
Autom Softw Eng
DOI 10.1007/s10515-011-0082-3

Inferring specifications for resources from natural
language API documentation

Hao Zhong · Lu Zhang · Tao Xie · Hong Mei

Received: 14 June 2010 / Accepted: 23 March 2011
© Springer Science+Business Media, LLC 2011

Abstract Many software libraries, especially those commercial ones, provide API
documentation in natural languages to describe correct API usages. However, de-
velopers may still write code that is inconsistent with API documentation, partially
because many developers are reluctant to carefully read API documentation as shown
by existing research. As these inconsistencies may indicate defects, researchers have
proposed various detection approaches, and these approaches need many known spec-

This paper is a revised, expanded version of a paper (Zhong et al. 2009b) presented at the 24th
IEEE/ACM International Conference on Automated Software Engineering Conference (ASE 2009),
which won the best paper award of the conference and the ACM SIGSOFT distinguished paper
award. The work of this paper was done when Hao Zhong was a PhD student with Peking University
under the supervision of Prof. Hong Mei, and the revisions over the previous ASE 2009 paper
(Zhong et al. 2009b) were done when Hao Zhong became an assistant professor with Chinese
Academy of Sciences since 2009.

H. Zhong (�)
Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences,
Beijing, China
e-mail: zhonghao@itechs.iscas.ac.cn

L. Zhang · H. Mei
School of Electronics Engineering and Computer Science, Peking University, Beijing, China

L. Zhang
e-mail: zhanglu@sei.pku.edu.cn

H. Mei
e-mail: meih@sei.pku.edu.cn

L. Zhang · H. Mei
The Key Laboratory of High Confidence Software Technologies (Peking University), Ministry
of Education, Beijing, China

T. Xie
Department of Computer Science, North Carolina State University, Raleigh, USA
e-mail: xie@csc.ncsu.edu

mailto:zhonghao@itechs.iscas.ac.cn
mailto:zhanglu@sei.pku.edu.cn
mailto:meih@sei.pku.edu.cn
mailto:xie@csc.ncsu.edu

Autom Softw Eng

ifications. As it is tedious to write specifications manually for all APIs, various ap-
proaches have been proposed to mine specifications automatically. In the literature,
most existing mining approaches rely on analyzing client code, so these mining ap-
proaches would fail to mine specifications when client code is not sufficient. Instead
of analyzing client code, we propose an approach, called Doc2Spec, that infers re-
source specifications from API documentation in natural languages. We evaluated
our approach on the Javadocs of five libraries. The results show that our approach
performs well on real scale libraries, and infers various specifications with relatively
high precisions, recalls, and F-scores. We further used inferred specifications to de-
tect defects in open source projects. The results show that specifications inferred by
Doc2Spec are useful to detect real defects in existing projects.

Keywords Inferring specifications · API documentation

1 Introduction

Application Programming Interface (API) documentation plays an important role for
developers to cope with software libraries. From API documentation, developers can
find much useful information such as method descriptions, and learn how to correctly
use libraries. For example, when developers use J2EE, they can refer to the J2EE’s
Javadoc1 for its correct usages.

Still, developers may write code that is inconsistent with API documentation, par-
tially because many developers are reluctant to carefully read API documentation, as
shown by existing research on developers’ behavior (Novick and Ward 2006). These
inconsistencies often indicate defects, and researchers (Lu et al. 2008) point out that
many defects are related to resource usages. To detect defects that are related to re-
source, researchers (e.g., Igarashi and Kobayashi 2005) propose various approaches
that analyze resource usages, and these approaches need specifications that describe
correct usages of resources.

As API documentation contains much information on resource usages, it is fea-
sible to infer resource specifications from API documentation although some usages
are implicit. For example, the description of java.sql.ResultSet.deleteRow()
is “Deletes the current row from this ResultSet object and from the underlying
database”, and the description of java.sql.ResultSet.close() is “Releases
this ResultSet object’s database and JDBC resources immediately instead of waiting
for this to happen when it is automatically closed”. Although each description simply
describes what kind of action a method takes on a particular resource and does not ex-
plicitly contain any rules, an experienced developer can extract an implicit specifica-
tion deleteRow()→ close()2 from the preceding two descriptions. The specifica-
tion describes that close() should be called if deleteRow() is already called since
a used resource needs to be eventually closed. As another example, the description of

1http://java.sun.com/javaee/5/docs/api/.
2The semantics of a() → b() is that an invocation of the b() method should eventually follow an
invocation of the a() method on the same object.

http://java.sun.com/javaee/5/docs/api/

Autom Softw Eng

javax.sound.midi.MidiDevice.open() is “Opens the device, indicating that it
should now acquire any system resources it requires and become operational”, and
the description of javax.sound.midi.MidiDevice.close() is “Closes the de-
vice, indicating that the device should now release any system resources it is using”.
Similarly, an experienced developer can extract an implicit specification open() →
close(). The specification describes that close() should be called if open() is
already called since an opened resource also needs to be eventually closed.

The preceding specifications are valuable to detect resource related defects. How-
ever, it is challenging to infer from API documentation due to two main factors: (1) it
requires accurate linguistic analysis since API documentation is in natural languages;
(2) it requires information from multiple method descriptions to be synthesized since
resource usages are typically implied in descriptions of multiple methods.

In this paper, we propose a novel approach, called Doc2Spec, that infers resource
specifications from existing API documentation in natural languages. As our ap-
proach does not need any source code from either libraries or their clients, it is capa-
ble of inferring specifications when source code is unavailable or insufficient. Thus,
it complements existing approaches of mining specifications from source code (see
Sect. 4 for details).

This paper makes the following main contributions:

– We propose a novel approach, called Doc2Spec, that uses a Natural Language Pro-
cessing (NLP) technique to analyze natural language API documentation and infers
resource specifications.

– We implemented a tool for Doc2Spec and conducted an evaluation on API docu-
mentation of five libraries. The results show that our approach performs well on
real scale libraries and infers various specifications with relatively high precisions,
recalls, and F-scores.

– We further conducted an evaluation to detect defects using inferred specifications.
The results show that these specifications are useful to detect previously known or
unknown defects in open source projects.

The remainder of our paper is as follows. Section 2 introduces the background of
our approach. Section 3 illustrates our approach using an example. Section 4 presents
related work. Section 5 presents the details of our approach. Section 6 presents our
evaluations. Section 7 presents the benefits of our approach. Section 8 discusses the
issues of our approach. Section 9 concludes.

2 Background

In this section, we introduce the background of our approach.

2.1 API documentation

It is a common practice to provide API documentation in natural languages for pro-
grammers. For example, Fig. 1 shows a screen snapshot of the API documentation

Autom Softw Eng

Fig. 1 API documentation of J2SE 6.0

provided by J2SE 6.03. As a part of Java 2 SDK, Javadoc4 is a tool that is able to
generate API documentation in the HTML format from code comments for libraries
in Java. In this paper, we also use “Javadoc” to denote API documentation generated
by this tool. As required by an official guidance5, Javadoc includes top-level spec-
ifications, package specifications, class/interface specifications, field specifications,
and method specifications. In particular, each method specification may include its
expected behavior, state transitions, ranges of valid argument values, null argument
values, range of return values, defined algorithms, OS/hardware dependencies, al-
lowed implementation variances, causes of exceptions, and security constraints.

When developers write Javadocs, they should follow some conventions and styles.
For example, another official guidance6 introduces some conventions for writing
Javadocs. As shown in Fig. 2, the expected behavior of a method is described typi-
cally under the “Method Summary” topic or the “Constructor Summary” topic items
by items. In this paper, we refer to the expected behavior of a method as the method
description of the method. In most cases, method descriptions start with a verb phrase
that describes specific actions against some resources. Besides method descriptions,
generated Javadocs typically include inheritance relations among classes/interfaces
as shown in Fig. 3.

API documentation besides Javadocs typically also includes method descriptions
and inheritance relations. For example, Fig. 4 shows some captured contents from the
MSDN library7. In MSDN, method descriptions are under the “Constructors” topic
and the “Methods” topic, and inheritance relations are under the “Inheritance Hier-
archy” topic. Our approach infers specifications from method descriptions and inher-
itance relations, and is general since API documentation typically includes method
descriptions and inheritance relations.

3http://java.sun.com/javase/6/docs/api/.
4http://java.sun.com/j2se/javadoc/.
5http://java.sun.com/j2se/javadoc/writingapispecs/index.html.
6http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html.
7http://msdn.microsoft.com/en-us/library/ff361664(v=VS.100).aspx.

http://java.sun.com/javase/6/docs/api/
http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc/writingapispecs/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://msdn.microsoft.com/en-us/library/ff361664(v=VS.100).aspx

Autom Softw Eng

Fig. 2 Method descriptions

Fig. 3 Inheritance relations

2.2 Resource usage

There are many resources such as files, memories, and database connections in API
libraries. When programmers use these resources, some rules should be followed.
For example, a resource should be eventually closed after it is allocated. In particular,
Fig. 5 shows the specification template proposed by Kremenek et al. (2006). In their
specification template, ro denotes allocators of resources, and co denotes deallocators
of resources. As described by the template, if programmers use a resource correctly,
it leads to the OK state, and if not, it leads to the Bug state.

Our approach also uses a template as shown in Fig. 6 to describe resource usages.
Instead of two types of methods defined in Fig. 5, our approach defines five types of
methods: creation, lock, manipulation, unlock, and closure as follows.

Creation methods represent actions that create or return created resources (e.g.,
create, open, and connect).

Lock methods represent actions that lock created resources (e.g., lock and acquire).
Manipulation methods represent actions that manipulate created resources (e.g.,

get, set, and various other actions).

Autom Softw Eng

Fig. 4 Selected contents from MSDN

Fig. 5 Specification template proposed by Kremenek et al.

Fig. 6 Specification template
defined in our approach

Unlock methods represent actions that unlock locked resources (e.g., unlock and
release).

