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ABSTRACT
Modern programs are usually heap-based, where the programs ma-

nipulate heap-based data structures to perform computations. In

software engineering tasks such as test generation and bounded

verification, we need to determine the existence of a reachable
heap state that satisfies a given specification, or construct the heap

state by a sequence of calls to the public methods. Given the huge

space combined from the methods and their arguments, the exist-

ing approaches typically adopt static analysis or heuristic search

to explore only a small part of search space in the hope of find-

ing the target state and target call sequence early on. However,

these approaches do not have satisfactory performance on many

real-world complex methods and specifications. In this paper, we

propose an efficient synthesis algorithm for method call sequences,

including an offline procedure for exploring all reachable heap

states within a scope, and an online procedure for generating a

method call sequence from the explored heap states to satisfy the

given specification. To improve the efficiency of state exploration,

we introduce a notion of abstract heap state for compactly repre-

senting heap states of the same structure and propose a strategy of

merging structurally-isomorphic states. The experimental results

demonstrate that our approach substantially outperforms the base-

lines in both test generation and bounded verification.
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1 INTRODUCTION
Modern programs are usually heap-based, where the programs ma-

nipulate heap-based data structures, such as linked lists and graphs,

to perform computations. There are two major software engineer-

ing tasks (test generation and bounded verification) where we need

to construct a target heap state that satisfies a given specification,

or determine the existence of this target heap state. First, in the task

of test generation, we may need to construct different heap states in

unit tests before invoking a method, such that different paths of the

target method could be reached or specific types of errors could be

triggered. For example, to cover a specific path in a method for sort-

ing a list, wemay need to construct a linked list in the heap with two

elements, where the first is larger than the second. Typically, we can

obtain the specifications for reaching different paths or triggering

errors by symbolic execution [4, 9, 29, 32, 34] or by manual writing

of specifications [7, 21, 26, 27], and yet we still need to construct

the heap states to satisfy the specifications. Second, in the task

of bounded verification, we need to check whether all heap states

concerned (within a user-provided finite scope) satisfy a given prop-

erty. If the property is violated, the verifier [10, 13, 14, 18, 19, 32]

generates a counterexample, i.e., a heap state violating the property.

Existing approaches [7, 9] face two major limitations when re-

sorting to directly constructing heap states, by directly assigning

values to the fields of the heap objects, where the values are usu-

ally inferred by a constraint solver [6, 12, 15, 22, 30]. First, mod-

ern object-oriented programming languages such as Java and C++

have accessibility control. Direct construction may require assign-

ments to private fields, violating the accessibility rules and result-

ing in compilation errors. To overcome this issue, some existing

approaches [9] utilize low-level language features such as the re-

flection APIs. However, tests generated in such a manner break

encapsulation and are often unacceptable to the developers. Second,

more importantly, direct construction may produce invalid (or un-

reachable) heap states that could never appear in normal program

execution (e.g., a cyclic binary tree). To address this issue, some

existing approaches [7, 9] require the user to provide representation

invariants to verify the validity of a heap state. e.g., in the form of

a repOK() Boolean function. However, manually writing accurate

representation invariants is a laborious and sometimes complex

task, while automatic inference of representation invariants shows

some initial promise [24] but still remains as an open problem for

real-world cases.

https://doi.org/10.1145/3551349.3556951
https://doi.org/10.1145/3551349.3556951
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To avoid the problem of direct construction, some other ap-

proaches [8, 28] resort to synthesizing a sequence of calls to the

public methods in the data structure classes. Synthesizing call se-

quences overcomes the two limitations of direct construction: (1)

the generated code does not violate the accessibility rules, and (2)

public methods of data structures are often carefully implemented

and lead to only valid heap states. A basic approach to synthesizing

call sequences is to enumerate all possible call sequences, up to

a limit of sequence length, and check whether a sequence leads

to a heap state satisfying the specification. However, given the

huge space combined from the methods and their arguments, it is

infeasible to enumerate all method call sequences. To overcome

this issue, some existing approaches adopt static analysis [28] or

heuristic search [8] to explore only a small part of search space in

the hope of reaching the target heap state early on. However, even

the state-of-the-art approach, SUSHI [8], does not have satisfactory

performance: for a simple specification shown in Figure 2, SUSHI

fails to generate a method call sequence for constructing a heap

state to satisfy the specification within 10 hours.

In this paper, we aim to develop an efficient synthesis algorithm

for method call sequences with our key insight: a heap state can be

separated into two parts: (1) the structure of the heap including the

objects and their reference fields pointing to other objects, and (2)

primitive values such as integers stored in the primitive fields of

the objects. The space of the former is relatively small and can be

enumerated. The space of the latter is large, but can be reasoned

using a constraint solver. In this way, we can switch from the

enumeration of the method call sequences to the enumeration of

the heap structures, and use a constraint solver to fill the primitive

values.

Based on this insight, we first introduce the notion of abstract
heap state, which preserves the heap structure but replaces all

primitive values with symbolic variables and a constraint over the

symbolic variables. Based on the notion of abstract heap state, we

propose an offline algorithm to exhaustively explore reachable ab-

stract heap states, including the following key components: (1) a

procedure for exploring new abstract heap states based on symbolic

execution of the data structure methods, and (2) a procedure for

reducing redundant exploration by merging abstract heap states

that are structurally isomorphic. We also maintain a graph struc-

ture named state transformation graph to record the process of

state exploration. Finally, we build the algorithm for synthesizing

method call sequences by using the preceding offline algorithm

for enumerating abstract heap states and an online procedure for

filling the symbolic variables.

