the subsystem state machine
constructed by our tool from the execution of the initial test. Sub-
system states are displayed in nodes and state transitions caused by
interface calls are expressed as edges. In the state representation
inside each node, we show only the fields whose values have been
changed by the node’s incoming transitions. This simplified view
helps understand how interface calls change subsystem states.

In the figure, we can observe from thetr1 transition that the
constructor ofatm.ATM takes five arguments with the types ofint,
String, String, SimulatedBank, andInetAddress. Among
them, the type of the forth argument is within our subsystem scope.
From the guard condition of the constructor (tr2) arg3 = return
SimulatedBank.SimulatedBank(), we can observe that this ar-
gument must be the return value of a previousSimulatedBank()
constructor. There are no constraints on other arguments. Similarly,
for the transitiontr6 Transaction.makeTransaction(ATM,
Card, PIN, TType), its guard conditions also show that these
arguments must be the return values oftr1, tr3, tr4, and tr5,
respectively. Fortr7, the guard conditionCaller = return
Transaction.makeTransaction(ATM,Card,PIN,TType)
shows that the receiver of the method call
performTransaction(int, int, int) must be the return
value oftr6.

Then we apply our test generation tool on the inferred SSM to
automatically generate new tests. For the arguments whose types
are within the scope of subsystem, the tool fills them based on the
return-use constraints. For primitive types such asint, the tool
randomly generates a value within a predefined scope; for the ATM
example, we specified the value range forint as from 0 to 2. For
non-primitive types that are not in the subsystem scope, we cur-
rently copy the method sequences for producing objects of these
non-primitive types from the initial test. In future work, we plan
to dynamically capture and regenerate the method sequences for
producing objects of these non-primitive types in the initial test.

Based on the program behaviors exercised by the automatically
generated tests, we can divide them into three groups. The first
group includes the tests that exercise new program behavior in-
cluding erroneous behavior. This group of tests is the most valu-
able one. For the ATM example, our automatically generated tests
reveal new program behaviors such as “withdrawal with incor-
rect account information”, “deposit with incorrect account infor-
mation”, and “transfer with incorrect account information”. These
behaviors are not exercised by the initial test. The second group
of new tests are redundant tests, which do not exercise new pro-
gram behaviors. The third group of tests are invalid tests that may
include invalid arguments; these tests could be useful in robust-
ness testing. For the ATM example, some tests generate incor-
rect transaction types beyond the valid range. When being sup-
plied with incorrect types,makeTransaction returns a null ref-
erence and thus the subsequentperformTransaction throws an
NullPointerException. Some tests include incorrect account
numbers. In the GUI of the ATM example, only two types of ac-
counts are allowed: checking and saving, represented by 1 and 2,
respectively. In our automatic test generation, 0 is also generated
as an account type and this invalid account type causes the program
execution to exit abnormally. In future work, we plan to extend our
tool to allow users to configure the preconditions or simply value
ranges for method arguments.

5. DISCUSSION
There are several major limitations of our current tool. First,

our current tool uses offline dynamic analysis, which makes the
tool often not scalable for large programs. In particular, we store
Daikon traces in files. Our tool then reads all the information in
the trace files into memory before the tool does any analysis on the
content in the file. This mechanism makes our tool unable to handle
large trace files collected from real large applications. One way
to address the problem is to use online dynamic analysis, which
analyzes execution information immediately after it is collected at
runtime. Another way that may alleviate the problem is to collect
only information of interest, e.g., the values of fields or arguments
of interest.

Second, our approach assumes that all the tests in the initial test
suite are valid and correct, so that the behaviors exhibited by the
existing program executions are correct according to user’s require-
ments. If the initial test suite exercises erroneous behaviors, subse-
quently generated tests based on the erroneous behaviors may not
be meaningful or valid.

Third, our tool currently relies on the Daikon frontend [5] to col-
lect subsystem states and the collected states may not be complete.
Usually a data structure may have nested fields with several lev-
els in depth. By default, the Daikon frontend collects the values
of fields that are within the first three levels of depth. We expect
that the instrumentation depth of three would be sufficient to reveal
system state changes in many cases.