Closure methods represent actions that release created resources (e.g., destroy,
close, and free).

The creation methods of our template are equal to the ro methods in Fig. 5, and
the closure methods of our template are equal to the co methods in Fig. 5. Different

Autom Softw Eng

from the template in Fig. 5, our template does not show the transitions that lead to
defects explicitly. In Sect. 2.3, we further discuss caused defects when programmers
do not follow our template to use resources.

2.3 Related defects

Defects may be introduced in client code if programmers do not follow our template
to use resources. We summarize some types of defects as follows.

Defect 1: In this type of defects, client code manipulates a resource without creating
the resource. This type of defects will lead to exceptions if the corresponding code
is executed once.

Defect 2: In this type of defects, client code creates resources but never closes re-
sources. This type of defects will exhaust resources if the corresponding code is
executed many times.

Defect 3: In this type of defects, client code locks resources but never unlocks re-
sources. This type of defects will lead to deadlock if the corresponding code is
executed once.

Defect 4: Some resources such as resultset in Java as described in Sect. 1 do
not have explicit creation methods, and these resources are still necessary to be
closed after they are manipulated. In this type of defects, client code manipulates
resources but never closes resources. This type of defects will exhaust resources if
the corresponding code is executed many times.

To detect the preceding types of defects, our approach defines the following crite-
ria for resources correspondingly:

Cr/M: A manipulated resource should be already created if a resource has manipu-
lation methods and creation methods.

Cr/Cl: A created resource should eventually be closed if a resource has creation
methods and closure methods.

L/U: A locked resource should eventually be unlocked if a resource has lock methods
and unlock methods.

M/Cl: A manipulated resource should be closed eventually if a resource has manipu-
lation methods and closure methods. This criterion is necessary because a resource
may not have creation methods. In such a circumstance, the criteria Cr/M and Cr/Cl
are not applicable.

3 Example

In this section, we use a resource in J2EE named CCIConnection to illustrate the
main steps of our approach and how to use the inferred specification to detect defects.

3.1 Inferring specifications

Our approach consists of three main steps to infer specifications from API documen-
tation.

Autom Softw Eng

The first step is to extract method descriptions and class/interface hierarchies from
API documentation. In this example, from its Javadoc8, our approach extracts three
method descriptions of the javax.resource.cci.Connection interface as fol-
lows:

createInteraction(): “Creates an interaction associated with this connec-
tion.”

getMetaData(): “Gets the information on the underlying EIS9 instance repre-
sented through an active connection.”

close(): “Initiates close of the connection handle at the application level.”
The second step is to build an action-resource pair from each method description.

For a method, its action-resource pair denotes what action the method takes on what
resource. In this example, our approach builds the action-resource pairs for the three
methods as follows:

createInteraction():〈create, connection〉.
getMetaData():〈get, connection〉.
close():〈close, connection〉.
As method descriptions are written in natural languages, it is difficult to define

simple templates to extract action-resource pairs. In particular, the actions of cre-
ateInteraction() and getMetaData() are predicate verbs, whereas the action
of close() is an accusative object. Although the resources of all the three methods
are preposition objects, there are multiple preposition objects in one description, and
the locations of these resources are different. Here, if we simply pick those common
concrete nouns as resources, we may mix specifications of different resources and
infer false specifications (see Sect. 8.1 for details). Our approach leverages an NLP
technique to extract action-resource pairs accurately (see Sect. 5.2 for details).

The final step is to infer automata for resources based on action-resource pairs and
class/interface hierarchies. First, for each class/interface, our approach groups meth-
ods into categories according to resource names and class/interface hierarchies. In
this example, the three methods are grouped into one category since their resources
are of the same name and the three methods are declared by the same interface. Sec-
ond, in each category, our approach maps methods to different types according to
their actions. In this example, our approach maps the three methods to their types as
follows:

createInteraction() → a creation method.
getMetaData() → a manipulation method.
close() → a closure method.
Finally, in each category, our approach builds an automaton based on our prede-

fined specification template shown in Fig. 6. Figure 7 shows the inferred specification
for the resource of interest. Our approach tailors our specification template to build
the automaton shown in Fig. 7 (see the end of Sect. 5.3 for details).

8http://java.sun.com/j2ee/apidocs-1_5-fr/javax/resource/cci/Connection.html.
9Enterprise Information System (EIS).

http://java.sun.com/j2ee/apidocs-1_5-fr/javax/resource/cci/Connection.html

Autom Softw Eng

Fig. 7 Resource specifications

3.2 Detecting defects

To confirm the usefulness of an inferred specification, we need to investigate whether
we can detect defects from violations of the specification. In this example, we can
check whether close() is eventually called in all possible execution paths of a code
snippet for violations of the specification as shown in Fig. 7. In fact, we did find such
a violation in a code snippet as follows:

public float getHomeEquityRate(){
...
try{

javax.resource.cci.Connection myCon
= connFactory.getConnection();

javax.resource.cci.Interaction interaction
= myCon.createInteraction();

...
myCon.close();
...

}catch(Exception e){
e.printStackTrace();

}
}

In this code snippet, a local variable named myCon is not closed in the exception
clause. The violation is determined as a suspected defect since unclosed connections
may cause memory leaks. Such a case shows that the specification shown in Fig. 7
is useful to detect defects. Here, although Java has a garbage-collector-enabled plat-
form, unclosed connections may still cause memory leaks. For example, the Oracle
9i JDBC Developer’s Guide and Reference (Perry et al. 2002) warns “If you do not
explicitly close your ResultSet and Statement objects, serious memory leaks could oc-
cur”. The work proposed by Xu and Rountev (2008) also focuses on memory leaks
in Java programs.

4 Related work

In this section, we introduce related approaches and discuss their differences from
our approach.

4.1 Mining specifications

As client projects contain many valuable usages of libraries, many approaches
have been proposed to mine specifications from client code statically or dynami-
cally. These mining approaches can be divided into automata-based approaches and
sequence-based approaches based on their outputs.

For automata-based approaches, Ammons et al. (2002) proposed an approach
and its supporting tool Strauss that uses an extended k-tails algorithm (Raman and

Autom Softw Eng

Patrick 1997) to mine automata from execution traces that are related by traditional
dataflow dependencies. Lo and Khoo (2006) improved Strauss by introducing cluster-
ing techniques to refine traces before the mining process. Whaley et al. (2002) mined
automata-like models from execution traces and refine these models using code anal-
ysis. Kremenek et al. (2006) used Bayesian learning to match methods with a prede-
fined automata template for specifications. Alur et al. (2005) used randomly gener-
ated test cases as clients and use Angluin’s algorithm (Rivest and Schapire 1993) to
infer automata from call sequences that do not throw exceptions. Gowri et al. (2005)
also used a client emulator as clients, and their approach uses some analysis results
such as objects’ relationships, internal states, and their specifications of libraries.
Gabel and Su (2008) proposed a symbolic algorithm based on binary decision di-
agrams to mine automata from execution traces. Gabel and Su (2010) proposed an
approach that mines automata and detects anomalies online. Lee et al. (2011) ap-
ply a trace slicer before mining, and thus their approach is able to mine parametric
specifications in the form of automata.

For sequence-based approaches, Engler et al. (2001) used the Z-statistic value as
the support to mine frequent call pairs from source files. Yang et al. (2006) pro-
posed an algorithm to mine call pairs from execution traces. Weimer and Necula
(2005) proposed an approach to mine and filter method pairs from execution traces.
Li and Zhou (2005) used frequent itemset mining to extract implicit programming
properties and detect their violations for detecting bugs. Livshits and Zimmermann
(2005) proposed an approach of mining properties from software revision histories.
Wasylkowski et al. (2007) used frequent sequence mining to mine frequent call se-
quences from clients and use anomalies to detect bugs in client code. Ramanathan
et al. (2007) used frequent sequence mining to mine frequent call sequences from
execution traces extracted statically in client code. Zhong et al. (2008a) proposed
an early filtering approach to improve accuracies of existing approaches. Zhong et
al. (2009a) proposed an approach that combines clustering with sequence mining to
mine context-sensitive specifications from client code. Acharya et al. (2007) proposed
an approach that mines partial orders of API methods from client code. Acharya and
Xie (2009) proposed an approach that mines error-handling specifications for proce-
dural languages such as Thummalapenta and Xie (2009b) proposed an approach that
mines specifications combining frequent call sequences and return values. Thum-
malapenta and Xie (2009a) proposed an approach that mines specification particu-
larly for handling exceptions. Gabel and Su (2010) proposed an approach that infers
and enforces specifications from execution history online. Lo and Maoz (2010) com-
bined sequence mining with invariant mining to mine live sequence charts.

Most of these preceding previous approaches use existing client code as an in-
put. When a library is not popular or new, its clients are difficult to find, and ran-
domly generated test cases may not reflect real usages of libraries. Our previous work
(Thummalapenta and Xie 2008) shows that even in a popular library, some methods
or classes are rarely used. As our approach does not need client code, it is able to infer
specifications when these methods have descriptions, complementing these previous
approaches. These inferred specifications can be used to detect bugs when developers
leverage libraries to develop client code.

Arnout and Meyer (2003) proposed an approach to manually extract contracts
from .NET documents. Their inferred contracts consist of invariant-like precondi-

Autom Softw Eng

tions and postconditions and do not capture legal call sequences as our approach
does. Tan et al. (2007) proposed iComment that extracts rules from rule-containing
comments in source files. One such comment is the comment of free_irq() in
the Linux kernel: “This function must not be called from interrupt context”. iCom-
ment first identifies rule-containing comments using a trained decision tree and then
uses a set of templates to infer rules from these comments. In this example, the cor-
responding template is “〈FA〉 must (NOT) be called from 〈FB〉”. iComment further
uses extracted rules to find inconsistencies between comments and code. These rules
can be considered as specifications. Although both iComment and our approach infer
specifications from texts in natural languages, our approach differs from iComment
as follows. First, our approach focuses on inferring resource specifications from API
documentation, whereas iComment focuses on inferring general specifications from
comments. Second, each specification inferred by our approach is implicit in multiple
textual descriptions, whereas each specification inferred by iComment is explicit in
one sentence.