We have developed a prototype based on our proposed approach,

and conduct experiments on a set of Java classes implementing

complex data structures. For test generation, we compare our ap-

proach with SUSHI [8], the state-of-the-art test generator based

on call sequence generation. The experimental results show that

our approach is more than 100X faster than SUSHI for solving each

test generation task, and achieves 20% more branches on the sub-

ject programs. For bounded verification, since there is no existing

program verifier that exactly addresses our problem, we construct

a baseline that extends a symbolic execution engine [32] to par-

tially address our problem by writing driver programs [33]. The

experimental results show that when the state space is large, our

class Node {

private Node next;

private int value;

private Node(Node n, int v) {

this.next = n; this.value = v;

}

public static Node create(int v, boolean b) {

if (b == true)
return new Node(null , v * 2 + 1);

else return new Node(null , v * 2);

}

public Node getNext () { return this.next; }

public int getValue () { return this.value; }

public void addAfter(int v) {

this.next = new Node(null , v);

}

public Node addBefore(int v) {

return new Node(this , v);

}

}

Figure 1: A sample Java class implementing a list node

approach can still verify heap-based properties within 2 minutes,

while the baseline cannot verify within 30 minutes.

In summary, this paper makes the following main contributions:

• We develop an efficient algorithm for exploring reachable

heap states based on state abstraction and state merging.

• We develop an efficient algorithm for synthesizing method

call sequences, by combining enumerative techniques and

symbolic techniques.

• We implement a prototype and conduct experiments for

evaluating the effectiveness and efficiency of our approach.

The rest of the paper is organized as follows. Section 2 presents

an overview of our approach. Section 3 formalizes the problem

of targeted heap state construction. Section 4 presents the main

algorithms. Section 5 presents the evaluation results. Section 6

discusses the limitations of our approach. Section 7 presents the

related work, and finally Section 8 concludes.

2 OVERVIEW
This section illustrates the workflow of our approach and the limi-

tations of the SUSHI approach. Figure 1 shows a simple Java class

implementing a node of a list-like data structure. The class Node
has two private fields: a reference field next and a primitive field

value. There are many public methods in this class, including a

static factory method create, two getter methods getNext and

getValue, and two instance methods addAfter and addBefore
that construct a new node and link it after or before this node.

Now let us consider a test generation task where wewould like to

generate object instances of this Node class to satisfy a specification
TEST in Figure 2, in the form of a Boolean function. The object

instances are generated by calling the public methods of Node.
The SUSHI approach regards this task as an optimization prob-

lem whose goal is to find a sequence of method calls optimizing

an objective function, and designs an objective function estimating

the distance of the current call sequence from satisfying the speci-

fication. SUSHI then solves the optimization problem by applying

a genetic algorithm. However, the specification shown in Figure 2

involves complex numeric constraints that are hard to be solved by
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boolean TEST(Node o) {

return o.value - o.next.value == 100 &&

o.next.value - o.next.next.value == 200 &&

o.value + o.next.next.value == 800

}

C1 : o1 = create(125, false); C3 : o3 = o2.addBefore(550);
C2 : o2 = o1.addBefore(450); C4 : assert(TEST(o3));

Figure 2: A specification TEST and a solution C

just searching. Therefore, SUSHI performs inefficiently and fails to

generate an expected method call sequence within 10 hours.

Next, we explain how our approach addresses the test genera-

tion task. There are two phases in the workflow of our approach:

exploration of reachable heap states, and synthesis of method call

sequences. Due to the huge space of reachable heap states, we in-

troduce the notion of abstract heap state to compactly represents

multiple concrete heap states with the same structure. An abstract

heap state consists of a set of objects, a set of symbolic variables,

and a first-order state constraint over the symbolic variables. Each

object has a set of reference fields storing references to other objects

and a set of primitive fields storing references to symbolic variables.

There always exists a special object null containing no field. For

example, in the abstract stateH1 shown in Figure 3, the primitive

field o1.value stores a reference to variable x1, and the possible

values of x1 are characterized by the state constraint φH1
.

In the first phase, we exhaustively explore the abstract heap

states within the pre-specified finite scope, and record the explo-

ration in a data structure called state transformation graph. This
phase can be offline since the data structure classes are usually from

a library and the exploration procedure does not depend on the

specification. We start with the empty stateHemp , and iteratively

explore new abstract heap states by calling the public methods to

transform the explored abstract states. Each time we first pick an

explored state, and then pick a public method where its receiver ob-

ject and the object parameters could be assigned from the objects in

the state. Since there is no non-null heap object inHemp , the only

method that we could call is the static factory method create. We

generate two symbolic variables for its primitive parameters, and

symbolically execute create over the abstract stateHemp . There

are two control flow paths in the method create, so there are two

succeeding abstract states ofHemp – one isH1 for executing the

then-branch, and the other is H2 for executing the else-branch.

The state constraint of the new state is formed by conjoining the

constraint of the original state and the path constraint. However,

since by definition a primitive field of an abstract heap state stores

only references to symbolic variables and the state constraint con-

strains only these variables, we make necessary changes to the state

constraint by introducing new variables, existential quantifications,

and equality constraints, resulting in φH1
and φH2

.

