
Autom Softw Eng
DOI 10.1007/s10515-011-0086-z

Alattin: mining alternative patterns for defect detection

Suresh Thummalapenta · Tao Xie

Received: 14 June 2010 / Accepted: 28 March 2011
© Springer Science+Business Media, LLC 2011

Abstract To improve software quality, static or dynamic defect-detection tools ac-
cept programming rules as input and detect their violations in software as defects. As
these programming rules are often not well documented in practice, previous work
developed various approaches that mine programming rules as frequent patterns from
program source code. Then these approaches use static or dynamic defect-detection
techniques to detect pattern violations in source code under analysis. However, these
existing approaches often produce many false positives due to various factors. To
reduce false positives produced by these mining approaches, we develop a novel
approach, called Alattin, that includes new mining algorithms and a technique for
detecting neglected conditions based on our mining algorithm. Our new mining al-
gorithms mine patterns in four pattern formats: conjunctive, disjunctive, exclusive-
disjunctive, and combinations of these patterns. We show the benefits and limitations
of these four pattern formats with respect to false positives and false negatives among
detected violations by applying those patterns to the problem of detecting neglected
conditions.

This work was primarily done when the first author is at North Carolina State University.
This paper is an extended version of our previous work published at ASE 2009 (Thummalapenta and
Xie 2009). Our previous work introduced the concept of balanced and imbalanced patterns that are
expressed in the Or pattern format. In this work, we propose additional new pattern formats Xor and
Combo. We also propose new mining algorithms for mining patterns in Or, Xor, and Combo pattern
formats. Furthermore, we show the benefits and limitations of And, Or, Xor, and Combo pattern
formats by applying the patterns mined using these formats to the problem of detecting neglected
conditions in applications under analysis.

S. Thummalapenta (�) · T. Xie
Department of Computer Science, North Carolina State University, Raleigh, NC, USA
e-mail: sthumma@ncsu.edu

T. Xie
e-mail: xie@csc.ncsu.edu

S. Thummalapenta
IBM Research, Bangalore, Karnataka, India

mailto:sthumma@ncsu.edu
mailto:xie@csc.ncsu.edu

Autom Softw Eng

Keywords Alternative patterns · Static defect detection · Mining software
engineering data · Code search engine

1 Introduction

Programming rules serve as a basis for applying static or dynamic defect-detection
tools to detect rule violations as software defects and improve software quality. How-
ever, in practice, these programming rules are often not well documented for Applica-
tion Programming Interfaces (APIs) due to various factors such as hard project deliv-
ery deadlines and limited resources in the software development process (Lethbridge
et al. 2003). To tackle the issue of lacking documented programming rules, vari-
ous approaches have been developed in the past decade to mine programming rules
from program executions (Ernst et al. 2001; Ammons et al. 2002; Yang et al. 2006),
individual versions (Engler et al. 2001; Li and Zhou 2005; Acharya et al. 2006;
Ramanathan et al. 2007; Shoham et al. 2007; Chang et al. 2007; Acharya et al. 2007;
Wasylkowski et al. 2007), or version histories (Livshits and Zimmermann 2005;
Williams and Hollingsworth 2005) of program source code. A methodology, com-
monly referred to as mining software repositories (MSR) (Bibliography on mining
software engineering data 2010), adopted by these approaches is to mine common
patterns (e.g., frequent occurrences of pairs or sequences of API calls) across a suf-
ficiently large number of data points (e.g., code examples). These common patterns
often reflect programming rules that should be obeyed when programmers write code
using API calls involved in these rules. Then, these approaches use static or dynamic
defect-detection techniques that accept mined patterns as inputs and detect pattern
violations as potential defects in applications under analysis.

Since the inception of the MSR methodology, the major focus is to mine var-
ious types of patterns and use those patterns for detecting defects in applications
under analysis. Although MSR has been shown to be effective in detecting de-
fects in applications under analysis, a major drawback of MSR is that the viola-
tions detected by existing MSR-based approaches often include a large number of
false positives. This phenomenon is reflected in the empirical evaluations of ex-
isting approaches (Engler et al. 2001; Li and Zhou 2005; Acharya et al. 2006;
Chang et al. 2007; Wasylkowski et al. 2007) where majority of detected violations
turn out to be false positives.

To illustrate how detected violations turn out to be false positives, we use two
code examples (shown in Fig. 1) using the next method of the Iterator class.
The nextmethod throws NoSuchElementException when invoked on an Ar-
rayList object without any elements. Programmers can avoid this exception by
using either the condition check “P1: boolean-check on return of Itera-
tor.hasNext before Iterator.next” (shown in printEntries1 from Ex-
ample 1) or “P2: const-check on return of ArrayList.size before Iter-
ator.next” (shown in printEntries2 from Example 2). In general, program-
mers use either P1 or P2 but not both, since using both P1 and P2 is redundant. Con-
sider that a single pattern P1 is mined from the data points. A static defect-detection

Autom Softw Eng

Example 1:
00:String printEntries1(ArrayList<String>

entries){
01: ...
02: Iterator it = entries.iterator();...
03: if (it.hasNext()) {
04: String last = (String) it.next();... }}

Example 2:
00:String printEntries2(ArrayList<String>

entries){
01: ...
02: if (entries.size() > 0) {
03: Iterator it = entries.iterator();...
04: String last = (String) it.next();... }}

Fig. 1 Two code examples using the next method of the Iterator class

technique reports a violation in printEntries2, since the method does not sat-
isfy P1. However, the code example does not include any defect on using Itera-
tor.next, since printEntries2 satisfies P2; therefore, the detected violation
turns out to be a false positive.

In our empirical investigation of false positives generated by existing ap-
proaches (Engler et al. 2001; Li and Zhou 2005; Acharya et al. 2006; Chang et
al. 2007; Wasylkowski et al. 2007), we identify that a major reason for such a large
number of false positives is that the focus of MSR is to mine single patterns (such as
P1) or conjunctive patterns (such as P1 ∧ P2) (more details are presented in Sect. 5).
The conjunctive pattern P1 ∧ P2 describes that both P1 and P2 often appear to-
gether among the data points (e.g., code examples). We identify that these single
or conjunctive patterns alone cannot describe the nearly complete behavior among
data points, resulting in false positives. The reason why single or conjunctive pat-
terns are not sufficient is that programmers write source code in different ways to
achieve the same programming task (as shown in Examples 1 and 2). For example,
the pattern P1 ⊕ P2

1 describes both the condition checks that can be used before
the next method. Furthermore, using the pattern P1 ⊕ P2 does not result in viola-
tions in printEntries1 and printEntries2, thereby reducing false positives.
We focus on mining patterns that describe nearly complete rather than complete be-
havior among code bases, since the patterns that describe complete behavior cannot
help detect violations as deviations from those patterns, resulting in false negatives.
For example, consider an API method such as the next method of the Iterator
class. Consider that the code bases include four condition checks (P1, P2, P3, and
P4) for the API method, where among these four condition checks, three condition
checks P1, P2, and P3 represent real properties, whereas P4 is a false-positive prop-
erty. A pattern that describes complete behavior comprising all condition checks is

1The symbol ⊕ represents the exclusive-or relationship.

Autom Softw Eng

“P1 ∨ P2 ∨ P3 ∨ P4”. However, the preceding pattern does not help detect violations
in code examples that include only P4, resulting in false negatives.

To reduce both false positives and false negatives among detected violations and
to infer patterns that describe nearly complete behavior, in this paper, we propose a
novel approach, called Alattin, that includes new mining algorithms and a technique
that detects neglected conditions (described next) using patterns mined by our min-
ing algorithms. In particular, our algorithms mine patterns in four pattern formats:
conjunctive (And or ∧), disjunctive (Or or ∨), exclusive-disjunctive (Xor or ⊕), and
combinations of these patterns (referred to as Combo patterns). We use Alternative
Patterns to collectively refer to patterns of all four formats and refer to individual
patterns such as P1 and P2 in P1 ∧ P2 as alternatives.

In general, mining Or and Xor patterns is more challenging than mining And pat-
terns, since Or and Xor patterns do not follow the Apriori principle (Han and Kamber
2000) in data mining. Given an input database of itemsets for applying mining tech-
niques, the Apriori principle states that if an itemset is frequent, then all its subsets
should also be frequent. Existing mining techniques (Burdick et al. 2001) that target
at mining And patterns use this principle for pruning the search space. For example,
if an itemset P1 is not frequent, then any super And itemset of P1 such as P1 ∧ P2
cannot be frequent, and hence can be pruned. However, the Apriori principle does
not hold for mining Or and Xor patterns. For example, although the itemset P1 is
not frequent, its super Or itemset such as P1 ∨ P2 can be frequent, since P1 ∨ P2 is
supported by more itemsets in the input database compared to P1 or P2 individually.