4.2 Natural language analysis in software engineering

As many documents in software engineering are written typically in natural lan-
guages, it is feasible to leverage NLP techniques to analyze these documents.

Researchers have used various NLP techniques to analyze requirement documents.
Ambriola and Gervasi (1997) implemented a set of tools to aid gathering, select-
ing, and validating requirements. These tools use various NLP techniques such as
tagging, synonym analysis, and anaphora analysis. Goldin and Berry (1997) imple-
mented AbstFinder to infer abstractions from requirements. To parse requirements,
AbstFinder uses NLP techniques such as stemming and tagging. Sawyer et al. (2002)
used part-of-speech (POS) and semantic tagging to support requirement synthesis
from documents. Fantechi et al. (2003) used syntactic parsing to analyze use cases
from requirement documents. Shepherd et al. (2007) used various NLP techniques
such as stemming and POS tagging to locate and understand action-oriented con-
cerns. Gervasi and Zowghi (2005) implemented CARL that detects inconsistencies in
requirements. To parse requirements in natural languages, CARL uses various NLP
techniques such as tagging and morphosyntactic analysis. Kof (2007) used POS tag-
ging to identify missing objects and actions in requirement documents.

Researchers have used various NLP techniques to analyze bug reports and defect
reports. Gegick et al. (2010) used a prediction model to identify security bug reports
from other bug reports. Anvik et al. (2006) used support vector machines to mine
descriptions of bug reports, and predicted the developer who should deal with a given
bug report. Jeong et al. (2009) used the Markov chain model to analyze bug reports to
predict who should fix a bug report. Runeson et al. (2007) used NLP techniques such
as tokenization, stemming, vector space representation, and similarity calculation to
detect duplicated defect reports. Wang et al. (2008) further combined text analysis
with execution information of failed test cases to detect duplicated bug reports. Dag
et al. (2005) proposed a vector-space model to illustrate customer withes and re-
quirements, and use the Cosine measure to link customer withes with corresponding
requirements. Hayes et al. (2006) used various information retrieval techniques such
as latent semantic indexing to link requirements with code.

Autom Softw Eng

Our approach uses NLP techniques to infer specifications from API documenta-
tion, and API documentation is quite different in contents and structures from other
documents such as requirement documents and bug reports. In addition, our approach
first introduces a complicated NER technique to analyze documents, whereas the pre-
ceding approaches do not use such an NLP technique.

4.3 Improving documents

Jeong et al. (2009) conducted an empirical study on documentation of eSOA APIs,
and presented implications for better documentation design. Robillard and DeLine
(2011) conducted an empirical study to understand obstacles to learn APIs, and
present many implications to improve API documentation. Shi et al. (2011) con-
ducted an empirical study on API documentation evolution, and their findings are
valuable for improving API documentation. Buse and Weimer (2010, 2008) pre-
sented various automatic techniques for exception documentation and synthesizing
documentation for arbitrary programme differences across versions. Meziane et al.
(2008) proposed an approach to generate specifications in natural languages from
UML class diagrams. Dekel and Herbsleb (2009a, 2009b) proposed eMoose that
pushes and highlights those rule-containing sentences from API documentation for
developers. Stylos et al. (2009) displayed commonly used classes to help explore API
documentation. Sridhara et al. (2010) proposed an approach that infers comments of
Java methods from API code. Würsch et al. (2010) proposed an approach that sup-
ports programmers with natural language queries. Horie and Chiba (2010) proposed
an extended Javadoc tool that provides new tags to maintain crosscutting concerns in
documentation.

Their approach improves the quality of documentation, whereas our approach in-
fers specifications from API documentation and detects bugs in code.

5 Approach

The overview of our approach is shown in Fig. 8. Our approach focuses on API
documentation in the form of Javadoc. Figures 2 and 3 show several pieces of J2SE’s
Javadoc. We next present detailed steps of our approach.

5.1 Javadoc analysis

The first step of our approach is to extract method descriptions and class/interface
hierarchies from Javadocs. As shown in Fig. 2, in Javadocs, method descriptions

Fig. 8 Overview of our
approach

Autom Softw Eng

are under the “Constructor Summary” topic and the “Method Summary” topic, and
class/interface hierarchies are under the “Class Hierarchy” topic and the “Interface
Hierarchy” topic. As Javadocs are in a structured HTML format, these topics are easy
to locate. Specifically, for each method in a class, our approach locates the “Construc-
tor Summary” topic and the “Method Summary” topic by searching for the “construc-
tor_summary” anchor name and the “method_summary” anchor name. Some meth-
ods may have no descriptions, and our approach ignores these methods (see Sect. 8
for details). To extract class/interface hierarchies, our approach first searches for the
file named “package-tree.html” in the directory of each package, and then locates the
“Class Hierarchy” topic and the “Interface Hierarchy” topic through text matching.

5.2 NLP analysis

The second step of our approach is to build an action-resource pair from each
method’s description through NLP analysis. In the research field of NLP, the prob-
lem of identifying words belonging to a predefined category in a document is known
as Named Entity Recognition (NER) (Chinchor 1997). In the literature, researchers
have proposed rule-based approaches, dictionary-based approaches, and machine-
learning-based approaches to recognize those entities. In particular, rule-based ap-
proaches (e.g., Mikheev et al. 1999) use hand-crafted rules. A typical application of
rule-based approaches is to recognize email addresses where entities are clearly de-
fined through capital letters, symbols, and digits. Dictionary-based approaches (e.g.,
Cohen and Sarawagi 2004) use a large collection of names as a dictionary for entities.
A typical application of dictionary-based approaches is to recognize baseball players
where a baseball site10 has a list of all players. Machine-learning-based approaches
(e.g., Zhou and Su 2001) use mature machine learning techniques and various char-
acteristics (e.g., capitalization, digitalization, and contexts) for recognition.

As it is difficult to build hand-crafted rules or dictionaries for actions and re-
sources, we choose machine-learning-based approaches for actions and resources.
In particular, our approach uses the NER based on Hidden Markov Model (HMM)
since it is reported to perform better than other machine-learning-based approaches
(Zhou and Su 2001).

In NER, HMM is a five-tuple {Ωs,Ωo,π,A,B} where

– Ωs = {s1, . . . , sn} is the finite set of states. In our approach, these states include
action, resource, and other.

– Ωo = {o1, . . . , on} is the set of observations. In our approach, Ωs and Ωo have one-
to-one relations, and oi = 〈wi,fi〉 where wi is a word and fi = 〈FW

i ,FM
i , FPOS

i 〉.
Here, FW denotes the word feature such as capitalization and digitalization; FM

denotes the morphological feature such as prefix and suffix; FPOS denotes the
part-of-speech feature such as nouns, verbs, prepositions, adverbs, and adjectives.

– π ∈ Ωs is the initial state. In our approach, π denotes the state of the first word of
each method description.

10http://mlb.com.

http://mlb.com

Autom Softw Eng

Algorithm 1: Baum-Welch Algorithm
Input: O is the training data; ε is the threshold.
Output: λ is the trained HMM model.
begin

λ0 ← {Ωs,Ωo,π,A0,B0};
λ ← λ0;
repeat

λ′ ← λ;
λ ← compute(O,λ)

until |logP(O|λ) − logP(O|λ′)| < ε;
end

– A : Ωs × Ωs → [0,1] is the probability distribution on state transitions. For ex-
ample, A(action, resource) denotes the probability of a transition from action to
resource.

– B : Ωs × Ωo → [0,1] is the probability distribution on state symbol emissions.
For example, B(action, 〈close, f 〉) denotes the probability of observing 〈close, f 〉
when it is in the state action.

Our approach first uses the Baum-Welch algorithm (Baum et al. 1970) as shown
in Algorithm 1 to train the parameters (A and B) from manually tagged method
descriptions. In Algorithm 1, λ0 is estimated by experiences. Given the training data
with m tagged method descriptions (O1O2 . . .Om) and an HMM model (λ), in each
iteration, the new parameters (A and B) are calculated as follows:

âij =
∑m

t=1 γij (t)
∑m

t=1
∑

k γik(t)
(1)

ˆbjk =
∑m

t=1,ot=vk

∑
l γj l(t)

∑m
t=1

∑
l γj l(t)

(2)

In (1) and (2), γij (t) is calculated as follows:

γij (t) = ai(t − 1)aij bjkβj (t)

P (O|λ)
(3)

In (3), βi(t) is calculated as follows:

βi(t) =

⎧
⎪⎨

⎪⎩

0 si(t) �= s0(t) and t = m

1 si(t) = s0(t) and t = m
∑

j βj (t + 1)aij bjkOt+1 otherwise

(4)

The training process as shown in Algorithm 1 builds a model with two parameters
(A and B) to describe characteristics of actions and resources. After training, our
approach then uses the Viterbi algorithm (Viterbi 1967) as shown in Algorithm 2 to

Autom Softw Eng

Algorithm 2: Viterbi Algorithm
Input: λ is the trained HMM model; o1o2 . . . om is a method description.
Output: s1s2 . . . sm are the corresponding tags;

score1score2 . . . scorem are the corresponding scores.
begin

for i = 1 to m do
δ1(i) ← πibi(o1);
ψ1(i) ← 0;

n ← |λ.Ωs |;
for t = 2 to m do

for j = 1 to n do
δt (j) ← max

1≤i≤n
[δt−1aij]bj (oi);

ψ1(i) ← arg max
1≤i≤n

[δt−1(i)aij];

sm ← arg max
1≤i≤n

[δm(i)];
scorem ← δm(sm);
for t = m − 1 to 1 do

st ← ψt+1(st+1);
scoret ← δt (st);

end

tag method descriptions with scores based on the trained model, and Algorithm 2
uses the two trained parameters (A and B). In one method description, more than one
word may be tagged as actions or resources. Our approach chooses the action and the
resource both with the highest scores to build the action-resource pair for the method.
Here, descriptions of some methods may not contain actions and resources. One such
description is “This method is not supported in the RtfWriter”. Our approach does not
tag actions and resources for these descriptions since no words in these descriptions
have common characteristics of actions or resources. Our approach does not build
action-resource pairs for these methods and ignores them in the third step.