Once a new state is reached, we check whether the graph struc-

ture formed by its objects and their reference fields is isomorphic

to an existing state (called structural isomorphism between the two

states). HereH1 andH2 are structurally isomorphic. Then we cre-

ate a new stateH3 to represent the state merged fromH1 andH2.

The objects and their fields inH3 are the same as one of the state

being merged, and the constraint inH3 is a disjunction of the con-

straints inH1 andH2. The set of concrete heap states represented

null 𝜑H𝑒𝑚𝑝

𝑜1 null

𝑥1
𝜑H1

next

value

𝑜1 null

𝑥1
𝜑H2

next

value

𝑜1 null

𝑥1
𝜑H3

next

value

create (𝑣1, 𝑏)
PC: 𝑏

create (𝑣1, 𝑏)PC: ¬𝑏
𝜖

𝜖

φHemp = true

φH1
= φHemp ∧ ∃v1. ∃b . (b ∧ x1 = 2v1 + 1)

φH2
= φHemp ∧ ∃v1. ∃b . (¬b ∧ x1 = 2v1)

φH3
= φH1

∨ φH2

Figure 3: Calling method create on the abstract stateHemp

byH3 is the union set of concrete states represented byH1 andH2.

Next, two special ϵ edges from the original states to the merge state

are added. Finally, we mark H1 and H2 as inactive. An inactive

state would not be selected for state exploration or isomorphism

comparison. We use single-lined frame and double-lined frame to

distinguish between inactive and active states in the figures.

OnH3, two newmethods can be called, addBefore and addAfter,
and we obtain two new abstract states H4 and H5, as shown in

Figure 4. Method addAfter creates a new object, but this object

is not returned and thus is not directly accessible from the stack.

To distinguish such objects, we call these objects that are returned

from amethod call stack-accessible as we can own a reference on the
stack that refers to the object. We denote stack-accessible objects

with double circles and the other objects with single circles. The

structural isomorphism also takes stack-accessibility into consider-

ation: stack-accessible objects could only map to stack-accessible

objects in an isomorphism. Therefore, states H4 and H5 are not

isomorphic. Please note that φH3
contains a free variable x1 and

thus we introduce new existential quantification in φH4
and φH5

.

Now supposewe call method getNext on the objecto1 inH5, and

result in the abstract stateH6. The abstract statesH4 andH6 are

structurally isomorphic with regard to the bijection σ and could be

merged. However, we observe that φH6
→ φH4

[y2 := z1,y1 := z2]
holds for all z1, z2, i.e, all concrete heap states represented byH6

are included in those represented by H4. Therefore, we do not

need to merge the two states but can simply markH6 as inactive.

We use a dotted arrow in Figure 4 to represent this subsumption

relation betweenH4 andH6, but please note this arrow is not part

of the state transformation graph. We perform this check with a

constraint solver before merging states. Wemay further call method

addBefore on object o2 inH4 to obtainH7.

After the state transformation graph is built, we enumerate all

permutations of stack-accessible objects in all states to determine

whether the objects could form a sequence of arguments to make
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𝑜1 null

𝑥1
𝜑H3

next

value

𝑜1 𝑜2 null

𝑦1 𝑦2 𝜑H5

next next

value value

𝑜2 𝑜1 null

𝑦2 𝑦1 𝜑H4

next next

value value

𝑜1 𝑜2 null

𝑧1 𝑧2
𝜑H6

next next

value value

𝑜3 𝑜2 𝑜1 null

𝑤3 𝑤2 𝑤1
𝜑H7

next next next

value value value

𝑜1.addBefore (𝑣2)PC: true

𝑜1.addAfter (𝑣2)
PC: true

𝑦2 ↔ 𝑧1
𝑦1 ↔ 𝑧2

𝜎 : 𝑜2 ↔ 𝑜1
𝑜1 ↔ 𝑜2

𝑜1.getNext ()PC: true

𝑜2.addBefore (𝑣3)PC: true

φH4
= ∃x1. (φH3

∧ ∃v2. (y1 = x1 ∧ y2 = v2)
)

φH5
= ∃x1. (φH3

∧ ∃v2. (y1 = x1 ∧ y2 = v2)
)

φH6
= ∃y1. ∃y2. (φH5

∧ z1 = y1 ∧ z2 = y2
)

φH7
= ∃y1. ∃y2. (φH4

∧ ∃v3. (w1 = y1 ∧w2 = y2 ∧w3 = v3)
)

Figure 4: Further State Exploration

the specification pass. We illustrate the process with object o3 inH7,

i.e., check whether Test(o3) returns true. Since there are symbolic

variables in the abstract state, we need to symbolically execute the

Boolean function Test with the argument o3, and obtain the path

condition α for satisfying the specification.

α : (w3 −w2 = 100) ∧ (w2 −w1 = 200) ∧ (w3 +w1 = 800)
After solving the conjunction of the state constraint φH7

and

the path condition α , we can obtain the target concrete heap state

H by replacing the symbolic variables w1,w2 and w3 in H7 with

suitable concrete values – 250, 450, and 550, respectively.