In this paper, we show the benefits and limitations of these four pattern formats
with respect to false positives and false negatives by applying these pattern formats
to the problem of detecting neglected conditions. Neglected conditions, also referred
to as missing paths, are known to be an important category of software defects and
are considered to be one of the primary reasons for many fatal issues such as se-
curity or buffer overflow vulnerabilities (Chang et al. 2007). As shown by a recent
study (Chang et al. 2007), 66% (109/167) of defect fixes applied in the Mozilla Fire-
fox project are due to neglected conditions. In particular, neglected conditions (related
to an API call) refer to (1) missing conditions that check the arguments or receiver of
the API call before the API call or (2) missing conditions that check the return values
or receiver of the API call after the API call. In our approach, we mine patterns that
describe necessary condition checks related to an API call in these four formats and
use those condition checks for detecting neglected conditions in applications under
analysis.

This paper makes the following main contributions:

• An empirical investigation of four pattern formats: conjunctive (And or ∧), dis-
junctive (Or or ∨), exclusive-disjunctive (Xor or ⊕), and combinations of these
patterns (referred to as combo patterns) in software engineering data.

• New mining algorithms for efficiently mining patterns in Or, Xor, and Combo pat-
tern formats.

• A technique that applies patterns of these four pattern formats for detecting ne-
glected conditions around individual API calls in an application under analysis.

• Two evaluations to demonstrate the effectiveness of our approach. Our evaluation
results show that the best pattern-mining approach (in terms of reducing both false

Autom Softw Eng

positives and false negatives) is to first mine And patterns for API methods and
next mine Combo patterns. Among violations detected by Combo patterns, the best
violation-detection approach is to assign higher priority to the violations of API
methods with And patterns compared to the violations of API methods without
And patterns. The primary reason is that the former violations are more likely to
be real defects compared to the latter violations.

2 Example

We next use an illustrative example to describe our approach on how we collect the
data that describes necessary condition checks around API calls. We also show how
our proposed four pattern formats affect the number of false negatives and false posi-
tives among detected violations. Consider that an application under analysis uses the
Iterator.next method as shown in the printEntries2 method in Fig. 1.

Initially, we gather relevant code examples that invoke the Iterator.next
method by constructing queries to Google code search (Google code search engine
2006). These relevant code examples are required for mining patterns that describe
necessary condition checks around the Iterator.next method. Figure 2 shows
a code example gathered from Google code search. We next construct control-flow
graphs (CFG) for collected code examples and perform two traversals (backward and
forward) of the CFG from the node corresponding to the Iterator.next method.
In the backward traversal, we collect the condition checks on the receiver and argu-
ment objects preceding the call site of the Iterator.next method. Similarly, in
the forward traversal, we collect the condition checks on the receiver and return ob-
jects succeeding the call site of the Iterator.next method. For the current code
example, our backward and forward traversals gather the following condition checks.

1: boolean-check on the return of Iterator.hasNext
before Iterator.next

2: boolean-check on the return of Collection.isEmpty
before Iterator.next

3: instance-check on the return of Iterator.next
with org.w3c.dom.Node

4: boolean-check on the return of Iterator.hasNext
after Iterator.next

Condition check “1” describes the condition check performed before the call site
of the nextmethod, whereas Condition check “4” describes the condition check per-
formed after the call site of the next method. The reason for two condition checks
is that the next method (Statement 7) is invoked in a for loop. Section 4 presents
more details on how we exploit program dependencies while performing backward
and forward traversals. The preceding set of condition checks collected from the code
example forms an itemset in the itemset database ISD, used as input for mining pat-
terns. We analyze all gathered code examples to generate various itemsets and use
different mining algorithms for mining the patterns in formats: And, Or, Xor, and
Combo. Section 3 presents more details on our mining algorithms.

Autom Softw Eng

01:public Object evaluate(Object val) { ...
02: if (val != null &&

val instanceof Collection) {
03: Collection coll = (Collection) val;
04: Iterator i = coll.iterator();
05: if(!coll.isEmpty()) {
06: for (; i.hasNext();) {
07: Object obj = i.next();
08: if(obj instanceof Node) {
09: Node node = (Node) obj;
10: //...
11: } } } }
12: return new Double(sum);
13:}

Fig. 2 A code example using Iterator.next gathered from Google code search

Fig. 3 An example input database ISD

Figure 3 shows a sample itemset database ISD with six itemsets. This ISD includes
four distinct items labeled with IDs 1 through 4. The figure also shows the condition
check corresponding to each item. We next apply our mining algorithms for mining
different pattern formats. The patterns mined by our algorithms with a minimum
support threshold value min_sup of 0.4 are shown below:

• And Pattern: “1 ∧ 4”, support: 0.5
• Or Pattern: “1 ∨ 2 ∨ 3 ∨ 4”, support: 1.0
• Xor Pattern: “1 ⊕ 2”, support 1.0; “4”, support: 0.5
• Combo Pattern: “(1 ∧ 4) ⊕ 2”, support: 0.83

Among the itemsets shown in ISD, Items 1 and 4 often appear together with an ∧
relation, since the methods hasNext and next are often used in a loop (as shown
in Statements 6 and 7 in Fig. 2). Although the And pattern captures this behavior,
the And pattern cannot capture the relation with Item 2, resulting in false positives
when applied on code examples such as printEntries2 in Fig. 1. On the other
hand, the Or pattern does not result in false positives, since the pattern includes all
items. However, the Or pattern does not help in detecting violations, resulting in false
negatives. Although the Xor pattern can perform better than the Or pattern, the Xor
pattern may not detect violations in code examples, which include only Item 1 and do
not include Item 4. As shown in this example, the Combo pattern describes the nearly
complete behavior and also helps reduce both false positives and false negatives.

Autom Softw Eng

Along with the challenges faced while mining Or and Xor patterns, Combo pat-
terns pose additional challenges in choosing the suitable operator while combining
items. For example, the suitable operator for combining items “1” and “4” is ∧, al-
though “1 ∨ 4” results in a higher support value than “1 ∧ 4”. We describe these
challenges in subsequent sections and present our algorithms for mining these pat-
terns.

In summary, this example illustrates the existence of pattern formats And, Or, and
Xor, and also shows that no single pattern format alone can help in describing the
necessary condition checks around API calls.

3 Mining algorithms for alternative patterns

We next describe four pattern formats that we use in our empirical study. We first
present formal definitions for the four pattern formats and next describe our algo-
rithms for mining the pattern in four formats with illustrative examples.

3.1 Formal definitions

Let M = {m1, m2, . . . ,mk} be the set of all possible distinct items. For exam-
ple, an mj represents a condition check such as “boolean-check on return of
Iterator.hasNext before Iterator.next”. Consider an ItemSet Database
ISD as {is1, is2, . . . , isl}, where each itemset isj includes different sets of elements
such as {m1, m2, . . . ,ma} from the set of all possible distinct elements.

Definition 1 (Pattern candidate) A pattern candidate pc is a single item mk ∈ M or
a combination of two elements associated by a logical operator op ∈ {∧,∨,⊕}. Each
element in the combination is an item mi ∈ M or another pattern candidate.

The preceding definition is a recursive definition, which defines that a pattern can-
didate can be either a simple or nested pattern candidate. For example, a simple pat-
tern candidate pck : mi ∧ mj is a combination of two items mi and mj with the
operator op ∈ {∧}. On the other hand, a nested pattern candidate pcl : mi ∨ pck is a
combination of an item mi and the preceding pattern candidate pck with the operator
op ∈ {∨}. We use notations pck.left and pck.right to refer to the left and right child
pattern candidates, respectively, and refer to pck as their parent pattern candidate.
Furthermore, we use the notation pck.op to refer to the operator op of the pattern can-
didate pck . We classify a pattern candidate by its format, especially using its operator.

Definition 2 (And pattern candidate) An And pattern candidate is a pattern candidate
where the operator op ∈ {∧} and all the child pattern candidates are also And pattern
candidates.

Definition 3 (Or pattern candidate) An Or pattern candidate is a pattern candidate
where the operator op ∈ {∨} and all the child pattern candidates are also Or pattern
candidates.

Autom Softw Eng

Algorithm 1 IsSupportedBy (pck , isj)

Require: PatternCandidate pck , ItemSet isj

Ensure: true, if isj supports pck

Ensure: false, if isj does not support pck

1: if pck is a SingleItem then
2: return pck ∈ isj

3: else
4: bool lefts = isSupportedBy(pck.left, isj)
5: bool rights = isSupportedBy(pck.right, isj)
6: if pck.op == ∨ then
7: return lefts ∨ rights
8: end if
9: if pck.op == ∧ then

10: return lefts ∧ rights
11: end if
12: if pck.op == ⊕ then
13: return lefts ⊕ rights
14: end if
15: end if

Definition 4 (Xor pattern candidate) A Xor pattern candidate is a pattern candidate
where the operator op ∈ {⊕} and all the child pattern candidates are also Xor pattern
candidates.