5.3 Automata inference

The final step of our approach is to infer automata for resources from action-
resource pairs and class/interface hierarchies. For each class/interface, our approach
first groups methods declared by the class/interface or the class/interface’s super-
classes/superinterfaces into categories since a class and its superclass may access one
resource. In each category, resources of methods are of the same name. For example,
Fig. 9 shows an interface hierarchy involving three interfaces. Our approach builds
the action-resource pairs from the method descriptions as follows:

java.nio.channels.Channel.close()

〈close, channel〉←“Closes this channel.”
java.nio.channels.GatheringByteChannel.write()

Autom Softw Eng

Fig. 9 Hierarchical tree

〈write, channel〉←“Writes a sequence of bytes to this channel from the given
buffers.”

java.nio.channels.ReadableByteChannel.read()

〈read, channel〉←“Reads a sequence of bytes from this channel into the given
buffer.”

Here, “buffer” is not recognized as a resource because its score is lower than
“channel” in these two descriptions. Our approach next groups the methods for the
three interfaces as follows:

java.nio.channels.GatheringByteChannel

{write(), close()}
java.nio.channels.ReadableByteChannel

{read(), close()}
java.nio.channels.Channel

{close()}
Our approach puts these methods into categories based on their resource names

and interface inheritances. Our approach does not group read() and write()

into one category since their declaring interfaces are not subinterface and su-
perinterface. To distinguish resources in different categories, we use “resource
name@class/interface name” to denote the resource of one category for a class/
interface.

After grouping, our approach further maps methods in each category to our prede-
fined types according to their actions. If a method’s action is within the representative
actions, our approach simply maps the method to the type. Otherwise, our approach
maps the method by synonyms of its action using a synonym dictionary named Word-
Net (Fellbaum et al. 1998). If using synonyms still fails to resolve a method’s action,
we map the method into a manipulation method since most methods are manipulation
methods. For example, as shown by its document11, the java.io.InputStream

class has 9 methods. Among these methods, only one method (i.e., the close()

method) is a closure method, and all the other methods are manipulation methods.
Our approach then builds an automaton for each category based on our predefined

specification template (see Sect. 8.3 for the discussion on extensions of the specifi-
cation template). In each category, our approach associates methods of each type to
the type’s corresponding transition in the specification template. In practice, some re-
sources may have no methods of specific types and their automata need to be tailored.
Our approach deletes transitions without any associated methods from our template
and merges corresponding states. In the example shown in Sect. 3, as the resource has
no lock methods, our approach deletes the transition labeled with “lock” and merges
the exiting state and the entering state of the transition into one state. Our approach

11http://download.oracle.com/javase/1.5.0/docs/api/java/io/InputStream.html.

http://download.oracle.com/javase/1.5.0/docs/api/java/io/InputStream.html

Autom Softw Eng

Table 1 Subjects
Library Version # Method # Description

J2SE 5.0 25675 23829

J2EE 5.0 5670 5611

JBoss 4.0.5 26053 13869

iText 2.1.3 5846 4299

Oracle 10.1.0.5 2140 1916

Total 65384 49524

also deletes the transition labeled with “unlock” and merges the corresponding states
since the resource has no unlock methods either. Thus, our approach builds the au-
tomaton shown in Fig. 7 from the specification template shown in Fig. 6. Here, some
resources have only one type of method, and their inferred automata have only one
state consequently. Our approach discards these automata since they are not helpful
to detect defects.

6 Evaluations

We implemented a tool for our approach and conducted a series of evaluations using
the tool. Our evaluations focus on three research questions as follows:

1. Can our approach perform well on real scale libraries (Sect. 6.1)?
2. What is the quality of inferred specifications (Sect. 6.2)?
3. Can inferred specifications be useful to detect defects (Sect. 6.3)?

In our evaluations, we manually tagged actions and resources for the descriptions
of 687 methods in the J2SE Javadoc in one day, and trained Doc2Spec using these
tagged descriptions in about ten seconds. We then used the trained Doc2Spec to in-
fer resource specifications for five libraries as shown in Table 1. In Table 1, Column
“Library” lists the names of the five used libraries. In the rest of the paper, we use
“Oracle” to denote Oracle JDBC driver. For each library, column “# Method” lists
the number of methods. Column “# Description” lists the number of methods with
descriptions. We notice that each library has some methods without descriptions. Al-
though only a small percentage of the total methods do not have descriptions in J2SE,
J2EE, and Oracle, there are many methods without descriptions in JBoss and iText.
We further discuss the impact of methods without descriptions on our approach in
Sect. 8.3.4. We conducted all the evaluations on a PC with an Intel Pentium 2.26 GHz
CPU and 1512M memory running Windows 2000 professional.

6.1 RQ1: Can our approach perform well on real scale libraries?

To evaluate the first research question, we used our implemented tool to infer speci-
fications from the Javadocs of all the libraries shown in Table 1. Figure 10 shows six
example inferred specifications. In a specification, the text box shows the resource,
and the automaton shows the call relationship of the related methods. Each inferred
specification describes some actions against a resource.

Autom Softw Eng

Fig. 10 Example inferred specifications

Table 2 Top ten actions
Rank J2SE J2EE JBoss iText Oracle

1 return create return check return

2 create return create add get

3 determine add get get close

4 get get check return retrieve

5 retrieve set destroy change create

6 extract close close create execute

7 set write start set register

8 insert start connect remove allow

9 check stop stop write write

10 close check lock close check

For the inferred specifications, Table 2 shows the top ten actions, and Table 3
shows the top ten resources. In the two tables, columns “Rank” list ranks by fre-
quencies of actions/resources, and columns of library names list corresponding ac-
tions/resources. In Table 2, we show the top ten actions that exist in all the five li-
braries with bold fonts. We find that the five actions such as return, create, get, check,
and close exist in all the five libraries. From our results, methods typically provide
similar actions even when methods are from different libraries. As actions are limited
in number, limited resource templates may be sufficient to describe actions against
resources. We also tried to find similar resources across libraries, but from the results
of Table 3, resources are relatively complicated. Some resources such as connection,
element, and stream exist in most of the five libraries, but we cannot find even one
top-ten resource that exists in all the five libraries. It seems that resources are spe-
cific to libraries and thus are challenging for analysis. We further discuss issues on
resources in Sect. 8.1.

Autom Softw Eng

Table 3 Top ten resources

Rank J2SE J2EE JBoss iText Oracle

1 object element element object connection

2 DynAny connection field document statement

3 objectImpl folder connection element datasource

4 stream transaction node stream clob

5 context consumer queue font transaction

6 node service message section cache

7 document context client content blob

8 socket stream service phrase lob

9 channel message servlet profile datum

10 element producer module node file

Fig. 11 Percentages of
specifications that involve
specific numbers of methods

Fig. 12 Percentages of
specifications that involve
specific numbers of
classes/interfaces

To analyze the distribution of specifications in each library, we further present
Figs. 11 and 12. In the two figures, the vertical axes show the names of the libraries,
and horizontal axes show percentages of specifications that involve specific numbers
of methods or classes/interfaces. For example, the black bar of “J2SE” in Fig. 11
shows that 69.1% of the specifications inferred from the Javadoc of J2SE have 2 or
3 methods. Overall, the results indicate that our approach is able to infer various and
complex specifications, although most of the inferred specifications involve only one
or two classes/interfaces and fewer than five methods.

When our tool inferred specifications, we recorded related data during documen-
tation analysis and specification inference for each library, and Table 4 shows the

Autom Softw Eng

Table 4 Performance of
Doc2Spec Library # Spec Doc Time Spec Time

J2SE 3250 0.12 0.73

J2EE 83 1.15 1.82

JBoss 373 1.15 0.38

iText 243 0.46 0.22

Oracle 32 0.88 0.70

Total 3981 0.27 0.68

results. In Table 4, column “#Spec” lists the number of inferred resource specifi-
cations. Column “Doc Time” lists average times used to extract method descriptions
and class/interface hierarchies for each specification in seconds. Column “Spec Time”
lists average times used to infer specifications based on the extracted information for
each specification in seconds. Row “Total” lists total numbers for these columns.

From the results in Table 4, we have the following observations. First, for all the
five libraries, both the time used to extract method descriptions and the time used
to infer specifications are acceptable, and it takes less than one second to infer a
specification on average. Second, the time used to infer specifications of J2SE is
much longer than the time of other libraries. We suspect the reason to be that there
are much more inferred specifications for J2SE. Finally, for each library, the time
used to extract method descriptions is largely proportional to the number of methods
in the library. This observation indicates that extraction of method descriptions and
class/interface hierarchies in Doc2Spec is scalable.

6.2 RQ2: what is the quality of inferred specifications?

To further investigate whether inferred specifications are accurate, we compared these
inferred specifications with a golden standard. To prepare a golden standard for each
library, we first grouped the class/interface hierarchies in the library, so that the hi-
erarchies in each group are of the same maximum depth of inheritance. For each
library, we then randomly selected one hierarchy from each group and manually built
resource specifications for all the classes/interfaces within these selected hierarchies
based on manually reading their Javadocs.