At last, we need to synthesize a sequence of method calls that

leads to the target concrete state H . This process is non-trivial

because there may bemultiple paths that can reach the final abstract

state, each corresponding to a method sequence, and we do not

know which path could produce H . To find the path, we utilize

the model (assignments to variables) obtained from solving the

final constraint φH7
∧ α , which represents H . We further notice

that φH7
contains all symbolic variables (possibly under existential

quantification) used in previous constraints, and thus the model

contains assignments to all these variables and can be converted to

a concrete state for any abstract state in the path leading to H . As

a result, we search backwardly from the target state. For any state,

we check whether the model satisfies the state constraint of any

predecessor state and the path condition of corresponding edge. If

so, we choose this state and search its predecessors. We repeat this

process until we reach the initial state. In this example, we may

obtain the following path, backwardly:H7 ←H4 ←H3 ←H2 ←
Hemp . Finally, we generate the method calls by following this path.

Please note the arguments to the method calls are also included in

the model. Figure 2 shows the synthesized method sequence.

3 PROBLEM FORMULATION
In this section, we introduce the terminology that we use in this

paper and formalize the problem of targeted heap state construction.

Given a set of classes under test, we denote M as the set of

public methods and F as the set of fields in the classes. The set of

all primitive values is denoted asV .

Definition 3.1 ((concrete) heap state). A (concrete) heap state H =
(OH ,AOH ,δH ) is a 3-tuple where:
• OH ⊇ {null} is a set of (reachable) heap objects;

• AOH is a set of stack-accessible objects, where {null} ⊆
AOH ⊆ OH ;

• δH : (OH × F ) → (OH ∪V) is a mapping that maps a field

of a heap object to a value, which is either a reference to

another heap object or a primitive value such as an integer.

A heap object is called stack-accessible, if we own a reference on

the stack that refers to the object, so that we can access the object by

this reference. In other words, if a sequence of method calls lead to

a heap state H , all the stack-accessible objects o ∈ AOH except the

special null object are return values of the method calls. In a heap

state, the heap objects must be reachable from the stack-accessible

objects (otherwise they would be garbage-collected). From this

perspective, the stack-accessible objects can be also regarded as

“root” objects. The empty heap state, which contains a single null
object, is denoted as Hemp .

Definition 3.2 (method call). A method call on a heap state H is

a 3-tuple (m,o,a) wherem ∈ M is a method, o is a list of object

arguments o ∈ AOH , and a is a list of primitive arguments a ∈ V .

Note that only stack-accessible objects can serve as the argu-

ments of a method call. This definition generically models calls to

instance methods, static methods, and constructors. For calls to

instance methods, the first argument is a non-null receiver object.

After calling a method, the pre-state H will be transformed into

a post-state H ′, which can be different from the pre-state H with

regard to the following aspects:

(1) some objects are allocated (OH ′\OH ), and some objects are

freed (OH \OH ′ ) because they are no longer reachable from

the stack-accessible objects AOH ′ (garbage collection);
(2) an object that is the return value of the method call becomes

stack-accessible, i.e., AOH ⊆ AOH ′ and AOH ′\AOH is either

an empty set or a singleton set containing the return value;

(3) δH ′ differs from δH because some field values are modified.

Definition 3.3 (state transformation). If executing a method call

c = (m,o,a) on a pre-stateH would result in a post-stateH ′, we say
that (H , c,H ′) is a state transformation and denote it as H

c−→ H ′.

Definition 3.4 (reachable heap state). For two heap states H and

H ′, we say that H ′ is reachable from H if there exists a sequence of

heap states H0, . . . ,Hn and a sequence of method calls c1, . . . , cn
such that the initial state H0 = H , the final state Hn = H ′, and
Hk−1

ck−−→ Hk for all k = 1, . . . ,n.
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Definition 3.5 (specification). A specification Φ is a Boolean func-

tion (implemented as a program), and a heap state H satisfies the

specification Φ if there exists a list of heap objects o ∈ OH and a

list of primitive values a ∈ V such that Φ(o,a) returns true.
Based on the notion of reachable heap state and specification,

we now define the problem of targeted heap state construction.

Definition 3.6 (targeted heap state construction). Given a speci-

fication Φ, the problem of targeted heap state construction is to

construct or determine the inexistence of a heap state H that is

reachable from Hemp and satisfies the specification Φ.

4 ALGORITHM
This section presents our main algorithm to address the problem

of targeted heap state construction. First, we introduce the notion

of abstract heap state and briefly describe the process of symbolic

execution on abstract states. Next, we present our algorithm for

exploring all reachable heap states within a user-specified scope

and building the state transformation graph. Finally, we discuss

how to extract a sequence of method calls from the offline-built

state transformation graph, so that the call sequence constructs a

target heap state satisfying the given specification.

4.1 Symbolic Execution on Abstract States
4.1.1 Abstract Heap States. In order to compactly represent many

heap states with the same structure, we introduce the notion of

abstract heap state, which replaces all primitive values in the heap

state with symbolic variables and a constraint over these variables.

Definition 4.1 (abstract heap state). An abstract heap stateH is

a 5-tuple (OH ,AOH ,VarH ,δH ,φH) where:
• OH andAOH are sets of all heap objects and stack-accessible

heap objects, respectively;

• VarH is a set of symbolic variables;

• δH : (OH × F ) → (OH ∪ VarH) is a mapping that maps a

field of a heap object to an abstract value, which is a reference

to either another heap object or a symbolic variable;

• φH is a first-order constraint with existential quantification,

where the free variables in φH are the variables in VarH .