Definition 5 (Combo pattern candidate) A Combo pattern candidate is a pattern can-
didate where the operator op ∈ {∧,∨,⊕}.

The category of Combo pattern candidates subsumes the categories of And, Or,
and Xor pattern candidates. An example combo pattern candidate is “pc1 ⊕ pc2”,
where pc1 and pc2 are “mi ∧ mj ” and “mk ∧ ml”, respectively.

To compute frequent patterns among pattern candidates, we use a threshold
value, referred to as min_sup, that describes the minimum support for a pattern
candidate to be classified as a frequent pattern. Algorithm 1, IsSupportedBy,
describes how we compute support values for the preceding pattern formats. In
particular, IsSupportedBy accepts a pattern candidate pck and an itemset isj ,
and returns true, if isj supports pck , and otherwise returns false. Initially,
IsSupportedBy checks whether pck is a single item and returns true or false
based on whether pck is contained in isj . Otherwise, IsSupportedBy recursively
computes whether pck.left and pck.right of pck are supported by the itemset isj ,
and uses the operator pck.op for checking whether isj supports pck (Lines 4–15). We
compute the support value of a pattern candidate pck , referred to as Support(pck),
based on the number of the itemsets (in ISD) that return true for the algorithm
IsSupportedBy.

Definition 6 (Frequent pattern (FP)) A pattern candidate pck is considered as a fre-
quent pattern, if Support(pck) ≥ min_sup.

Autom Softw Eng

A frequent pattern fpk is considered as an And, Or, Xor, or Combo pattern based
on the operator fpk.op.

3.2 Mining algorithms

We next present our algorithms for mining preceding pattern formats. In particu-
lar, we present algorithms for mining Or, Xor, and Combo patterns, since mining
And patterns can be achieved by well-known approaches such as a frequent itemset
miner (Burdick et al. 2001). We first explain our algorithm for mining Or and Xor
patterns, and next describe the algorithm for mining Combo patterns.

3.2.1 Mining Or and Xor patterns

We next describe our greedy algorithm for mining Or and Xor patterns. Our algorithm
is based on the following property for pruning the search space of patterns. This
property is inspired by Nanavati et al. (2001) and is applicable to both Or and Xor
patterns.

Property 1 The support of an Or or Xor pattern candidate pck , represented as
Support(pck), formed from two pattern candidates pck.left and pck.right should
have higher value than Support(pck.left) and Support(pck.right).

The rationale behind the preceding property is based on our objective to mine pat-
terns that describe nearly complete behavior. For example, a pattern candidate pck =
pci ∨ pcj , whose support value is less than Support(pci) and Support(pcj)
is not useful compared to individual pattern candidates in achieving our objective.
Algorithm 2, MineXorOr, describes our greedy algorithm for mining Or and Xor
patterns. MineXorOr accepts itemset database ISD, min_sup, and ptype ∈ {∨,⊕} as
inputs.

Initially, MineXorOr identifies all distinct items in the itemset database ISD

using the function ComputeDistinct (Line 2). Among these distinct items,
MineXorOr checks whether the support of any of these items is greater than
min_sup and adds those items to PCSet (Lines 3 to 7). Next, MineXorOr uses
various iterations, where pairwise combinations are computed using the func-
tion ComputePairwise from the elements of the previous iteration stored in
CurrSet (Lines 9 to 31). For example, consider Or patterns. For the CurrSet
= {pc1,pc2,pc3}, ComputePairwise returns a set with three elements, i.e.,
PWSet = {pc1 ∨ pc2, pc1 ∨ pc3, pc2 ∨ pc3}. The algorithm next identifies the ele-
ments in PWSet, whose support values are greater than min_sup and satisfy Property
1. MineXorOr next chooses pattern candidates (from NextSet) that participate in
the next iteration by greedily choosing one parent pattern candidate in NextSet with
the highest support value for each pattern candidate in CurrSet using the function
ApplyGreedy (Line 24). The rationale behind our greedy approach is based on
our observation that the real patterns describing necessary condition checks around
API calls often have higher support values compared to other patterns. Finally,
MineXorOr identifies those pattern candidates in CurrSet whose parent pattern

Autom Softw Eng

Algorithm 2 MineXorOr(ISD, min_sup, ptype)
Require: ISD, min_sup, ptype
Ensure: Set<PC> PCSet

1: PCSet = φ

2: Set<M> distinctItems = ComputeDistinct(ISD)

3: for all mi ∈ distinctItems do
4: if Support(mi, ISD) >= min_sup then
5: PCSet+ = mi

6: end if
7: end for
8: Set<PC> CurrSet = distinctItems
9: loop

10: Set<PC> NextSet = φ

11: Set<PC> ChildSet = φ

12: Set<PC> PWSet = ComputePairwise(CurrSet, ptype)
13: for all pcj ∈ PWSet do
14: sval = Support(pcj ,ptype)
15: if (sval < min_sup || sval ≤ Support(pcj .left) || sval ≤ Support(pcj .right))

then
16: Continue
17: end if
18: NextSet+ = pcj

19: PCSet+ = pcj

20: end for
21: if NextSet.size() ≤ 1 then
22: break
23: end if
24: NextSet = ApplyGreedy(CurrSet, NextSet)
25: for all pcj ∈ CurrSet do
26: if pcj /∈ {pck.left,pck.right},∀pck ∈ NextSet then
27: NextSet+ = pcj

28: end if
29: end for
30: CurrSet = NextSet
31: end loop
32: return PCSet

candidates do not belong to NextSet (Lines 25–29). MineXorOr adds such pattern
candidates to NextSet as well, since these pattern candidates can still be helpful when
combined with other pattern candidates in NextSet.

We next explain the algorithm in detail using the itemset database shown in Fig. 4
(the same as Fig. 3). The itemset database includes four distinct items. Figure 5 shows
all possible pattern candidates that can be derived using the preceding four distinct
items. This figure shows the complete search space of pattern candidates. We first
explain mining Xor patterns and next explain mining Or patterns.

Autom Softw Eng

Fig. 4 An example input database ISD

Fig. 5 All possible itemsets
with four distinct items

Fig. 6 Mining Xor patterns

Mining Xor patterns Figure 6 shows how MineXorOr prunes the search space and
generates patterns “1 ⊕ 2” (support 1.0) and “4” (support: 0.5). The value shown in
braces next to each pattern candidate indicates support value of that pattern candidate.
The pattern candidates shown in gray are pruned by MineXorOr due to three fac-
tors. First, the support value of pattern candidate is lower than min_sup. For example,
Support(2⊕3) = 0.33, which is lower than min_sup. Second, the pattern candidate
does not satisfy Property 1. For example, the pattern candidate “1 ⊕ 3” does not sat-
isfy Property 1, since Support(1 ⊕ 3) ≤ Support(1). Third, the pattern candidate
is not the candidate with the highest support value among the parent pattern candi-
dates of each child pattern candidate. For example, the pattern candidate “2 ⊕ 4” is
pruned, since the pattern candidate “1 ⊕ 2” has a higher support value than “2 ⊕ 4”.
Since all parent pattern candidates of “4” are pruned away, MineXorOr adds this
candidate to NextSet for the next iteration and computes further pattern candidates
such as “1 ⊕ 2 ⊕ 4”.

Autom Softw Eng

Fig. 7 Mining Or patterns

Fig. 8 Phase 1 of mining
Combo patterns

Mining Or patterns Figure 7 shows how MineXorOr prunes the search space and
generates the Or pattern “1 ∨ 2 ∨ 3 ∨ 4” (support: 1.0). Similar to Xor patterns, the
pattern candidates are pruned due to the same three factors.

3.2.2 Mining Combo patterns

We next describe how we mine combo patterns. The algorithm for mining Combo
patterns includes two phases. Phase 1 mines And Patterns and Phase 2 mines Combo
patterns using the output of Phase 1. We next explain each phase in detail.

Phase 1 Algorithm 3, MineComboP1, shows Phase 1 of mining Combo patterns.
In particular, MineComboP1 computes pairwise And combinations of all pattern
candidates in CurrSet and checks whether new pattern candidates have higher sup-
port values than min_sup (Lines 9–11). If yes, MineComboP1 computes the sup-
port of Xor combination of the two candidates, shown as Support(pcj .left ⊕
pcj .right) in Line 12. If the preceding support value is also higher than min_sup,
then MineComboP1 ignores the And combination. The rationale behind this de-
cision is that, if both “pcj .left ∧ pcj .right” and “pcj .left ⊕ pcj .right” have higher
values than min_sup, then the suitable combination of pcj .left and pcj .right is
“pcj .left ∨ pcj .right”.