Table 5 shows the results. Column “# Hierarchy” lists numbers of selected hierar-
chies in each library. Column “# Spec” lists numbers of manually built specifications
for each selected hierarchy. In statistical classification (Olson 2008), Precision for a
category is the number of true positives divided by the total number of items labeled
as belonging to the positive category, Recall is the number of true positives divided by
the total number of items that actually belong to the positive category, and F-score is
the weighted harmonic mean of Precision and Recall. In our comparison, Precision,
Recall, and F-score are defined as follows.

Precison = true positives

true positives + false positives
(5)

Recall = true positives

true positives + false negatives
(6)

Autom Softw Eng

Table 5 Precisions, Recalls,
and F-scores of inferred
specifications

Library # Hierarchy # Spec Precision Recall F-score

J2SE 8 41 80.2% 82.2% 81.2%

J2EE 7 30 70.7% 79.3% 74.8%

JBoss 8 37 81.5% 74.0% 77.6%

iText 6 22 86.5% 85.2% 85.8%

Oracle 5 17 82.3% 86.2% 84.2%

F -score = 2 × Precision × Recall

Precision + Recall
(7)

In the preceding formulae, true positives represent those transitions that exist in
both the inferred specifications and the golden standard; false positives represent
those transitions that exist in the inferred specifications but not in the golden stan-
dard; false negatives represent those transitions that exist in the golden standard but
not in the inferred specifications. We choose to calculate these statistical values by
transitions since each transition can be used to detect defects instead of a whole spec-
ification.

The results show that our approach achieves reasonable precisions, recalls, and
F-scores on all these libraries. The results also show that to infer specifications from
a library, our approach does not require the training corpora to be from the same li-
brary because our approach achieves similar precisions, recalls, and F-scores for all
the five libraries although we tagged method descriptions of only J2SE as the training
corpora. A potential explanation lies in that most developers of API documentation
follow a similar style to write Javadocs of libraries. Consequently, users of our ap-
proach can rely on a set of universal training corpora to deal with Javadocs instead
of taking on the burden of preparing training corpora before taking advantage of our
approach.

In summary, the statistics of resource specifications inferred by Doc2Spec show
that our approach is able to infer various resource specifications from Javadocs of the
five libraries and our approach is able to achieve relatively high precisions, recalls,
and F-scores on specification inference. Still, we agree that it is quite important to
further improve our approach for practical usages. In Sect. 8.2, we discuss issues to
reduce false positives of our approach.

6.3 RQ3: can inferred specifications be useful to detect defects?

This evaluation aims to investigate whether programmers violate inferred specifica-
tions and thus introduce defects in true practice, so we used the inferred specifications
to detect defects in open source projects.

6.3.1 Defect detection infrastructure

We implemented an infrastructure to automate this evaluation. For a specification,
our infrastructure first searches for the specification’s related code snippets from the

Autom Softw Eng

Table 6 Results of found
violations Library API clients Violations

Cr/Cl L/U M/Cl Cr/M

J2SE 46 32 3 47 0

J2EE 23 8 2 32 0

JBoss 45 27 62 101 0

iText 9 11 0 4 0

Oracle 15 20 0 34 0

Total 138 383

Internet using Google code search engine12 (GCSE) and downloads these code snip-
pets to local directories. For a method in a specification, our infrastructure uses the
method name and the full name of the method’s declaring class as the query of GCSE
to search for related code snippets.

To parse partial code of downloaded code snippets, our infrastructure uses a partial
parser (Dagenais and Hendren 2008) to resolve class types and to build control-flow
graphs. Our infrastructure uses inter-procedural analysis but limits the analysis within
the same class since code snippets from GCSE are partial. After that, our infrastruc-
ture checks whether the downloaded code snippets violate the inferred specification
using the resolved types and the built control-flow graphs.

Our infrastructure uses the criteria as shown in Sect. 2.3 to detect violations of
inferred specifications. In particular, if a resource is declared by a method as a local
variable, our infrastructure checks the method’s control-flow using the criteria defined
in Sect. 2.3. If a resource is declared by a class as a field, our infrastructure checks
whether two types of methods involved in the criteria are both called in the class’s
methods. For example, if a class declares a file as a field and opens the file in a
method of the class, the class should also close the file in some method of the class.
Otherwise, the class contains an “Cr/Cl” violation. Note that this requirement may be
too strict and thus cause false positives.

6.3.2 Detected violations

Table 6 shows the results. Column “API clients” lists the number of client projects
with violations. These API clients are all from released versions of mature software.
Column “Violations” lists the number of code snippets with found violations. Its sub-
columns list the number of violations detected by the corresponding criterion.

We manually inspected violations detected by our infrastructure. Among the vi-
olations, we identified those that we were able to determine not to be defects. We
refer to these identified violations as false positives. Furthermore, we investigated the
possible reasons that cause the false positives. We refer to the remaining violations
as suspected defects.

Due to human factors for determining defects, these suspected defects may con-
tain both false and real defects. We further analyze the causes of these suspected

12http://www.google.coM/Clodesearch.

http://www.google.coM/Clodesearch

Autom Softw Eng

Table 7 Results of violation analysis

Library Suspected defects False positives

Cr/Cl L/U M/Cl Cr/M Spec Partial Strict Doc

J2SE 2 0 9 0 4 17 16 34

J2EE 2 0 14 0 2 8 6 10

JBoss 4 11 31 0 7 59 34 44

iText 4 0 0 0 0 4 2 5

Oracle 11 0 12 0 0 13 11 7

Total 100 283

defects. Table 7 shows the results. Column “Suspected defects” lists the number of
code snippets with suspected defects. Sub-columns of column “Suspected defects”
list the number of suspected defects detected by the corresponding criterion. Col-
umn “False positives” lists the number of false positives, and its sub-columns list
the numbers of false positives caused by different factors. In particular, sub-column
“Spec” represents false positives caused by incorrectly inferred specifications. Sub-
column “Partial” represents false positives caused by the imprecision of partial anal-
ysis. Sub-column “Strict” represents false positives caused by the strict requirement
in our infrastructure to detect defects. For example, it is possible that a class returns
the file to other classes and lets other classes close the file, and such a situation causes
false positives. Sub-column “Doc” represents false positives caused by flaws in API
documentation (see Sect. 8.3 for such an example).

From the results in Tables 6 and 7, we have the following observations. First, our
infrastructure detected 383 violations in total, including 283 false positives. That is
to say, 73.9% of the found violations are false positives (see Sect. 8.2 for the dis-
cussion on the false positive rate). Second, most of the found violations are “Cr/Cl”
and “M/Cl” violations, and we did not find any “Cr/M” violation. We suspect the
reason to be that most code snippets from open source projects may have been tested
by developers. As “Cr/M” violations can cause serious problems such as exceptions
that are easy to observe, developers may have found these violations and fixed them,
whereas other violations may cause problems such as memory leaks that are not easy
to observe. Third, as shown in sub-column “Spec” of Table 6, incorrectly inferred
specifications are not the main factor of false positives. Finally, many false positives
are caused by flaws in API documentation. This factor seems to reflect a disadvantage
of our approach. However, as these false positives can draw library developers’ atten-
tion to flaws in API documentation, these library developers may use the reported
violations to improve the quality of API documentation (see Sect. 7 for details).

6.3.3 Confirmed defects

To better validate the suspected defects, we used the following procedure to determine
whether they are real defects. First, we checked the latest version of the project to de-
termine whether a suspected defect is already fixed. If so, we deemed that we found
a previously known real defect. For example, with our infrastructure, we found a sus-
pected defect of an unclosed input stream in the JBoss application server as shown

Autom Softw Eng

Fig. 13 A confirmed defect in the JBoss application server

Fig. 14 The partial inferred
specification for
java.io.InputStream

in the left code snippet of Fig. 13. Our infrastructure detected suspected defect since
it violates an inferred specification. In the J2SE’s Javadoc, the method description of
the read(byte[] b) method is “Reads some number of bytes from the input stream
and stores them into the buffer array b”, and the method description of the close()
method is “Closes this input stream and releases any system resources associated
with the stream”. Figure 14 shows the corresponding inferred specification. The sus-
pected defect violates the specification since it never closes an input stream after it
reads its contents.

We checked JBoss’s latest version and confirmed that this suspected defect is a real
defect. In particular, the left code snippet of Fig. 13 shows the found suspected defect
in JBoss 2.4.11, and the right code snippet of Fig. 13 shows how the suspected defect
is fixed in JBoss 4.2.0. Second, if a suspected defect of a project is not fixed even in
the latest version, we submitted the suspected defect as a defect report to the project’s
defect repository or contacted the project’s developers through emails. If developers
of the project confirmed that the suspected defect is a real defect, we deemed that
we found a previously unknown defect. If developers of the project confirmed that a
suspected defect is not a defect, we deemed it as a false defect. For those bug reports
or bug-reporting emails that developers of the project have not responded yet, we
deemed them as pending defects.

Table 8 shows the results. Column “Checked” lists total numbers of checked de-
fects by the preceding procedure. Column “Confirmed” lists numbers of confirmed
defects, and its sub-columns list the numbers of previously known and unknown de-
fects. Column “False” lists numbers of suspected defects that the developers con-
firmed as false defects. The results of Table 8 show that we found 35 confirmed real
defects through the preceding procedure, including 5 previously unknown defects.

protected DocData getNextDocData()throws ...{
...
BufferedReader reader = new BufferedReader(new FileReader(f));
String dateStr = reader.readLine();
...
return dd;

}

Autom Softw Eng

Table 8 Confirmed defects by
developers Library Checked Confirmed False

Known Unknown

J2SE 10 9 0 1

J2EE 8 7 0 1

JBoss 19 14 1 4

iText 0 0 0 0

Oracle 4 0 4 0

Total 41 30 5 6

Table 9 Confirmed defects by
testing Library Tested Confirmed False

J2SE 1 1 0

J2EE 8 7 1

JBoss 27 25 2

iText 4 1 3

Oracle 19 19 0

Total 59 53 6

We further manually construct test cases to confirm the rest of suspected defects,
and Table 9 shows the results. Column “Tested” lists the number of suspected defects
under testing. Column “Confirmed” lists the number of confirmed defects. Column
“False” lists the number of suspected defects that we cannot construct appropriate test
cases to reveal these defects. The results of Table 9 show that we found 53 confirmed
defects through testing. The appendix of our paper lists some found defects.