6. RELATED WORK
Xie and Notkin [18] developed the operational violation ap-

proach for generating and selecting unit tests based on operational
abstractions [5]. An operational abstraction is program behaviors
observed from program executions. In the approach, a programmer
runs a set of automatically generated tests and verifies the outputs
with the existing operational abstractions. If there is a violation,
the programmer will determine if it is the application’s desired be-
havior or a program error. Our Substra framework targets at testing
the interactions among multiple classes rather than the behavior of

a single class. The notion of operational violation can be simi-
larly applied by treating inferred subsystem state machines as op-
erational abstractions.

Kung et al. [7] extract object state models from a class’s source
code via static analysis and use them to guide test generation. States
in an object state model are defined by value intervals over object
fields. These value intervals are derived from path conditions of
method source; the transitions are derived by symbolically execut-
ing methods. Different from their approach, Substra focuses on
testing multiple classes and uses dynamic analysis to infer state
models (subsystem state machines) rather than using static analy-
sis.

There exist several approaches for abstracting concrete state ma-
chines. Xie and Notkin [17] proposed to use only individual fields
to represent an object’s states. They also proposed the observer
abstraction approach [16] that represents a state of an object by
using the return values of observers invoked on the object. Our
previous Brastra [19] approach abstracts concrete states based on
branch coverage information of methods invoked on the concrete
states. All these state abstraction approaches can be integrated into
Substra for abstracting states in the subsystem state machines.

From system-test executions, both Whaley et al. [14] and Am-
mons et al. [2] mine protocol specifications for component inter-
faces. They use sequencing order among method calls in the inter-
faces without using internal object-field values. Both approaches
usually require a good set of system tests for exercising compo-
nent interfaces. Substra focuses on sequencing constraints among
methods of multiple classes rather than a single class. Substra ad-
ditionally infers the constraints related to method arguments and
returns across multiple methods.

Briand et al. [8] developed a method that reverse engineers UML
sequence diagrams from program executions. The method adapts
the UML sequence diagram metamodel and defines a trace meta-
model that models the collected execution traces. Control flow re-
lated positions in the source code (method entry and exit, branch,
loop) are instrumented to help collect execution traces. Three con-
sistency rules: MethodCall, Return, and ConditionStatement ex-
pressed in OCL are defined to map execution traces to sequence
diagrams. In contrast, Substra uses state information to construct
subsystem state machines rather than sequence diagrams.

Rountev et al. [11] presented an algorithm to infer UML se-
quence diagrams from intra-method control flow graphs (CFGs)
with static analysis. The approach defines branch successors and
loop successors that delineate the scope of branches and loops in
CFGs. Armed with this information, the algorithm generates in-
teractive fragments from CFGs and assembles them into sequence
diagrams. In contrast, Substra uses dynamic analysis to infer sub-
system state machines rather than sequence diagrams.

Saff et al. [12] developed automatic test factoring techniques to
generate focused unit tests out of system test executions in order
to reduce the cost of running expensive system tests. Orso and
Kennedy [9] selectively capture and replay the interactions between
the unit under test and its environment during system-test or in-
field executions. Unlike Substra, both approaches replay existing
program behaviors that have been exercised in the past without gen-
erating new tests to exercise new program behavior.

There are a number of approaches for generating integration tests
based on specifications. Ali et al. [1] propose an approach to gen-
erate integration tests from UML collaboration diagrams and stat-
echarts. The approach constructs SCOTEM (State COllaboration
TEst Model), an intermediate test model that represents all the
paths that a message sequence may pass through, from UML col-
laboration diagrams and statecharts. The SCOTEM is fed to a path

generator to build test paths. Based on the test paths, tests are man-
ually created and executed to verify the implementations.

Basanieri et al. [3] developed the Cow Suite (Cowtest pluS UIT
Environment) tool to generate test suites from UML sequence di-
agrams and use cases. Cow Suite is the integration of two tech-
niques: UIT (Use Interaction Test) and Cowtest (Cost-Weighted
Test Strategy). UIT accepts a set of UML sequence diagrams and
generates tests consisting of procedures corresponding to message
passing in the sequence diagrams. Cowtest prioritizes and selects
generated tests based on the weight of UML diagram elements. The
select strategy can be based on a fixed number of tests or fixed func-
tional coverage. The generated test suites can be used as inputs of
some test drivers to generate actual tests to test if the sequence dia-
grams are correctly implemented.

Paradkar [10] developed the Specification and Abstraction Lan-
guage for Testing (SALT) environment to help test design and auto-
matic test generation. SALT is a modeling language that formally
specifies a method under test. The language describes the relation-
ship between method’s inputs and outputs as well as the context in
which the method is called. Context variables can be single valued,
or aggregation of simple values. This context information makes it
feasible to automatically generate meaningful tests.