Figure 8 shows the output of MineComboP1 with the itemset database ISD
shown in Fig. 3. As shown in the figure, Phase 1 produces three pattern candidates as
output: “1 ∧ 4”, “2”, and “3”, which are passed as inputs to Phase 2.

Phase 2 Phase 2 of mining Combo patterns is similar to Algorithm 2 for mining Xor
and Or patterns. The major difference is to choose a suitable operator, op ∈ {∨,⊕},
when combining two pattern candidates during the computation of pairwise combi-
nations. Given two pattern candidates pci and pcj , Phase 2 chooses the ∨ operator
if “Support(pci ∧ pcj) ≥ min_sup && Support(pci ⊕ pcj) ≥ min_sup”; other-
wise, Phase 2 chooses the ⊕ operator. The rationale behind this decision is the same

Autom Softw Eng

Algorithm 3 MineComboP1(ISD,min_sup)
Require: ISD, min_sup, ptype
Ensure: Set<PC> PCSet

1: Set<M> distinctItems = ComputeDistinct(ISD)
2: Set<PC> CurrSet = distinctItems
3: PCSet = distinctItems
4: loop
5: Set<PC> NextSet = φ

6: Set<PC> PWSet = ComputePairwise(CurrSet, “And”)
7: for all pcj ∈ PWSet do
8: sval = Support(pcj ,ptype)
9: if sval < min_sup then

10: Continue
11: end if
12: if Support(pcj .left ⊕ pcj .right) ≥ min_sup then
13: Continue
14: end if
15: NextSet+ = pcj

16: PCSet− = pcj .left
17: PCSet− = pcj .right
18: PCSet+ = pcj

19: end for
20: if NextSet.size() ≤ 1 then
21: break
22: end if
23: CurrSet = NextSet
24: end loop
25: return PCSet

Fig. 9 Phase 2 of mining
Combo patterns

as the reason given in Phase 1. Figure 9 shows the output of Phase 2 resulting in the
pattern “(1 ∧ 4) ⊕ 2” (support: 0.83).

4 Alattin approach

Our Alattin approach accepts an application under analysis and detects neglected
conditions around APIs reused by the application. More specifically, Alattin scans
the application and gathers APIs reused by the application. Alattin uses our mining

Autom Softw Eng

algorithms to mine patterns that serve as programming rules in reusing those APIs.
Then Alattin detects violations of these programming rules. In summary, Alattin in-
cludes four major phases. In Phase 1, Alattin gathers relevant code examples that
reuse APIs. In Phase 2, Alattin analyzes gathered code examples or application under
analysis to generate pattern candidates suitable for mining. In Phase 3, Alattin applies
mining algorithms on pattern candidates to mine patterns. In Phase 4, Alattin detects
violations of mined patterns in the application under analysis. We next explain each
phase in detail. We use notations Ci and Fi to denote a class or a method used by the
application under analysis, respectively.

4.1 Phase 1: gathering code examples

In Phase 1, Alattin gathers code examples from existing open source repositories
through code search engines (CSE) such as Google code search (GCSE) (Google
code search engine 2006) and Koders (The Koders source code search engine
2005). In general, these code search engines are used by programmers in search-
ing for relevant code examples from available open source projects on the web.
Since these CSEs can serve as powerful resources of open source code, these
CSEs can be exploited for other tasks such as detecting violations in applications
that reuse existing open source projects. Therefore, our approach uses a CSE to
gather relevant code examples and mines gathered code examples to detect viola-
tions in an application under analysis. The primary reason for gathering code exam-
ples from a CSE is that gathering code examples from a small number of project
code bases often cannot surface out many programming rules as common patterns.
The reason is that there are often too few data points in a small number of code
bases to support the mining of desirable patterns. This phenomenon is reflected
on empirical results reported by existing mining approaches (Li and Zhou 2005;
Chang et al. 2007): often a relatively small number of real programming rules mined
from one or a few huge code bases.

In particular, Alattin gathers code examples by constructing queries for each
method under analysis Fi . For example, to gather code examples from GCSE for
the next method of the Iterator class, Alattin constructs the query of the
form “lang:java Iterator next”. More specifically, our queries include the
names of the class and method along with the language type. These gathered code
examples include information of how the next method is used by open source code
available on the web. Alattin stores gathered code examples in the local file system
for further analysis. Alattin uses GCSE for gathering relevant code examples with
two main reasons: (1) GCSE provides client libraries that can be used by other tools
to interact with and (2) GCSE has public forums that provide good support. How-
ever, our approach is independent of GCSE and can leverage any other CSE to gather
relevant code examples.

4.2 Phase 2: generating pattern candidates

In Phase 2, Alattin analyzes gathered code examples or application under analysis
statically to generate pattern candidates suitable for mining. These pattern candidates
include condition checks that are performed before and after invoking an Fi method.

Autom Softw Eng

To identify these condition checks on method calls, Alattin has to associate condition
checks in the conditional expressions of If or While statements with the related
method calls. We use the Iterator.next method and its relevant code example
in Fig. 2 as a running example for explaining Phase 2.

Alattin includes two sub-phases in Phase 2: CFG construction and traversal. In the
CFG construction sub-phase, Alattin constructs CFGs for each code example with
two kinds of nodes: control (CT) and non-control (NT) nodes. Control nodes repre-
sent control-flow statements such as if, while, and for, which control the flow of the
program execution. Non-control nodes represent other statements such as method
calls or type casts. For example, Statement 5 in the code example (Fig. 2) is a
control node and Statement 9 is a non-control node. When encountering a control
node, say CT i (i indicates the statement id), Alattin also extracts all variables, say
{V1, V2, . . . , Vn}, that participate in the conditional expression of that node and the
condition checks on those variables. For example, the control node CT2 includes the
{(val, null-check), (val, instance-check)} pairs. If the control node in-
cludes comparisons with expressions such as method calls, our approach stores those
method calls also as additional information within the control node. When encoun-
tering a non-control node such as a method call, Alattin extracts variables such as
{receiver, argument1, . . . , argumentN} associated with the method call.

In the CFG traversal sub-phase, Alattin associates gathered condition checks with
their related method calls such as Iterator.hasNext. The traversal phase in-
cludes two kinds of traversals: backward and forward. Alattin performs a backward
traversal from the call site such as NT7 of the Fi method to collect condition checks
on the receiver and argument objects preceding the call site. Similarly, Alattin per-
forms a forward traversal to collect condition checks on the receiver and return ob-
jects after the call site of the Fi method. In each traversal, Alattin exploits program
dependencies for associating condition checks with method calls. Failing to consider
these program dependencies may result in programming rules that are not semanti-
cally related as shown in the limitations of the PR-Miner (Li and Zhou 2005) and
DynaMine (Livshits and Zimmermann 2005) approaches. To exploit program depen-
dencies, Alattin uses the concept of dominance with a combination of control-flow
and data-flow dependencies.

Definition A node N dominates another node M in a control flow graph (represented
as N dom M) if every path from the starting node of the CFG to M includes N .

Initially, Alattin identifies the dominant CT i nodes for each NTk node. For ex-
ample, the control node CT6 dominates the non-control node NT7. Alattin com-
putes the intersection between the variable set associated with the CT i node, say
{V1, V2, . . . , Vn}, and the receiver or argument variables of the NTk node, say
{receiver, argument1, . . . , argumentN}. If the intersection {V1, V2, . . . , Vn}
∩ {receiver, argument1, . . . , argumentN}
= ∅, Alattin checks whether the
NTk node is dependent on the CT i node, i.e., whether there exists at least one vari-
able of NTk node involved in the CT i node and is not redefined in the path between
CT i and NTk nodes. If the NTk node is dependent on the CT i node, Alattin adds
the condition check to the pattern candidate. For example, the extracted condition

Autom Softw Eng

check for nodes CT6 and NT7 in the code example is “boolean-check on re-
turn of Iterator.hasNext before Iterator.next”, which indicates that a
boolean-check must be done on the return variable of the hasNext method be-
fore the call site of Iterator.next. In our experience, we found that there can be
various code examples without any condition checks around an Fi method. Failing to
consider these code examples can assign incorrect support values to mined patterns.
To address this issue, we add an Empty Pattern Candidate to the input database ISD
for each such code example.