In summary, from the results of Tables 8 and 9, we find that 88 confirmed defects
totally. Among them, developers of the open source projects confirmed 5 defects,
which were previously unknown. The results confirm that inferred specifications are
useful to detect defects in true practice.

6.4 Threats to validity

The threat to external validity includes the representativeness of the subjects in true
practice. Although we applied our approach on the Javadocs of five open source and
commercial libraries, our approach is evaluated only on the Javadocs of these lim-
ited libraries. The threat could be reduced by more evaluations on more subjects in
future work. The threat to internal validity includes human factors for determining
defects. To reduce the threat, we inspected defects carefully and contacted develop-
ers to confirm these defects. The threats could be further reduced by involving more
experienced developers in future evaluations. The threat to internal validity also in-
cludes human factors for tagging actions and resources to train our model. To reduce
the threat, we tagged these actions and resources carefully. The threats could be fur-
ther reduced by involving more experienced developers and tagging more documents
for our training process.

Autom Softw Eng

7 Benefits of our approach

To our knowledge, our work is the first approach that infers specifications from API
documentation. In this section, we analyze the benefits of our approach over existing
approaches or practices.

7.1 Mining specifications from client code

Our previous work (Thummalapenta and Xie 2008) shows that coldspots are quite
common in libraries. Coldspots of libraries represent those methods and classes that
are rarely used by existing client code. In particular, our previous studies (Thum-
malapenta and Xie 2008) show that in all eight widely used libraries, coldspots are
more than the sums of hotspots and neutrals. In literature, most existing approaches
mine specifications from client code (see Sect. 4.1 for details), and these approaches
may fail to mine specifications for those coldspots since coldspots have no sufficient
client code. Although coldspots are not as popular as those hotspots in some cases,
programmers may still use coldspots, and can introduce defects into code under de-
velopment if they do not use coldspots correctly. As our approach does not need client
code, it is able to infer specifications for both hotspots and coldspots, complementing
existing approaches.

7.2 Inferring specifications from comments

Tan et al. (2007) proposed the first approach that infers rules from comments within
source code. We used all the rule templates listed in Table 2 of their paper (Tan
et al. 2007) to query the API documentation of J2SE 1.5, and we found only 11
exactly matched sentences. Padioleau et al. (2009) report that iComment (Tan et al.
2007) leveraged only 1% of comments since most comments do not explicitly contain
rules. Our approach is able to infer various specifications from API documentation,
complementing their approaches.

7.3 Detecting defects in API documentation

As shown in Table 6, many false positives are caused by defects in API docu-
mentation. For example, Fig. 10a shows an inferred specification for the resource
socket@java.net.Socket. When we used this specification to find defects, we
found that in many code snippets, close() is not called after connect(). We fur-
ther checked these code snippets, and we found that in the J2SE library, a socket is
often associated with an input stream. When the input stream is closed, the socket is
automatically closed. As this usage is contrary to normal expectations, some devel-
oper has submitted a defect report to the J2SE defect database13 (see Defect #4118429
for details). This reported defect is confirmed as a real defect by J2SE developers.
Although we count these violations as false positives in Table 6, our observation sug-
gests that our approach can also be used to find defects in API documentation.

13http://defects.sun.com/defectdatabase/.

http://defects.sun.com/defectdatabase/

Autom Softw Eng

In addition, some inferred specifications are imbalanced, and these imbalanced
specifications can provide insights for library developers to improve API implemen-
tation or documentation. For example, the resource shown in Fig. 14 has a closure
method, but does not have a corresponding creation method. We checked its doc-
ument14, and we found that the resource has no explicit creation methods. Library
developers may implement such a method, or add documents to explain the existing
implicit creation method (i.e., the InputStream() constructor).

8 Discussion and future work

In this section, we discuss various issues that are related to our approach.

8.1 Resource analysis

One class/interface may have more than one resource. For each resource, our ap-
proach infers an automaton. For example, Figs. 10c and d show two inferred specifi-
cations for one class WebModuleFactory. If we simply select those common con-
crete nouns as resources, we would mix the two automata and infer a false specifica-
tion because from their documentation15 the descriptions of the four methods use the
same common concrete noun “JSR-77”. Resource analysis may help us infer more
complicated specifications. In the preceding example, if we consider the relation be-
tween WebModule and Servlet, it may be feasible to combine the specification
shown in Fig. 10c and the specification shown in Fig. 10d into a more complicated
specification. In future work, we plan to take semantic relationships among resources
into consideration and infer more complicated specifications.

In addition, we found that some resources of different names refer to the same re-
source. For example, “Document”, “RtfDocument”, and “RTF document” refer to the
same resource in the document for com.lowagie.text.rtf.RtfWriter2. The
current implementation of Doc2Spec cannot group methods of the three resources
into one category yet. In NLP, the problem of resolving noun phrases to one real-
world entity is known as coreference resolution (Hirschman 1997). We plan to lever-
age these techniques to infer better specifications in future work.

8.2 False positive rate

As shown in Table 6, the false positive rate of our approach is 73%. It is reasonable
due to four factors. First, some found defects in documentation are interpreted as
“false positive” instead of “true positive”. Second, we use all inferred specifications
for detecting defects instead of using some selected specifications as some previous
work (e.g., Yang et al. 2006) did. Third, static checkers typically produce high false
positive rate (e.g., 76% reported by Williams and Hollingsworth 2005). Finally, due to

14http://download.oracle.com/javase/1.5.0/docs/api/java/io/InputStream.html.
15http://docs.jboss.org/jbossas/javadoc/4.0.5/management/org/jboss/management/j2ee/factory/
WebModuleFactory.html.

http://download.oracle.com/javase/1.5.0/docs/api/java/io/InputStream.html
http://docs.jboss.org/jbossas/javadoc/4.0.5/management/org/jboss/management/j2ee/factory/WebModuleFactory.html
http://docs.jboss.org/jbossas/javadoc/4.0.5/management/org/jboss/management/j2ee/factory/WebModuleFactory.html

Autom Softw Eng

the intrinsic difficulty in parsing partial code, the resolved types and the built control-
flow graphs are not fully accurate. As a result, our approach may cause more false
positives than traditional static checkers.

Even under the negative impact of the preceding factors, our false positive rate is
comparable with other approaches (e.g., 63% reported by Tan et al. 2007). Indeed, re-
ducing false positives is quite important, and we plan to reduce our false positive rate
in our future work. For example, some descriptions contain words such as “has to be
closed”. If the description of a method has such words, we can have more confidence
that the method belongs to a specific type of methods (e.g., closure methods in this ex-
ample). If our approach takes these words into consideration, we may further reduce
false positives of our approach. As another example, for each method description,
our approach chooses an action and a resource both with the highest scores to build
one action-resource pair. If we keep multiple action-resource pairs for each method
description and apply client-code analysis to choose the best pair, we may increase
accuracies of inferred specifications, and thus can reduce false positives.

8.3 Extensions of our approach

8.3.1 Defects in local code bases

In this paper, we developed an infrastructure to check code snippets returned from
GCSE. The infrastructure helps us detect various violations to show the usefulness
of inferred specifications. To help developers find defects using inferred specifica-
tions, we plan to adapt our defect-detection infrastructure also for local code bases in
future work. As our evaluations confirm that our approach infers various useful spec-
ifications to detect real defects, we expect the adapted infrastructure to be useful for
developers to detect defects in local code bases. Our adapted infrastructure could pro-
duce fewer false positives as it does not have to rely on partial analysis for local code
bases whose source files are often complete. Although our tool finds only a limited
number of defects in our evaluation, we expect our extended tool to find more defects
in local code bases. As our approach can help detect and remove defects related to
violating important resource usages, it should be worth taking the effort to apply our
approach in practice.

8.3.2 Mining specification templates

Our approach relies on a predefined specification template for inferring resource
specifications. In practice, some resource usages may be quite complicated and can-
not be instantiated with our predefined template. As discussed in Sect. 4, there are
many approaches that mine rich specifications from various data. We plan to mine
specification templates from existing specifications mined by those approaches. Af-
ter mining specification templates, we can further improve our approach to mine more
complicated resource usages.

Autom Softw Eng

8.3.3 Other API documentation and descriptions

API documentation other than Javadocs may follow different conventions to describe
actions and resources. In addition, descriptions of parameters, return values, and ex-
ception throws may also contain useful information to infer specifications. We need
to tag specific training corpora for other API documentation that follows quite dif-
ferent conventions. We also need to extend our HMM model to deal with other de-
scriptions and explore whether these descriptions help our specification inference in
future work.

8.3.4 Analyzing library code

Library code analysis may help infer specifications for methods without descriptions.
For example, Fry et al. (2008) proposed an approach that can extract verb-direct ob-
ject pairs from method signatures. We plan to adapt their approach to extract action-
resource pairs from method signatures for methods without descriptions in future
work. As another example, Buse and Weimer (2008) proposed an approach to gener-
ate comments for exception clauses via code analysis. We plan to adapt their approach
to generate descriptions for methods without descriptions.

Library code analysis may also be useful for methods with descriptions. For ex-
ample, Høst and Østvold (2009) proposed an approach that detects inconsistencies
between method names and method code. Our previous work (Zhong et al. 2008b)
can infer specifications from library code statically. In future work, we plan to inves-
tigate inconsistencies between specifications inferred from code with specifications
inferred from documentation.

8.3.5 Writing resource specifications

Due to the heavy effort to write specifications, library developers often do not pro-
vide written specifications. Some researchers have proposed approaches to reduce the
effort of writing specifications. For example, Henkel and Diwan (2004) proposed an
approach that is able to help write algebraic specifications. With these approaches,
library developers may consider to write resource specifications manually, and our
approach can further improve these approaches. For example, an approach can re-
duce the effort of writing resource specifications, if the approach leverages Doc2Spec
to infer candidate specifications, and allows library developers to revise those false
ones.