Definition 4.2 (instance). Given a (concrete) heap state H and an

abstract heap stateH , we say that H is an instance ofH if it meets

the following conditions:

(1) OH and AOH are identical to OH and AOH , respectively;
(2) there exists an assignment π : VarH →V such that φH is

satisfied under the assignment π ;
(3) for all objects o ∈ OH and fields f ∈ F , it holds that:
• δH (o, f ) = o′ if δH(o, f ) = o′ ∈ OH , or

• δH (o, f ) = π (v) ∈ V if δH(o, f ) = v ∈ VarH .
The heap state instantiated by abstract heap stateH and assign-

ment π is denoted asH[π ], and the set containing all instances of

H is denoted as Inst(H) = {H[π ] : π |= φH}.
To avoid redundant state exploration, we deal with structurally

isomorphic abstract states simultaneously by merging them into

a single union abstract state, such that the instances of the union

abstract state are equivalent to the union set of instances of the orig-

inal abstract states. The definition of (concrete) state equivalence

and structural isomorphism is shown as follows.

Definition 4.3 (state equivalence). We say that concrete state H1

is equivalent to concrete state H2 with regard to a bijection σ :

OH1
→ OH2

, denoted as H1 ≡ H2, if for all objects o ∈ OH1
and

fields f ∈ F , it holds that
• o ∈ AOH1

iff σ (o) ∈ AOH2
, and σ (null) = null;

• δH1
(o, f ) = o′ ∈ OH1

iff δH2
(σ (o), f ) = σ (o′) ∈ OH2

,

• δH1
(o, f ) = a ∈ V iff δH2

(σ (o), f ) = a ∈ V .

Definition 4.4 (structural isomorphism). For two abstract heap

statesH1 andH2, we say thatH1 is structurally isomorphic toH2

with regard to a bijection σ : (OH1
∪ VarH1

) → (OH2
∪ VarH2

), if
for all objects o ∈ OH1

and fields f ∈ F , it holds that:
• o ∈ AOH1

iff σ (o) ∈ AOH2
, and σ (null) = null;

• δH1
(o, f ) = o′ ∈ OH1

iff δH2
(σ (o), f ) = σ (o′) ∈ OH2

;

• δH1
(o, f ) = v ∈ VarH1

iff δH2
(σ (o), f ) = σ (v) ∈ VarH2

.

For two isomorphic abstract states H1 and H2 with regard to

bijection σ , their union abstract stateH = mergeσ (H1,H2) can be

obtained by creating a new abstract stateH identical toH2 but only

the state constraint φH to be the disjunction of φH1
[v := σ (v)] and

φH2
. The notation φH1

[v := σ (v)] indicates substitution of σ (v) for
free variable v ∈ VarH1

in formula φH1
. For example, assume that

φH1
is ∃x .u = 2x while φH2

is ∃y.v = 2y + 1, and the bijection σ
maps variable u to v . The constraint φH of the union abstract state

can be computed as follows:

φH = φH1
[u := v] ∨ φH2

= (∃x .v = 2x) ∨ (∃y.v = 2y + 1)
4.1.2 Symbolic Execution. Since we introduce the notion of ab-

stract heap state, we need to know how to obtain the abstract post-

state of executing an (abstract) method call on an abstract pre-state.

This problem can be solved by means of symbolic execution.
Symbolic execution is a program analysis technique that deter-

mines what inputs would cause each control flow path of a program

to execute. Symbolic execution engines regard the inputs of a pro-

gram as symbolic variables, explore multiple paths simultaneously,

and maintain for each explored path: (1) a path condition that de-

scribes the conditions satisfied by the branches taken along this

path, and (2) a symbolic store that maps variables to symbolic ex-

pressions or values, which is updated by assignments [5].

Definition 4.5 (abstract method call). An abstract method call on

an abstract heap state H is a 3-tuple (m,o,x) wherem ∈ M is a

method, o is a list of object arguments o ∈ AOH , and x is a list of

different symbolic variables.

Formally, the result of symbolic execution for an abstract method

call c = (m,o,x) on an abstract pre-stateH is a set of path descrip-

tors (αp ,Op , rp ,τp ), where for each path p:

(1) αp is the path condition, which is a constraint over the argu-

ments x and the variables v ∈ VarH ;
(2) Op is the set of all heap objects when execution terminates;

(3) rp is the return value, which is ⊥ for no return value, a heap

object o ∈ Op , or a symbolic expression over x andv ∈ VarH ;
(4) τp is the symbolic store, which maps fields f ∈ F of heap

objects o ∈ Op to other heap objects (for reference fields) or

symbolic expressions (for primitive fields).
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For each path p, the abstract post-stateH ′ = PostState(H , c,p)
can be constructed as follows, according to the result of symbolic

exeuction:

(1) OH′ = Op containing all existent heap objects;

(2) AOH′ = AOH ∪ {rp } if the return value rp ∈ Op is a heap

object, otherwise AOH′ = AOH ;
(3) for all objects o ∈ Op and fields f ∈ F :
• δH′(o, f ) = o′ if τp (o, f ) = o′ ∈ Op is an object, or

• δH′(o, f ) = vo,f if τp (o, f ) is an expression, where vo,f is

a fresh variable;

(4) VarH′ = {vo,f : τp (o, f ) < Op } containing all fresh vari-

ables;

(5) φH′ = ∃v .
(
φH ∧ ∃x .