4.3 Phase 3: mining alternative patterns

In Phase 3, Alattin uses our mining algorithms (described in Sect. 3) to mine patterns
in all four pattern formats: And, Or, Xor, and Combo patterns. Alattin applies our
mining algorithms on pattern candidates of each Fi method individually. The reason
is that if we apply mining algorithms on all pattern candidates together, the patterns
related to an Fi method with a few pattern candidates can be missed due to patterns
(related to other Fj methods) with a large number of pattern candidates. For each Fi ,
Alattin mines patterns in all four pattern formats. We used a min_sup threshold value
of 0.4 based on our empirical experience (Thummalapenta and Xie 2009).

4.4 Phase 4: detecting neglected conditions

In Phase 4, Alattin detects violations of mined patterns in the application under anal-
ysis statically. More specifically, Alattin gathers condition checks around each call
site of an Fi method in the application under analysis. Alattin constructs an itemset
isj using gathered condition checks. For each mined pattern pck in all patterns of four
formats, Alattin uses IsSupportedBy (Algorithm 1) to check whether the itemset
isj supports the mined pattern pck . If the itemset does not support the mined pattern,
Alattin reports a violation. For each detected violation, Alattin assigns a support value
as the same value as the support value of the associated mined pattern used to detect
the violation.

5 Evaluations

We conducted two evaluations to assess the effectiveness of Alattin. We use the APIs
provided by three Java default API libraries to show the existence of alternative pat-
terns. We next use four popular applications to show the benefits and limitations
of alternative patterns with respect to false positives and false negatives among de-
tected violations. The details of subjects and results of our evaluations are available at
https://sites.google.com/site/asergrp/projects/alattin/. We next present research ques-
tions addressed in our evaluations.

5.1 Research questions

In our evaluations, we address the following research questions.

https://sites.google.com/site/asergrp/projects/alattin/

Autom Softw Eng

RQ1: How high percentage of And, Or, Xor, and Combo patterns represent real pro-
gramming rules, respectively? Since real programming rules are required for detect-
ing violations in applications under analysis, this research question helps to show
the pattern formats that are suitable for detecting violations.

RQ2: How low percentage of false negatives and false positives exist among viola-
tions detected using And, Or, Xor, and Combo patterns, respectively? Since false
positives are one of the common issues faced by existing static defect-detection
techniques, this research question helps to show that the patterns that describe nearly
complete behavior (such as Or or Combo) help reduce the number of false positives
with no or low increase of false negatives.

5.2 Subject applications

We next present subject applications used in our evaluations. In our evaluations, we
used three Java default API libraries and four popular open source libraries. Table 1
shows the characteristics of the subject applications. Columns “Classes” and “Meth-
ods” show the number of classes and methods, respectively. For mining patterns of
three Java default API libraries, we gathered 49858, 5555, and 15052 code examples
for Java Util, Java Transaction, and Java SQL, respectively. Column “KLOC” shows
the kilo lines of code in each subject application.

The Java Util package2 includes the collections framework and other popular util-
ities used by many different applications. Java Transactions3 and Java SQL4 are in-
dustry standards for developing multi-tier server-side Java applications. Hibernate5

and HsqlDB6 abstract relational databases to use an object-oriented methodology.
Columba7 is an open source email-client application written in Java. Columba pro-
vides a user-friendly graphical interface and is suitable for internationalization sup-
port. The BCEL library8, developed by Apache, is mainly used to analyze, create, and
manipulate Java class files. We selected these applications, since these applications
are popular open source applications and are used as subjects in evaluating previous
related approaches (Weimer and Necula 2005; Thummalapenta and Xie 2009).

5.3 RQ1: alternative patterns

We next address the first research question of whether alternative patterns exist in
real applications and how high percentage of those patterns represents real program-
ming rules by mining patterns for three Java default API libraries. In general, Alattin
accepts an application under analysis and mines patterns for API methods reused by

2http://java.sun.com/j2se/1.4.2/docs/api/java/util/package-summary.html.
3http://java.sun.com/javaee/technologies/jta/.
4http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html.
5http://www.hibernate.org/.
6http://hsqldb.org/.
7http://sourceforge.net/projects/columba/.
8http://jakarta.apache.org/bcel/.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/package-summary.html
http://java.sun.com/javaee/technologies/jta/
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
http://www.hibernate.org/
http://hsqldb.org/
http://sourceforge.net/projects/columba/
http://jakarta.apache.org/bcel/

Autom Softw Eng

Table 1 Subject applications
and their characteristics Application #Classes #Methods KLOC

Java util APIs 19 144 –

Java transaction APIs 7 37 –

Java SQL APIs 14 93 –

Hibernate 478 4334 118

HsqlDB 143 1178 41

Columba 1500 7674 136

BCEL 357 2691 32

Total 2518 16151 327

Table 2 Alternative patterns
mined by Alattin

RR: Real Rules, PR: Partial
Rules, FP: False Positives

Application And patterns Or patterns

Total #RR #PR #FP Total #RR #PR #FP

Java Util 40 34 0 6 51 25 19 7

Java Sql 26 26 0 0 24 21 3 0

Java 3 3 0 0 9 2 4 3

transaction

Xor patterns Combo patterns

Total #RR #PR #FP Total #RR #PR #FP

Java Util 54 35 11 8 50 32 11 7

Java Sql 33 30 3 0 24 21 3 0

Java 8 2 4 2 8 2 4 2

transaction

the application under analysis. However, to address this research question, we con-
figured Alattin to accept directly a set of API methods of Java default libraries rather
than an application under analysis. In this mode of operation, Alattin mines patterns
(programming rules) for the given API methods.

Table 2 shows the patterns mined in all four formats: And, Or, Xor, and Combo.
For each pattern format, Columns “Total”, “RR”, “PR”, and “FP” show the total
number of mined patterns, real rules, partial rules, and false positives, respectively.
Real rules describe properties that must be satisfied when using an API method. In
real rules, all alternatives are real properties. In contrast to real rules, some alterna-
tives in Partial rules do not represent real properties. Figure 10 shows a partial rule
mined for the size method of the java.util.List class. In this partial rule,
alternatives P1 and P3 represent real properties with respect to the size method.
However, the alternative P2 does not represent real property, since P2 is not related
to the sizemethod. The reason for introducing partial rules is that partial rules are as
effective as real rules in reducing false-positive defects; however, partial rules can in-
crease false-negative defects due to false-positive alternatives among mined patterns.
For example, consider the preceding partial rule of the form “P1 ∨ P2 ∨ P3”, where

Autom Softw Eng

Method: java.util.List.size()
Pattern: “P1 ∨ P2 ∨ P3”, SUP(P1 ∨ P2 ∨ P3): 0.79
P1: “boolean-check on the return of List.isEmpty()”
P2: “boolean-check on the return of

StringTokenizer.hasMoreTokens()”
P3: “const-check on the return of List.size() with 0”

Fig. 10 A partial rule mined for the size method of the List class

Fig. 11 Classification of mined patterns (shown in percentages)

alternatives P1 and P3 are real properties, and the property P2 is a false-positive al-
ternative. Consider that a code example includes only the P2 alternative but not P1
or P3 alternatives. This code example includes a potential violation, since it does
not include either P1 or P3 alternative. However, since the code example includes P2,
Alattin does not detect any violation in that code example, resulting in a false-negative
defect. False positives represent mined patterns where none of the alternatives repre-
sents real properties. To mine patterns in all four pattern formats, Alattin took 13, 1,
and 1 seconds for Java Util, Java Sql, and Java Transaction, respectively. All experi-
ments were conducted on a machine with 2.2 GHz Intel processor and 3 GB RAM.
We used available on-line documentations, JML specifications,9 or source code of
applications for classifying mined patterns into these three categories.

Figure 11 shows the percentages of real, partial, and false-positive rules among
mined patterns of each pattern format. In summary, a high percentage of And, Or,
Xor, and Combo patterns represent real rules. We also found that Or, Xor, and Combo
patterns include new real rules that do not exist among And patterns (as shown in Ta-
ble 2, by combining the number of rules in Columns “RR” and “PR” for each pattern
format). Since existing approaches mine only And patterns, our results show that new

9http://www.eecs.ucf.edu/~leavens/JML/.

http://www.eecs.ucf.edu/~leavens/JML/

Autom Softw Eng

00: ...
01: JarInputStream in;
02: ZipEntry ze; ...
03: while ((ze = in.getNextEntry()) != null){
04: if(thePath.equals(zipEntry.getName())){
05: ByteArrayOutputStream buffer =

new ByteArrayOutputStream();
06: byte[] bytes = new byte[2048];
07: int bytesRead;
08: while((bytesRead = in.read(bytes)) != -1){
09: buffer.write(bytes, 0, bytesRead);
10: }
11: return new ByteArrayInputStream

(buffer.toByteArray());
12: }
13: } ...