9 Conclusion

Although many correct API usages are already written in API documentation, devel-
opers may still produce defects related to resources even when correct usages of these
resources are already described in API documentation. In this paper, we propose a
novel approach that infers resource specifications from existing API documentation.
We conducted evaluations on the Javadocs of five widely used libraries. The results

Autom Softw Eng

show that our approach infers various specifications with relatively high precisions,
recalls, and F-scores. We further use inferred specifications to detect defects. The re-
sults show that resource specifications inferred by our approach are useful to detect
real defects in practice.

Acknowledgements We appreciate editors and anonymous reviewers for their supportive and construc-
tive comments. Hao Zhong’s work is supported in part by the National Basic Research Program of China
(973) No. 2007CB310802, the Development Plan of China (863) No. 2007AA010303, the National Nat-
ural Science Foundation of China No. 60803023, 60873072, and 90718042, and the CAS Innovation Pro-
gram. The authors from Peking University are supported by the 973 Program of China No. 2009CB320703,
the 863 Program of China No. 2007AA010301, and the Science Fund for Creative Research Groups of
China No. 60821003. Tao Xie’s work is supported in part by NSF grants CNS-0716579, CCF-0725190,
CCF-0845272, CCF-0915400, CNS-0958235, an NCSU CACC grant, ARO grant W911NF-08-1-0443,
ARO grant W911NF-08-1-0105 managed by NCSU SOSI, and an IBM Faculty Award.

Appendix

Some example confirmed defects are as follows16.
Unclosed resources in normal code. We find that normal client code may have de-

fects since some resources are never closed. These defects belong to the second type
and the fourth type of defects listed in Sect. 2.3. For example, we found a previously
known defect in a code snippet of the Apache Lucene project17 since its developer
does not close a resource referred by a local variable named reader.

Another previously known defect was found in the code snippet of the Spring
Framework project18 since its developer does not close a resource referred by a local
variable named producer.

protected void doSend(Session session, Destination destination,
MessageCreator messageCreator) throws ...{

MessageProducer producer = createProducer(session, destination);
...
doSend(producer, message);
...

}

protected void doSend(MessageProducer producer, Message message) throws ...{
...
producer.send(message);
...

}

We found a defect in the code snippet of the Globus project19 by testing since its
developer does not close a resource referred by a local variable named ix.

public String ejbCreate(...) throws ...{
try{

Interaction ix = this.jmCon.createInteraction();
...

16Our infrastructure found these defects in August 2008. As the GCSE’s repository evolves quickly, many
URLs of buggy snippets have now become invalid, so we do not provide these URLs from GCSE here.
17http://lucene.apache.org.
18http://www.springframework.org.
19http://www.globus.org.

http://lucene.apache.org
http://www.springframework.org
http://www.globus.org

Autom Softw Eng

Record oRec = ix.execute(iSpec, iRec);
Iterator iterator = ((IndexedRecord)oRec).iterator();
this.primaryKey = (String)iterator.next();
return this.primaryKey;

} catch (ResourceException rex) {
throw new EJBException("ejbCreate: " + ...);

}
}

We suspected that the developer of the code snippet forgets to close the resource
referred by the variable since we found that in the same code snippet, the developer
does close a resource referred by another variable also named as ix in a method as
follows.
public void cancel() throws ...{

try{
Interaction ix = this.jmCon.createInteraction();
...
Record oRec = ix.execute(iSpec, iRec);
...
ix.close();
return;

} catch (ResourceException rex) {
throw new EJBException("cancel(): " + ...);

}
}

Unclosed resources in exception handling. We find that exception handling code
may have defects since some resources are never closed when exceptions are thrown.
These defects belong to the second type and the fourth type of defects listed in
Sect. 2.3. For example, we found a previously unknown defect in a code snippet
of the project TopX20 since its developer does not close rRset in its exception block.
This defect is not fixed even in the latest version and is confirmed by the developers
of TopX through emails.
public double getMinimumScore(){

...
try{

rRset = mStmt.executeQuery("...");
...
rRset.close();

} catch (SQLException e) {
e.printStackTrace();

}
}

We found a defect by testing in a code snippet of the SIM-PL project21 since its
developer does not close document in its exception block either.
public double save(...) throws ...{

...
try{

...
com.lowagie.text.Document document = new com.lowagie.text.Document(

new com.lowagie.text.Rectangle(bb.width, bb.height));
...
document.open();
...
document.close();

20http://topx.sourceforge.net.
21http://www.science.uva.nl/amstel/SIM-PL/.

http://topx.sourceforge.net
http://www.science.uva.nl/amstel/SIM-PL/

Autom Softw Eng

} catch (DocumentException ex) {
throw new IOException(ex.toString());

}
}

Defects in tutorials. We even found some resource-relevant defects in code snip-
pets of tutorials. We suspect that these resources and their related methods are rela-
tively unfamiliar to developers and thus it is difficult for even experienced developers
who write tutorials. For example, we found a defect in the code snippet from an Ora-
cle’s tutorial22 as its developer does not free a temporary CLOB object named clob.
private void processDocument() throw Exception{

try{
...
CLOB clob = CLOB.createTemporary(conn, true, CLOB.DURATION_SESSION);
...

} catch(NullPointerException ex){
Alert.log(...);

}
}

However, in the code snippet from another Oracle’s tutorial23 as follows, its de-
veloper does free a created temporary CLOB object.
private void doBulkLoad(...) throw Exception{

try{
...
m_TemporaryCLOB = CLOB.createTemporary(connection, true, CLOB.DURATION_SESSION);
...
m_TemporaryCLOB.freeTemporary();

} catch(NullPointerException ex){
...

}
}

In summary, using specifications inferred by Doc2Spec, we found various pre-
viously known and unknown defects that are related to resource usages from open
source projects. The results demonstrate the usefulness of our inferred specifications
to detect defects. Based on our results, developers did produce source code that is in-
consistent with the resource usages described in API documentation, and these incon-
sistencies can indicate defects. Our inferred specifications are useful to detect defects
since these specifications help detect the inconsistencies between API documentation
and source code.

References

Acharya, M., Xie, T.: Mining API error-handling specifications from source code. In: Proc. Fundamental
Approaches to Software Engineering, pp. 370–384 (2009)

Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from source code: From usage
scenarios to specifications. In: Proc. 6th ESEC/FSE, pp. 25–34 (2007)

Alur, R., Černý, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java classes. In:
Proc. 32nd POPL, pp. 98–109 (2005)

22http://www.oracle.com/technology/sample_code/tech/xml/xmldb/saxloader/oracle/otnsamples/xmldb/
saxloader/examples/DocumentReader.java.html.
23http://www.oracle.com/technology/sample_code/tech/xml/xmldb/simplebulkloader/oracle/otnsamples/
xmldb/simplebulkloader/examples/simplebulkloader.java.html.

http://www.oracle.com/technology/sample_code/tech/xml/xmldb/saxloader/oracle/otnsamples/xmldb/saxloader/examples/DocumentReader.java.html
http://www.oracle.com/technology/sample_code/tech/xml/xmldb/saxloader/oracle/otnsamples/xmldb/saxloader/examples/DocumentReader.java.html
http://www.oracle.com/technology/sample_code/tech/xml/xmldb/simplebulkloader/oracle/otnsamples/xmldb/simplebulkloader/examples/simplebulkloader.java.html
http://www.oracle.com/technology/sample_code/tech/xml/xmldb/simplebulkloader/oracle/otnsamples/xmldb/simplebulkloader/examples/simplebulkloader.java.html

Autom Softw Eng

Ambriola, V., Gervasi, V.: Processing natural language requirements. In: Proc. 12th ASE, pp. 36–45. IEEE
Computer Society, Los Alamitos (1997)

Ammons, G., Bodík, R., Larus, J.: Mining specifications. In: Proc. 29th POPL, pp. 4–16 (2002)
Anvik, J., Hiew, L., Murphy, G.: Who should fix this bug? In: Proc. 28th ICSE, pp. 361–370 (2006)
Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. Computer 36(11), 48–55 (2003)
Baum, L., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis

of probabilistic functions of Markov chains. Ann. Math. Stat. 164–171 (1970)
Buse, R., Weimer, W.: Automatic documentation inference for exceptions. In: Proc. ISSTA, pp. 273–282

(2008)
Buse, R., Weimer, W.: Automatically documenting program changes. In: Proc. 26th ASE, pp. 33–42

(2010)
Chinchor, N.: MUC-7 named entity task definition. In: Proc. 7th MUC (1997)
Cohen, W., Sarawagi, S.: Exploiting dictionaries in named entity extraction: combining semi-Markov ex-

traction processes and data integration methods. In: Proc. 10th KDD, pp. 89–98 (2004)
Dag, J., Regnell, B., Gervasi, V., Brinkkemper, S.: A linguistic-engineering approach to large-scale re-

quirements management. IEEE Softw. 3, 3 (2005)
Dagenais, B., Hendren, L.J.: Enabling static analysis for partial Java programs. In: Proc. 23rd OOPSLA,

pp. 313–328 (2008)
Dekel, U., Herbsleb, J.D.: Reading the documentation of invoked API functions in program comprehen-

sion. In: Proc. 17th ICPC, pp. 168–177 (2009a)
Dekel, U., Herbsleb, J.D.: Improving API documentation usability with knowledge pushing. In: Proc. 31st

ICSE, pp. 320–330 (2009b)
Engler, D., Chen, D., Chou, A.: Bugs as inconsistent behavior: A general approach to inferring errors in

systems code. In: Proc. 18th SOSP, pp. 57–72 (2001)
Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Applications of linguistic techniques for use case analysis.