All of the preceding integration test generation techniques re-
quire specifications that help generate tests automatically. In con-
trast, Substra can generate integration tests without requiring spec-
ifications.

7. CONCLUSIONS
We have proposed Substra, a framework for automatic genera-

tion of integration tests when there are no sequencing constraint
specifications for the subsystem under test. Substra infers subsys-
tem state machine (SSM) dynamically from program executions.
The inferred SSM not only shows how the subsystem’s state is
changed by each method call, but also gives define-use constraints,
which help determine the order in which methods should be called
and construct method arguments in a method-call sequence. Given
the information, it is feasible to automatically generate new tests for
the subsystem under test. We have developed a tool to implement
Substra and applied it on an ATM example. The preliminary results
show that the tool can effectively generate integration tests that ex-
ercise new program behaviors. Our current implementation focuses
on sequential programs; in future work, we plan to investigate tech-
niques for expanding our approach to concurrent programs.

8. REFERENCES
[1] S. Ali, M. J. ur Rehman, L. C. Briand, H. Asghar, Z. Zafar,

and A. Nadeem. A state-based approach to integration
testing for object-oriented programs. Technical Report
SCE-05-08, Department of Systems and Computer
Engineering, Carleton University, May 2005.

[2] G. Ammons, R. Bodik, and J. R. Larus. Mining
specifications. InProc. 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
4–16, 2002.

[3] F. Basanieri, A. Bertolino, and E. Marchetti. The Cow-Suite
approach to planning and deriving test suites in UML
projects. InProc. 5th International Conference on the
Unified Modeling Language, pages 383–397, 2002.

[4] R. C. Bjork. ATM example introduction.
http://courses.knox.edu/cs292/
ATMExample/Intro.html.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to

support program evolution.IEEE Trans. Softw. Eng.,
27(2):99–123, 2001.

[6] G. T. Heineman and W. T. Councill.Component-Based
Software Engineering: Putting the Pieces Together.
Addison-Wesley, 2001.

[7] D. Kung, N. Suchak, J. Gao, and P. Hsia. On object state
testing. InProc. 18th International Computer Software and
Applications Conference, pages 222–227, 1994.

[8] L.C.Briand, Y.Labiche, and J.Leduc. Towards the reverse
engineering of UML sequence diagrams for distributed
real-time Java software. Technical Report SCE-04-04,
Carleton University, September 2004.

[9] A. Orso and B. Kennedy. Selective Capture and Replay of
Program Executions. InProc. 3rd International ICSE
Workshop on Dynamic Analysis, pages 29–35, St. Louis,
MO, May 2005.

[10] A. Paradkar. SALT - an integrated environment to automate
generation of function tests for APIs. InProc. 11th
International Symposium on Software Reliability
Engineering, pages 304–316, 2000.

[11] A. Rountev, O. Volgin, and M. Reddoch. Static Control-Flow
Analysis for Reverse Engineering of UML Sequence
Diagrams. InProc. ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pages
96–102, September 2005.

[12] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic
test factoring for Java. InProc. 21st Annual International
Conference on Automated Software Engineering, pages
114–123, Long Beach, CA, November 2005.

[13] K. Sen and G. Agha. Automated systematic testing of open
distributed programs. InProc. International Conference on
Fundamental Approaches to Software Engineering (FASE
2006), 2006.

[14] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces. InProc.
International Symposium on Software Testing and Analysis,
pages 218–228, 2002.

[15] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. InProc. 19th
IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

[16] T. Xie and D. Notkin. Automatic extraction of
object-oriented observer abstractions from unit-test
executions. InProc. 6th International Conference on Formal
Engineering Methods, pages 290–305, Nov. 2004.

[17] T. Xie and D. Notkin. Automatic extraction of sliced object
state machines for component interfaces. InProceedings of
the 3rd Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2004), pages 39–46,
October 2004.

[18] T. Xie and D. Notkin. Tool-assisted unit-test generation and
selection based on operational abstractions.Automated
Software Engineering Journal, 2006.

[19] H. Yuan and T. Xie. Automatic extraction of
abstract-object-state machines based on branch coverage. In
Proc. 1st International Workshop on Reverse Engineering To
Requirements at WCRE 2005, pages 5–11, November 2005.

Figure 2: The SSM for an ATM produced from performing a successful withdrawal.