(
αp ∧

∧
vo, f ∈VarH′ vo,f = τp (o, f )

))
formed by introducing existential quantification on the vari-

ablesv ∈ VarH and the call arguments x , and conjoining the
constraint φH of the pre-stateH , the path condition αp , and
a set of equality constraints that characterizes the expected

values of the variables vo,f ∈ VarH′ .
Note that the non-object return value of a method call is non-

essential, since we can always use a literal value to replace it.

The connection between execution on concrete heap states and

symbolic execution on abstract heap heaps is depicted in the fol-

lowing lemma, where the notation c[π ] indicates substitution of

primitive value π (x) for symbolic arguments x in c .

Lemma 4.6 (symbolic execution on abstract states). Given
a path p of an abstract method call c , an abstract pre-stateH , and
an abstract post-stateH ′ = PostState(H , c,p), we hold that

Inst(H ′) = {H ′ : π |= φH ∧ π |= αp ∧ H[π ]
c[π ]−−−−→ H ′}

4.2 Exploring Reachable Heap States
Based on abstract heap state, we exhaustively explore all reachable

heap states within a user-specified scope in a breadth-first manner.

At each iteration, we pick an explored abstract state, enumerate all

candidate abstract method calls on the abstract state, and obtain

new abstract heap states by means of symbolic execution. If the

new abstract stateH ′ is structurally isomorphic to a pre-explored

abstract stateH , then we will construct a union abstract state in

place ofH andH ′ for further exploration.We alsomaintain a graph

structure called state transformation graph to record the process of

state exploration, so that we can recover a method call sequence

for the reachable heap state. Each vertex in this graph represents

an abstract heap state, and each (directed) edge represents either

an operation of state merging, or a control flow path of an abstract

method call, as shown in Figure 3.

The pseudo-code of our algorithm for exploring reachable heap

states and building the state transformation graph is shown in Al-

gorithm 1. Starting with the graph containing a single abstract heap

stateHemp that represents the empty heap state (Line 1-2), we iter-

atively expand the graph by invoking the function ExploreStates,
until the iteration times is over the givenmaximum sequence length

maxL or no new heap states could be found (Line 39-43). During

state exploration, we maintain a set Vact containing all active ab-
stract states, i.e., abstract states that are not merged into a union

state and could be used to further explore new states.
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(4) 𝜏𝑝 is the symbolic store, which maps fields 𝑓 ∈ F of heap

objects 𝑜 ∈ 𝑂𝑝 to other heap objects (for reference fields) or

symbolic expressions (for primitive fields).

For each path 𝑝 , the abstract post-stateH ′ = PostState(H , 𝑐, 𝑝)
can be constructed as follows, according to the result of symbolic

exeuction:

(1) 𝑂H′ = 𝑂𝑝 containing all existent heap objects;

(2) 𝐴𝑂H′ = 𝐴𝑂H ∪ {𝑟𝑝 } if the return value 𝑟𝑝 ∈ 𝑂𝑝 is a heap

object, otherwise 𝐴𝑂H′ = 𝐴𝑂H ;
(3) for all objects 𝑜 ∈ 𝑂𝑝 and fields 𝑓 ∈ F :
• 𝛿H′ (𝑜, 𝑓 ) = 𝑜 ′ if 𝜏𝑝 (𝑜, 𝑓 ) = 𝑜 ′ ∈ 𝑂𝑝 is an object, or

• 𝛿H′ (𝑜, 𝑓 ) = 𝑣𝑜,𝑓 if 𝜏𝑝 (𝑜, 𝑓 ) is an expression, where 𝑣𝑜,𝑓 is

a fresh variable;

(4) VarH′ = {𝑣𝑜,𝑓 : 𝜏𝑝 (𝑜, 𝑓 ) ∉ 𝑂𝑝 } containing all fresh variables;
(5) 𝜑H′ = ∃ 𝑣 .

(
𝜑H ∧ ∃ 𝑥 .

(
𝛼𝑝 ∧

∧
𝑣𝑜,𝑓 ∈VarH′ 𝑣𝑜,𝑓 = 𝜏𝑝 (𝑜, 𝑓 )

))
formed by introducing existential quantification on the vari-

ables 𝑣 ∈ VarH and the call arguments 𝑥 , and conjoining the
constraint 𝜑H of the pre-stateH , the path condition 𝛼𝑝 , and
a set of equality constraints that characterizes the expected

values of the variables 𝑣𝑜,𝑓 ∈ VarH′ .
Note that the non-object return value of a method call is non-

essential, since we can always use a literal value to replace it.

The connection between execution on concrete heap states and

symbolic execution on abstract heap heaps is depicted in the fol-

lowing lemma, where the notation 𝑐 [𝜋] indicates substitution of

primitive value 𝜋 (𝑥) for symbolic arguments 𝑥 in 𝑐 .

Lemma 4.6 (symbolic execution on abstract states). Given
a path 𝑝 of an abstract method call 𝑐 , an abstract pre-stateH , and
an abstract post-stateH ′ = PostState(H , 𝑐, 𝑝), we hold that

Inst(H ′) = {𝐻 ′ : 𝜋 |= 𝜑H ∧ 𝜋 |= 𝛼𝑝 ∧ H [𝜋]
𝑐 [𝜋 ]−−−−→ 𝐻 ′}

4.2 Exploring Reachable Heap States
Based on abstract heap state, we exhaustively explore all reachable

heap states within a user-specified scope in a breadth-first manner.