Requir. Eng. 8(3), 161–170 (2003)
Fellbaum, C., et al.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
Fry, Z., Shepherd, D., Hill, E., Pollock, L., Vijay-Shanker, K.: Analysing source code: looking for useful

verb-direct object pairs in all the right places. IET Softw. 2(1), 27–36 (2008)
Gabel, M., Su, Z.: Symbolic mining of temporal specifications. In: Proc. 13th ICSE, pp. 51–60 (2008)
Gabel, M., Su, Z.: Online inference and enforcement of temporal properties. In: Proc. 32nd ICSE, pp. 15–

24 (2010)
Gegick, M., Rotella, P., Xie, T.: Identifying security bug reports via text mining: An industrial case study.

In: Proc. 7th MSR, pp. 11–20 (2010)
Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language requirements. ACM Trans.

Softw. Eng. Methodol. 14(3), 277–330 (2005)
Goldin, L., Berry, D.: AbstFinder, a prototype natural language text abstraction finder for use in require-

ments elicitation. Autom. Softw. Eng. 4(4), 375–412 (1997)
Gowri, M., Grothoff, C., Chandra, S.: Deriving object typestates in the presence of inter-object references.

In: Proc. 20th OOPSLA, pp. 77–96 (2005)
Hayes, J., Dekhtyar, A., Sundaram, S.: Advancing candidate link generation for requirements tracing: The

study of methods. IEEE Trans. Softw. Eng. 32(1), 4–19 (2006)
Henkel, J., Diwan, A.: A tool for writing and debugging algebraic specifications. In: Proc. 26th ICSE,

pp. 449–458 (2004)
Hirschman, L.: MUC-7 coreference task definition. In: Proc. 7th MUC (1997)
Horie, M., Chiba, S.: Tool support for crosscutting concerns of API documentation. In: Proc. 8th AOSD,

pp. 97–108 (2010)
Høst, E.W., Østvold, B.M.: Debugging method names. In: Proc. 23rd ECOOP, pp. 294–317 (2009)
Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Trans. Program. Lang. Syst. 27(2), 264–313

(2005)
Jeong, G., Kim, S., Zimmermann, T.: Improving bug triage with bug tossing graphs. In: Proc. 7th

ESEC/FSE, pp. 111–120. ACM, New York (2009)
Kof, L.: Scenarios: Identifying missing objects and actions by means of computational linguistics. In: Proc.

15th RE, pp. 121–130 (2007)
Kremenek, T., Twohey, P., Back, G., Ng, A., Engler, D.: From uncertainty to belief: Inferring the specifi-

cation within. In: Proc. 7th OSDI, pp. 259–272 (2006)
Lee, C., Chen, F., Rosu, G.: Mining parametric specifications. In: Proc. 33rd ICSE, pp. 591–600 (2011)
Li, Z., Zhou, Y.: PR-Miner: Automatically extracting implicit programming rules and detecting violations

in large software code. In: Proc. ESEC/FSE, pp. 306–315 (2005)

Autom Softw Eng

Livshits, V., Zimmermann, T.: Dynamine: Finding common error patterns by mining software revision
histories. In: Proc. ESEC/FSE, pp. 31–40 (2005)

Lo, D., Khoo, S.: SMArTIC: towards building an accurate, robust and scalable specification miner. In:
Proc. 14th FSE, pp. 265–275 (2006)

Lo, D., Maoz, S.: Scenario-based and value-based specification mining: better together. In: Proc. 25th
ASE, pp. 387–396 (2010)

Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes – a comprehensive study on real world concur-
rency bug characteristics. In: Proc. 13th ASPLOS, pp. 329–339 (2008)

Meziane, F., Athanasakis, N., Ananiadou, S.: Generating natural language specifications from UML class
diagrams. Requir. Eng. 13(1), 1–18 (2008)

Mikheev, A., Moens, M., Grover, C.: Named entity recognition without gazetteers. In: Proc. 9th EACL,
pp. 1–8 (1999)

Novick, D., Ward, K.: Why don’t people read the manual. In: Proc. 24th SIGDOC, pp. 11–18 (2006)
Olson, D.: Advanced Data Mining Techniques. Springer, Berlin (2008)
Padioleau, Y., Tan, L., Zhou, Y.: Listening to programmers—Taxonomies and characteristics of comments

in operating system code. In: Proc. 31st ICSE, pp. 331–341 (2009)
Perry, E., Sanko, M., Wright, B., Pfaeffle, T.: Oracle 9i JDBC developer’s guide and reference. Technical

report, March 2002. http://www.oracle.com
Raman, A., Patrick, J.: The sk-strings method for inferring PFSA. In: Proc. Machine Learning Workshop

Automata Induction, Grammatical Inference, and Language Acquisition (1997)
Ramanathan, M., Grama, A., Jagannathan, S.: Path-sensitive inference of function precedence protocols.

In: Proc. 29th ICSE, pp. 240–250 (2007)
Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. In: Machine Learning: From

Theory to Applications, pp. 51–73 (1993)
Robillard, M.P., DeLine, R.: A field study of API learning obstacles. Empir. Softw. Eng. (2011).

doi:10.1007/s10664-010-9150-8
Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports using natural language

processing. In: Proc. 29th ICSE, pp. 499–510 (2007)
Sawyer, P., Rayson, P., Garside, R.: REVERE: Support for requirements synthesis from documents. Inf.

Syst. Front. 4(3), 343–353 (2002)
Shepherd, D., Fry, Z., Hill, E., Pollock, L., Vijay-Shanker, K.: Using natural language program analysis to

locate and understand action-oriented concerns. In: Proc. 6th AOSD, pp. 212–224 (2007)
Shi, L., Zhong, H., Xie, T., Li, M.: An empirical study on evolution of API documentation. In: Proc. FASE,

pp. 416–431 (2011)
Sridhara, G., Hill, E., Muppaneni, D., Pollock, L.L., Vijay-Shanker, K.: Towards automatically generating

summary comments for Java methods. In: Proc. 25th ASE, pp. 43–52 (2010)
Stylos, J., Faulring, A., Yang, Z., Myers, B.: Improving API documentation using API usage information.

In: Proc. IVL/HCC, pp. 119–126 (2009)
Tan, L., Yuan, D., Krishna, G., Zhou, Y.: /* iComment: Bugs or Bad Comments?*/. In: Proc. 21st SOSP,

pp. 145–158 (2007)
Thummalapenta, S., Xie, T.: SpotWeb: Detecting framework hotspots and coldspots via mining open

source code on the web. In: Proc. 23rd ASE, pp. 327–336 (2008)
Thummalapenta, S., Xie, T.: Mining exception-handling rules as sequence association rules. In: Proc. 31th

International Conference on Software Engineering, May 2009, pp. 496–506 (2009a)
Thummalapenta, S., Xie, T.: Alattin: Mining alternative patterns for detecting neglected conditions. In:

Proc. 24th Automated Software Engineering, pp. 283–294 (2009b)
Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.

IEEE Trans. Inf. Theory 13(2), 260–269 (1967)
Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An approach to detecting duplicate bug reports using

natural language and execution information. In: Proc. 30th ICSE, pp. 461–470 (2008)
Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: Proc. ESEC/FSE, pp. 35–44

(2007)
Weimer, W., Necula, G.: Mining temporal specifications for error detection. In: Proc. TACAS, pp. 461–476

(2005)
Whaley, J., Martin, M., Lam, M.: Automatic extraction of object-oriented component interfaces. In: Proc.

ISSTA, pp. 218–228 (2002)
Williams, C., Hollingsworth, J.: Automatic mining of source code repositories to improve bug finding

techniques. IEEE Trans. Softw. Eng. 31(6), 466–480 (2005)

http://www.oracle.com
http://dx.doi.org/10.1007/s10664-010-9150-8

Autom Softw Eng

Würsch, M., Ghezzi, G., Reif, G., Gall, H.: Supporting developers with natural language queries. In: Proc.
32nd ICSE, pp. 165–174 (2010)

Xu, G., Rountev, A.: Precise memory leak detection for Java software using container profiling. In: Proc.
30th ICSE, pp. 151–160 (2008)

Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal API rules from imperfect
traces. In: Proc. 28th ICSE, pp. 282–291 (2006)

Zhong, H., Zhang, L., Mei, H.: Early filtering of polluting method calls for mining temporal specifications.
In: Proc. 15th APSEC, pp. 9–16 (2008a)

Zhong, H., Zhang, L., Mei, H.: Inferring specifications of object oriented APIs from API source code. In:
Proc. 15th APSEC, pp. 221–228 (2008b)

Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: Mining and recommending API usage patterns. In:
Proc. 23rd ECOOP, pp. 318–343 (2009a)

Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring resource specifications from natural language API docu-
mentation. In: Proc. 24th ASE, pp. 307–318 (2009b)

Zhou, G., Su, J.: Named entity recognition using an HMM-based chunk tagger. In: Proc. 40th ACL,
pp. 473–480 (2001)

	Inferring specifications for resources from natural language API documentation
	Abstract
	Introduction
	Background
	API documentation
	Resource usage
	Related defects

	Example
	Inferring specifications
	Detecting defects

	Related work
	Mining specifications
	Natural language analysis in software engineering
	Improving documents

	Approach
	Javadoc analysis
	NLP analysis
	Automata inference

	Evaluations
	RQ1: Can our approach perform well on real scale libraries?
	RQ2: what is the quality of inferred specifications?
	RQ3: can inferred specifications be useful to detect defects?
	Defect detection infrastructure
	Detected violations
	Confirmed defects

	Threats to validity

	Benefits of our approach
	Mining specifications from client code
	Inferring specifications from comments
	Detecting defects in API documentation

	Discussion and future work
	Resource analysis
	False positive rate
	Extensions of our approach
	Defects in local code bases
	Mining specification templates
	Other API documentation and descriptions
	Analyzing library code
	Writing resource specifications

	Conclusion
	Acknowledgements
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