Fig. 12 Alternative patterns mined for the read method of the JarInputStream class

defects can be detected using Or, Xor, and Combo patterns. The figure also shows
that, except And patterns, all other pattern formats include a considerable percentage
of partial rules. Therefore, although these three pattern formats can help reduce false
positives, these three pattern formats can result in false negatives among detected vi-
olations. Furthermore, Or patterns have higher percentage of partial rules compared
to Xor and Combo patterns, indicating that Or patterns result in more false negatives
compared to Xor and Combo patterns.

We next present example patterns in each pattern format for the read method of
the java.util.jar.JarInputStream class, which extends the
ZipInputStream class. This class is used for reading the contents of a Jar file
from any input stream such as FileInputStream. This class includes three meth-
ods: getNextEntry, getNextJarEntry, and read. The getNextEntry
method reads the next Zip file entry, represented as an instance of the ZipEntry
class, and positions the stream at the beginning of the entry data in the Jar file.
On the other hand, the getNextJarEntry method reads the next Jar file entry,
represented as an instance of the JarEntry class, and positions the stream at the
beginning of the entry data. Indeed, the JarEntry class extends the ZipEntry
class and includes additional methods such as getAttributes for reading the at-
tributes specific to the Jar file. In general, programmers use either getNextEntry
or getNextJarEntry for iterating through the entries in the Jar file and for read-
ing the contents using the read method. Furthermore, if there is only one entry
to read from the Jar file, the read method is used directly without using either
getNextEntry or getNextJarEntry. Figure 12 shows an example usage of
getNextEntry and readmethods. This code example is extracted from Apache’s
Jakarta Cactus project.10

10http://jakarta.apache.org/cactus/.

http://jakarta.apache.org/cactus/

Autom Softw Eng

Method: JarInputStream.read (byte[], int, int)
A. And Pattern
Pattern: “P1”, SUP(P1): 0.63
P1: “const-check on the return of JarInputStream.read

with -1”

B. Or Pattern
Pattern: “P1 ∨ P2”, SUP(P1 ∨ P2): 0.67
P1: “const-check on the return of JarInputStream.read

with -1”
P2: “null-check on the return of

JarInputStream.getNextJarEntry() before
JarInputStream.read”

C. Xor Patterns
Pattern: “P1”, SUP(P1): 0.63
P1: “const-check on the return of JarInputStream.read

with -1”
Pattern: “P2 ⊕ P3”, SUP(P2 ⊕ P3): 0.52
P2: “null-check on the return of

JarInputStream.getNextJarEntry() before
JarInputStream.read”

P3: “null-check on the return of
JarInputStream.getNextEntry() before
JarInputStream.read”

D. Combo Pattern
Pattern: “P1 ∨ (P2 ⊕ P3) ”, SUP(P1 ∨ (P2 ⊕ P3)): 0.67
P1: “const-check on the return of JarInputStream.read

with -1”
P2: “null-check on the return of

JarInputStream.getNextJarEntry() before
JarInputStream.read”

P3: “null-check on the return of
JarInputStream.getNextEntry() before
JarInputStream.read”

Fig. 13 Alternative patterns mined for the read method of the JarInputStream class

Figure 13 shows the patterns mined for the read method in all four formats. The
And pattern includes only one alternative P1, which describes that there should be
a condition check with “−1” on the return value of the read method. Here, “−1”
indicates that the end of the entry is reached. The Or Pattern includes two alternatives
“P1 ∨ P2”, where P2 indicates that there should be a null-check on the return of
the getNextJarEntry method. The reason that the And pattern could not mine
the alternative P2 is that there are various scenarios where P1 and P2 are not used

Autom Softw Eng

together. For example, when P2 is used, programmers often get the size of the buffer
to be read using the getSize method of JarEntry, which is the return type of
the getNextJarEntry method. Therefore, programmers often do not explicitly
check the return value of the read method, when the getNextJarEntry method
is used. Figure 13 also shows that there are two Xor patterns. Interestingly, the second
pattern “P2 ⊕P3” shows that programmers often use either getNextJarEntry or
getNextEntry, but not both together, since the related pattern “P2 ∨ P3” is not
being mined. However, the Xor pattern alone could not mine the relation among all
alternatives P1, P2, and P3. The Combo pattern addresses this issue via mining the
pattern “P1 ∨ (P2 ⊕ P3)”, and shows the relation among all alternatives.

5.4 RQ2: false positives and false negatives

We next address the second research question of whether alternative patterns help
reduce false positives among detected violations. We also address whether these pat-
terns introduce no or a low percentage of false negatives among detected violations.
To address this question, we used the four subject applications (Hibernate, Columba,
BCEL, and HsqlDB) shown in Table 1. In particular, we mined patterns in all four
formats from these applications under analysis and apply mined patterns on those
applications to detect violations. We next inspected detected violations to classify
violations as real defects or false positives based on available specifications such as
JML and call sites of related API methods in source code of these subject applica-
tions. In our inspection, we ignored the violations related to API methods whose all
pattern formats include only one alternative, since our objective is to show the ben-
efits and limitations of alternative patterns. The primary reason is that such patterns
do not help show benefits of alternative patterns, since those patterns have the same
number of false positives or false negatives in all pattern formats. To compute false
negatives, we need a baseline that shows the number of defects exist in subject ap-
plications. Since such a baseline does not exist for these applications, we identified
all distinct real defects detected using patterns in all pattern formats and used those
defects as a baseline for computing false negatives among violations detected using
each pattern format.

Table 3 shows detected violations in all subject applications. Column “Real De-
fects” shows the total number of distinct defects detected using all pattern formats in
each application. We used these defects as a baseline for computing the number of
false negatives among violations detected using each pattern format. For each pattern
format, Columns “Total”, “RD”, “FN”, and “FP” show the total number of violations,
real defects, false negatives (their percentage), and false positives (their percentage),
respectively. We next summarize our findings for each pattern format with respect to
real defects, false negatives, and false positives.

Real defects and false negatives Figure 14 shows comparison between real defects
and false negatives for the four pattern formats in each subject application. The fig-
ure shows that Or, Xor, and Combo patterns helped detect new defects that are not
detected using And patterns. For example, in the Columba application, Or patterns

Autom Softw Eng

Table 3 Analysis of violations detected in subject applications

Application # Real And patterns Or patterns

defects Total #RD #FN % #FP % Total #RD #FN % #FP %

Columba 49 117 26 23 47 91 78 113 41 8 16.3 72 63.7

Hibernate 22 93 14 8 36 71 76 177 17 5 22.7 160 90.4

Hsqldb 6 13 6 0 0 7 53.8 5 5 1 16.7 0 0

BCEL 1 2 0 1 100 2 100 13 1 0 0 12 92.3

Xor patterns Combo patterns

Total #RD #FN % #FP % Total #RD #FN % #FP %

Columba 49 164 49 0 0 115 73 144 47 2 4 97 67

Hibernate 22 214 21 1 4.5 193 90.2 195 19 3 13.6 176 90.3

HsqlDB 6 11 6 0 0 5 45.5 10 6 0 0 4 40

BCEL 1 20 1 0 0 19 95 16 1 0 0 15 93.8

RD: Real Defects, FN: False Negatives, FP: False Positives

Fig. 14 Real defects and false negatives among detected violations (shown in percentages)

detected 41 real defects, whereas And patterns detected only 26 real defects. The rea-
son for new defects is due to the new patterns mined using the Or, Xor, and Combo
pattern formats.

Regarding false negatives, our results show that the violations detected using And
patterns include a high percentage of false negatives in 3 out of 4 applications. Since
And patterns represent patterns that can be mined by existing approaches, the results
show the ineffectiveness of existing approaches in detecting defects in applications
under analysis. Among Or, Xor, and Combo patterns, violations detected using Or
patterns have a higher number of false negatives compared to the violations detected

Autom Softw Eng

Fig. 15 False positives among detected violations

using Xor and Combo patterns. For example, in the Columba application, violations
detected using Or patterns include 8 (16.3%) false negatives compared to 0 (0%)
and 2 (4%) false negatives among violations detected using Xor and Combo patterns,
respectively. The primary reason is that Or patterns often include partial rules (as
shown in Fig. 11), resulting in false negatives among detected violations. The results
show that Xor patterns are quite effective in detecting defects compared to all three
other pattern formats: And, Or, and Combo. However, Combo patterns are also shown
to be effective than Or patterns and have similar effectiveness as that of Xor patterns.

False positives Figure 15 shows the number of false positives among violations de-
tected using patterns in each pattern format. Initially, we expected that Or and Combo
patterns help reduce a high percentage of false positives among violations detected
using And and Xor patterns. However, contrary to our expectation, the number of
false positives is high among violations detected using Or and Combo patterns. For
example, in the Hibernate application, the numbers of false positives are 71, 160,
193, and 176 among violations detected using And, Or, Xor, and Combo patterns,
respectively.