At each iteration, we pick an explored abstract state, enumerate all

candidate abstract method calls on the abstract state, and obtain

new abstract heap states by means of symbolic execution. If the

new abstract stateH ′ is structurally isomorphic to a pre-explored

abstract stateH , then we will construct a union abstract state in

place ofH andH ′ for further exploration.We alsomaintain a graph

structure called state transformation graph to record the process of

state exploration, so that we can recover a method call sequence

for the reachable heap state. Each vertex in this graph represents

an abstract heap state, and each (directed) edge represents either

an operation of state merging, or a control flow path of an abstract

method call, as shown in Figure 3.

The pseudo-code of our algorithm for exploring reachable heap

states and building the state transformation graph is shown in Al-

gorithm 1. Starting with the graph containing a single abstract heap

stateH𝑒𝑚𝑝 that represents the empty heap state (Line 1-2), we iter-

atively expand the graph by invoking the function ExploreStates,
until the iteration times is over the givenmaximum sequence length

𝑚𝑎𝑥𝐿 or no new heap states could be found (Line 39-43). During

Algorithm 1: The pseudo-code of BuildGraph.
Input: A set of methodsM, a mapping ℎ𝑠 specifying the

heap scope, and a maximum sequence length𝑚𝑎𝑥𝐿
Output: A state transformation graph G = (𝑉𝑎𝑐𝑡 ,𝑉 , 𝐸)

1 H𝑒𝑚𝑝 ← ({null}, {null}, ∅, ∅, true);
2 𝑉 ← {H𝑒𝑚𝑝 }; 𝑉𝑎𝑐𝑡 ← {H𝑒𝑚𝑝 }; 𝐸 ← ∅;
3 Function AddState(Hnew,H𝑜𝑙𝑑 , 𝑐, 𝑝):
4 if Hnew is out of the heap scope ℎ𝑠 then return (⊥,⊥);
5 𝑉 ← 𝑉 ∪ {Hnew}; 𝐸 ← 𝐸 ∪ {(H𝑜𝑙𝑑 , 𝑐, 𝑝,Hnew)};
6 for each abstract stateH ∈ 𝑉𝑎𝑐𝑡 do
7 𝜎 ← DecideIsomorphism(H ,Hnew);

8 if 𝜎 ≠ ⊥ then
9 if 𝜑Hnew → 𝜑H [𝑣 := 𝜎 (𝑣)] always holds then
10 return (⊥,⊥)
11 H𝑢 ← merge𝜎 (H ,Hnew);
12 𝑉 ← 𝑉 ∪ {H𝑢 };
13 𝐸 ← 𝐸 ∪ {(H , 𝜖, 𝜎,H𝑢 )} ∪ {(Hnew, 𝜖, 𝜎id,H𝑢 )};
14 𝑉𝑎𝑐𝑡 ← 𝑉𝑎𝑐𝑡\{H} ∪ {H𝑢 };
15 return (H𝑢 ,H);
16 𝑉𝑎𝑐𝑡 ← 𝑉𝑎𝑐𝑡 ∪ {Hnew};
17 return (Hnew,⊥);
18 Function ExploreStates(oldStates):
19 newStates← ∅;
20 while oldStates ≠ ∅ do
21 H𝑜𝑙𝑑 ← pop an abstract state from oldStates;
22 for each public method𝑚 ∈ M do
23 for each 𝑐 ∈ GetAbstractCalls(H𝑜𝑙𝑑 ,𝑚) do
24 perform symbolic execution for 𝑐 and obtain

a set of path descriptors {(𝛼𝑝 ,𝑂𝑝 , 𝑟𝑝 , 𝜏𝑝 )};
25 for each path 𝑝 do
26 if 𝜑H𝑜𝑙𝑑

∧ 𝛼𝑝 is unsatisfiable then
27 continue
28 Hnew ← PostState(H𝑜𝑙𝑑 , 𝑐, 𝑝);
29 H𝑢 ,H ← AddState(Hnew,H𝑜𝑙𝑑 , 𝑐, 𝑝);

30 if H𝑢 = ⊥ then continue;
31 if H𝑢 = Hnew then
32 newStates← newStates ∪ {Hnew};
33 continue;
34 if H ∈ oldStates then
35 oldStates← oldStates\{H} ∪ {H𝑢 };
36 else
37 newStates← newStates\{H}∪{H𝑢 };
38 return newStates;
39 oldStates← {H𝑒𝑚𝑝 };
40 for 𝐿 ← 1 . . .maxL do
41 oldStates← ExploreStates(oldStates);
42 if oldStates = ∅ then break;
43 return G = (𝑉𝑎𝑐𝑡 ,𝑉 , 𝐸);

state exploration, we maintain a set 𝑉𝑎𝑐𝑡 containing all active ab-
stract states, i.e., abstract states that are not merged into a union

state and could be used to further explore new states.