In our manual analysis of these false positives, we identified an interesting phe-
nomenon: the majority of false positives is related to the API methods that do not
have any patterns mined using the And pattern format and have new patterns mined
using one or more of the Or, Xor, and Combo pattern formats. To illustrate this sce-
nario, we classified all false positives among detected violations into two categories:
FPAnd and FPWithOutAnd. FPAnd includes all false positives detected using pat-
terns (Or, Xor, and Combo patterns) related to API methods that have mined patterns
using the And pattern format. In contrast, FPWithOutAnd includes all false positives
detected using patterns (Or, Xor, and Combo patterns) related to API methods that
do not have mined patterns using the And pattern format. Figures 16 and 17 show
the classification of false positives for categories FPAnd and FPWithOutAnd, respec-
tively. Figure 16 shows that Or patterns help significantly reduce the number of false

Autom Softw Eng

Fig. 16 False positives among detected violations related to API methods with And patterns

Fig. 17 False positives among detected violations related to API methods without And patterns

positives among detected violations compared to And and Xor patterns. Although
Combo patterns help reduce false positives, these patterns are not as effective as Or
patterns. The primary reason is that most of the Combo patterns are similar to Xor
patterns based on our algorithm described in Sect. 3.

Figure 17 shows the classification of false positives for API methods without And
patterns. As shown in the figure, neither Or nor Combo patterns help reduce false
positives among violations detected using Xor patterns. The primary reason is that
most of these mined patterns are false positives, resulting in false positives among
their detected violations. We next summarize our findings.

Autom Softw Eng

5.5 Summary

In summary, based on our results, comparing to Or, Xor, and Combo patterns, And
patterns are not effective in detecting defects and result in both false positives and
false negatives among detected violations. Although Xor patterns are effective in
detecting defects, these patterns result in a large number of false positives among
detected violations. On the other hand, Or patterns are effective in reducing false
positives, but, result in false negatives as shown in our results. Combo patterns can
perform reasonably well with respect to both false positives and false negatives. How-
ever, Or or Combo patterns often result in false-positive patterns for those API meth-
ods without any And patterns. Therefore, based on our empirical results, the best
pattern-mining approach (in terms of reducing both false positives and false nega-
tives) is to first mine And patterns for API methods and next mine Combo patterns.
Among violations detected using Combo patterns, the best violation-detection ap-
proach is to assign higher priority to the violations of API methods with And patterns
compared to the violations of API methods without And patterns. The primary reason
is that the former violations are more likely to be real defects compared to the latter
violations.

6 Threats to validity

The threats to external validity primarily include the degree to which the subject pro-
grams and used CSE are representative of true practice. The current subjects range
from small-scale libraries such as Java SQL APIs to large-scale libraries such as
BCEL and Hibernate. We used only one CSE, i.e., Google code search, which is
a well-known CSE. These threats could be reduced by more experiments on wider
types of subjects and by using other CSEs in future work. The threats to internal
validity are instrumentation effects that can bias our results. Faults or features that
are not supported in our Alattin prototype might cause such effects. There can be er-
rors in our inspection of source code for confirming rules or defects. To reduce these
threats, we inspected available specifications and also call sites in source code. In par-
ticular, to confirm specifications mined for Java Util, Java Sql, and Java Transaction
API libraries, we inspected on-line documentations (Javadoc) and also available JML
specifications. On the other hand, for confirming violations as defects, we inspected
source code of subject applications to check whether the call sites of API methods
include necessary condition checks described in mined rules.

7 Discussion

Since the inception of the Mining Software Engineering Data methodology, re-
searchers have explored the mining of various pattern types ranging from simple
itemsets that represent necessary condition checks around API method calls (Thum-
malapenta and Xie 2009) to complex graph-based pattern types that describe the us-
age patterns of one or multiple objects (Nguyen et al. 2009). In this paper, we focused

Autom Softw Eng

on mining itemset pattern types in four pattern formats and showed their benefits and
limitations. In our future work, we plan to explore other pattern types such as se-
quences (Srikant and Agrawal 1996) and graph-based pattern types (Han and Kam-
ber 2000) to develop new mining algorithms for mining those pattern types in various
formats and show their benefits and limitations in defect detection.

In this paper, we proposed a greedy technique for mining patterns in Or,
Xor, and Combo pattern formats. Our greedy technique (shown as the function
ApplyGreedy in Algorithm 2) chooses one parent pattern candidate with the high-
est support value for each pattern candidate. The primary reason for adopting the
greedy technique is to reduce the search space of pattern candidates. In future work,
we plan to explore other techniques such as clustering techniques (Han and Kam-
ber 2000). In particular, we plan to first group items (among itemsets in the input
database) that are closely related to each other. We next apply our mining algorithms
without the greedy technique on each cluster individually. We expect that the number
of items in each cluster could be low and help reduce the search space of pattern
candidates significantly. We also plan to adopt some properties used by Zhao et al.
(2006) for handling search space of pattern candidates while mining patterns.

Our current implementation sometimes is not precise and cannot identify equiva-
lent but syntactically different conditions. For example, our current implementation
considers the conditions a > 0 and a ≥ 1 as different. In future work, we plan
to address these issues using more precise static analysis that can identify equivalent
conditions. Furthermore, we use intra-procedural analysis for detecting violations.
Therefore, in a few cases, some detected defects could be false positives with respect
to the entire system point of view. However, this limitation does not affect the results
of comparing the benefits and limitations of our four pattern formats, since we use
the same analysis for all four pattern formats. In future work, we plan to address this
limitation by using inter-procedural analysis.

8 Related work

Mining software repositories PR-Miner developed by Li and Zhou (2005) uses fre-
quent itemset mining to mine programming rules from C code and detect their vio-
lations. DynaMine developed by Livshits and Zimmermann (2005) uses association
rule mining to extract simple rules from software revision histories for Java code and
detect defects related to rule violations. PR-Miner or DynaMine may suffer from is-
sues of a high number of false positives since their rule elements are not necessarily
associated with program dependencies. Furthermore, these approaches target at only
frequent patterns, whereas Alattin can mine alternative patterns that include both fre-
quent and infrequent alternatives.

Another related approach to our Alattin approach is the approach developed by
Chang et al. (2007) that applies frequent subgraph mining on C code to mine condi-
tion rules and to detect neglected conditions. Both Alattin and their approach target
at the same type of defects: neglected conditions. Alattin significantly differs from
Chang et al.’s approach in three main aspects. First, their approach cannot mine in-
frequent alternatives. Second, their approach is limited on a much smaller scale of

Autom Softw Eng

code repositories (in fact, only one project code base) than Alattin, which exploits
a CSE to search for relevant code examples from open source code available on the
web. Third, the scalability of their approach is heavily limited by its underlying graph
mining algorithms, which are known to suffer from scalability issues. In contrast,
Alattin uses our new ImMiner algorithm based on frequent itemset mining, being
much more scalable.

Williams and Hollingsworth (2005) incorporate an API call return value checker
for C code, which checks that a value returned by an API call is checked before being
used. This type of return-value checking before use falls into a subset of the types
of rules being mined by Alattin. Different from their tool, Alattin does not require or
rely on version histories, which may not include the types of defect fixing (required
by their tool) related to the rules being mined. Acharya et al. (2006) developed a tool
to mine interface details (such as an API call’s return values on success or failure and
error flags) from model-checker traces for C code, and then mine interface robustness
properties for defect detection. Similar to the tool of Williams and Hollingsworth
(2005), Acharya et al.’s tool mines only a subset of neglected conditions (e.g., return-
value checking before use) mined by Alattin. In addition, as shown by Acharya et
al. (2006), only the interface details of 22 out of 60 POSIX API functions can be
successfully mined by their tool, whereas Alattin exploits a CSE to alleviate the issue
by collecting relevant API call usages from the web. Furthermore, these approaches
cannot mine alternative patterns targeted by Alattin.

Engler et al. (2001) proposed a general approach for detecting defects in C code
by applying statistical analysis to rank deviations from programmer beliefs inferred
from source code. Their approach allows users to define rule templates, which are
not required by our approach. In addition, their approach also cannot mine infrequent
alternatives targeted by our Alattin approach.

General data mining techniques Although ours is the first approach to propose new
pattern formats such as disjunctive and exclusive-disjunctive pattern formats for min-
ing software engineering data, a few approaches have been proposed (in the data
mining research area) that target at mining patterns in these preceding formats for
other applications such as market basket analysis (Agrawal et al. 1996). Zhao et al.
(2006) proposed an approach, called BLOSOM, that targets at mining itemset pat-
terns in four pattern formats: conjunctive, disjunctive, conjunction of disjunctive, and
disjunction of conjunctive. In contrast to their BLOSOM approach, our Alattin ap-
proach additionally proposes the exclusive-disjunctive pattern format and includes a
greedy technique for handling the search space of pattern candidates. In future work,
we plan to adopt some properties used by their approach for handling the search
space of pattern candidates while mining disjunctive patterns. Nanavati et al. (2001)
proposed an approach for mining disjunctive association rules. Given a minimum
confidence min_conf, their approach uses concepts from propositional logic for prun-
ing the association rules that do not have confidence higher than min_conf. Shimizu
and Miura (2005) proposed algorithms for mining disjunctive sequence patterns. In
contrast to these two preceding approaches, our Alattin approach targets at mining
itemset patterns in disjunctive and exclusive-disjunctive pattern formats.

Autom Softw Eng

Code search engines Finally, our previous approaches PARSEWeb (Thummala-
penta and Xie 2007) and CAR-Miner (Thummalapenta and Xie 2009) also exploit
code search engines for gathering relevant code samples. PARSEWeb accepts queries
of the form “Source → Destination” and mines frequent method-invocation se-
quences that accept Source and produce Destination. Although Alattin uses code
search engines for gathering relevant code examples, Alattin targets at mining pat-
terns that describe programming rules that should be obeyed while reusing APIs.
Unlike PARSEWeb, which mines frequent sequences, Alattin mines alternative pat-
terns with both frequent and infrequent alternatives. CAR-Miner also incorporates
a new mining algorithm for mining exception-handling rules in the form of se-
quence association rules. CAR-Miner and Alattin differ significantly in three major
aspects. (1) CAR-Miner mines rules for detecting exception-handling-related defects,
whereas Alattin mines rules for detecting neglected conditions. (2) Alattin is a more
general approach compared to CAR-Miner and can be applied to enhance various ex-
isting mining-based approaches including CAR-Miner for detecting alternative rules.
(3) CAR-Miner mines new kinds of patterns for reducing false negatives (i.e., detect-
ing new kinds of exception-handling defects). In contrast, Alattin mines new kinds of
patterns for reducing false positives.

9 Conclusion

To reduce false positives in static defect detection based on code mining, we have
developed a novel approach, called Alattin, that includes new mining algorithms and
a technique for detecting neglected conditions. Our new mining algorithms mine pat-
terns in four pattern formats: And, Or, Xor, and Combo. In our evaluations, we show
the benefits and limitations of these pattern formats with respect to false positives
and false negatives among detected violations that represent neglected conditions in
applications under analysis. Our evaluation results show that the best pattern-mining
approach (in terms of reducing both false positives and false negatives) is to first mine
And patterns for API methods and next mine Combo patterns. Among violations de-
tected by Combo patterns, the best violation-detection approach is to assign higher
priority to the violations of API methods with And patterns compared to the viola-
tions of API methods without And patterns. The primary reason is that the former
violations are more likely to be real defects compared to the latter violations.

In this paper, we follow a problem-driven methodology in advancing the field
of mining software engineering data. Our current approach and previous ap-
proach (Thummalapenta and Xie 2009) serve as examples in this direction. More
specifically, in our approaches, we empirically investigate problems in the software
engineering domain and identify required types of patterns for addressing those prob-
lems. We further develop new mining algorithms for mining these required types of
patterns, rather than being constrained by available mining algorithms from the data
mining community. Our approaches primarily target at reducing false negatives and
false positives among detected violations. Our previous approach (Thummalapenta
and Xie 2009), which mines programming rules as sequence association rules, fo-
cuses on reducing false negatives by detecting new kinds of defects. In contrast, our

Autom Softw Eng

current approach focuses on a new sub-direction of reducing false positives among
detected violations. In future work, we plan to further expand our research by inves-
tigating broader types of problems, patterns, mining algorithms, and defects.

Acknowledgements This work is supported in part by NSF grants CCF-0725190, CCF-0845272, CNS-
0958235, and CCF-0915400, ARO grant W911NF-08-1-0443, ARO grant W911NF-08-1-0105 managed
by NCSU Secure Open Systems Initiative (SOSI), and an NCSU CACC grant.

References

Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from source code: from usage
scenarios to specifications. In: Proc. ESEC/FSE, pp. 25–34 (2007)

Acharya, M., Xie, T., Xu, J.: Mining interface specifications for generating checkable robustness proper-
ties. In: Proc. ISSRE, pp. 311–320 (2006)

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In:
Advances in Knowledge Discovery and Data Mining, pp. 307–328 (1996)

Ammons, G., Bodik, R., Larus, J.R.: Mining specifications. In: Proc. POPL, pp. 4–16 (2002)
Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: a maximal frequent itemset algorithm for transactional

databases. In: Proc. ICDE, pp. 443–452 (2001)
Chang, R.-Y., Podgurski, A., Yang, J.: Finding what’s not there: a new approach to revealing neglected

conditions in software. In: Proc. ISSTA, pp. 163–173 (2007)
Bibliography on mining software engineering data. https://sites.google.com/site/asergrp/dmse/ (2010)
Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior: a general approach to

inferring errors in systems code. In: Proc. SOSP, pp. 57–72 (2001)
Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically discovering likely program invariants to

support program evolution. IEEE Trans. Softw. Eng. 27(2), 99–123 (2001)
Google code search engine. http://www.google.com/codesearch (2006)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Mateo (2000)
The Koders source code search engine. http://www.koders.com (2005)
Lethbridge, T., Singer, J., Forward, A.: How software engineers use documentation: the state of the prac-

tice. In: IEEE Software, pp. 35–39 (2003)
Li, Z., Zhou, Y.: PR-Miner: Automatically extracting implicit programming rules and detecting violations

in large software codes. In: Proc. FSE, pp. 306–315 (2005)
Livshits, V.B., Zimmermann, T.: Dynamine: finding common error patterns by mining software revision

histories. In: Proc. ESEC/FSE, pp. 296–305 (2005)
Nanavati, A.A., Chitrapura, K.P., Joshi, S., Krishnapuram, R.: Mining generalised disjunctive association

rules. In: Proc. CIKM, pp. 482–489 (2001)
Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J.M., Nguyen, T.N.: Graph-based mining of multiple

object usage patterns. In: Proc. ESEC/FSE, pp. 383–392 (2009)
Ramanathan, M.K., Grama, A., Jagannathan, S.: Path-sensitive inference of function precedence protocols.

In: Proc. ICSE, pp. 240–250 (2007)
Shimizu, K., Miura, T.: Disjunctive sequential patterns on single data sequence and its anti-monotonicity.

In: Proc. MLDM, pp. 376–383 (2005)
Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using automata-based abstractions.

In: Proc. ISSTA, pp. 174–184 (2007)
Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In:

Proc. EDBT, pp. 3–17 (1996)
Thummalapenta, S., Xie, T.: PARSEWeb: a programmer assistant for reusing open source code on the web.

In: Proc. ASE, pp. 204–213 (2007)
Thummalapenta, S., Xie, T.: Alattin: mining alternative patterns for detecting neglected conditions. In:

Proc. ASE, pp. 283–294 (2009)
Thummalapenta, S., Xie, T.: Mining exception-handling rules as sequence association rules. In: Proc.

ICSE, pp. 496–506 (2009)
Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: Proc. ESEC/FSE, pp. 35–44

(2007)

https://sites.google.com/site/asergrp/dmse/
http://www.google.com/codesearch
http://www.koders.com

Autom Softw Eng

Weimer, W., Necula, G.: Mining temporal specifications for error detection. In: Proc. TACAS, pp. 461–476
(2005)

Williams, C.C., Hollingsworth, J.K.: Recovering system specific rules from software repositories. In: Proc.
MSR, pp. 1–5 (2005)

Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal API rules from imperfect
traces. In: Proc. ICSE, pp. 282–291 (2006)

Zhao, L., Zaki, M.J., Ramakrishnan, N.: BLOSOM: a framework for mining arbitrary boolean expressions.
In: Proc. KDD, pp. 827–832 (2006)

	Alattin: mining alternative patterns for defect detection
	Abstract
	Introduction
	Example
	Mining algorithms for alternative patterns
	Formal definitions
	Mining algorithms
	Mining Or and Xor patterns
	Mining Xor patterns
	Mining Or patterns

	Mining Combo patterns
	Phase 1
	Phase 2

	Alattin approach
	Phase 1: gathering code examples
	Phase 2: generating pattern candidates
	Phase 3: mining alternative patterns
	Phase 4: detecting neglected conditions

	Evaluations
	Research questions
	Subject applications
	RQ1: alternative patterns
	RQ2: false positives and false negatives
	Real defects and false negatives
	False positives

	Summary

	Threats to validity
	Discussion
	Related work
	Mining software repositories
	General data mining techniques
	Code search engines

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