The function ExploreStates accepts a set of old abstract states

oldStates, and explores new abstract states by calling public methods

m ∈ M to transform the old states. Concretely, for each abstract

state Hold ∈ oldHeaps, we first enumerate all candidate abstract

method calls onHold , and perform symbolic execution to obtain a
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set of control flow pathswith their path descriptors (Line 22-24). The

function GetAbstractCalls(H ,m) returns a stream of abstract

method calls by enumerating all stack-accessible objects (that are

also compatible with the type signature of m) in AOH as object

arguments, and allocating fresh symbolic variables as primitive

arguments. For each path p, if the path condition αp is compatible

with the state constraint φHold , we compute the new abstract heap

stateHnew into whichHold would be transformed after executing

the path p, and add Hnew into the state transformation graph by

invoking the function AddState (Line 25-29).
In the function AddState, we first check whetherHnew is within

the heap scope hs , where hs is a mapping that specifies the maxi-

mum number of objects of each class in the heap state, and add the

new stateHnew with a new edge betweenHold andHnew into the

graph. Then we find whether there exists an active abstract heap

stateH ∈ Vact that is structurally isomorphic toHnew.

In the case that such an isomorphic abstract stateH exists (Line

9-15), we first check that whether φHnew → φH[v := σ (v)] always
holds. If it always holds, all concrete heap states represented by

Hnew are already included in those represented byH ; therefore, we

simply discardHnew and would not use it for further exploration.

Otherwise, we merge the two abstract states H and Hnew into a

new union state Hu (Line 11), and add the union state Hu with

two ϵ edges into the graph (Line 12-13). Finally, we markHu to be

active but the original stateH that has been merged to be inactive

(Line 14), meaning that the union stateHu in place ofH andHnew
would be used for further exploration (Line 34-37). The identity

mapping is denoted as σid, and the bijections σ ,σid are attached to

the ϵ edges for recording the isomorphic relation between the union

state and the original states, i.e., OHu = σ (OH) = σid(OHnew ). In
the case that there is no active isomorphic abstract state (Line 16),

we markHnew to be active meaning it could be used to explore new

states (Line 32).

Finally, we discuss the function DecideIsomorphism, which is

supposed to decide whether two abstract heap states H1,H2 are

structurally isomorphic, and return a bijection σ if they are indeed

isomorphic. We implement this function by using a backtracking

algorithm. The algorithm incrementally builds candidate bijections

mapping objects/variables in H1 to objects/variables in H2, and

backtracks as soon as it determines that the (partial) candidate

bijection cannot meet the conditions shown in Definition 4.4. To

optimize the algorithm, we apply several pruning strategies as

follows. First, we search a bijection only between the two sets

of stack-accessible objects, because other objects/variables must

be reachable from the stack-accessible objects, and the relation

between other objects/variables can be derived by σ (o1) = o2 =⇒
σ (δH1

(o1, f )) = δH2
(o2, f ). Second, we extract several features to

quickly exclude some cases that two abstract heap states cannot

be isomorphic (under the current partial bijection). For example,

ifH1 andH2 contain different numbers of (stack-accessible) heap

objects, they must be non-isomorphic; if the reference counts (i.e.,

in-degrees if we regard heap states as object graphs) of two objects

o1,o2 are different, the bijection σ cannot map o1 to o2.
The soundness and completeness of algorithm BuildGraph(M,

hs,maxL), which explores reachable heap states and builds a state

transformation graph G = (Vact ,V ,G), are depicted as follows.

Theorem 4.7 (soundness). For all abstract heap states H ∈ V
and instances H ∈ Inst(H), we hold that H is reachable from Hemp .

Theorem 4.8 (weak completeness). For all heap statesHn reach-
able fromHemp along a sequence of intermediate heap statesH1, . . . ,

Hn−1, if n ≤ maxL and the heap states Hi are within the heap scope
hs for all i = 1, . . . ,n, we hold that there exists an active abstract
stateH ∈ Vact and an instance H ∈ Inst(H) such that H ≡ Hn .

4.3 Synthesizing Method Call Sequences
After exploring the reachable states and building the state trans-

formation graph G = (Vact ,V ,E), we can address the problem of

targeted heap state construction by simply enumerating all explored

(active) abstract states H ∈ Vact , and checking whether there is

an instance ofH satisfying the given specification. If we find such

a target state satisfying the specification, the remaining task is to

synthesize a sequence of method calls that leads to the target state.

This task can be finished by traversing the state transformation

graph backwardly, and collecting the method calls along the path

fromHemp toH . Since there may be multiple paths that can reach

the abstract stateH , we need to figure out which path is expected.
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Algorithm 2: The pseudo-code of SynthCallSeq.
Input: A state transformation graph G = (𝑉𝑎𝑐𝑡 ,𝑉 , 𝐸), and a

specification Φ in the form of a Boolean function

Output: a sequence of method calls with their return values

𝑆 , and two lists of arguments 𝑜 and 𝑎 such that

Φ(𝑜, 𝑎) returns true
1 Function Traverse(H , 𝑜, 𝑥, 𝜋):
2 S← [ ]; 𝑎 = 𝜋 (𝑥);
3 whileH ≠ H𝑒𝑚𝑝 do
4 if H is a union abstract state then
5 (H1, 𝜖, 𝜎1,H), (H2, 𝜖, 𝜎2,H) ← the two

incoming 𝜖 edges ofH ;

6 if 𝜑H1
[𝑣 := 𝜎1 (𝑣)] is satisfied under 𝜋 then

7 H ← H1; 𝜎 ← 𝜎1;

8 else
// 𝜑H2

[𝑣 := 𝜎2 (𝑣)] is satisfied under 𝜋

9 H ← H2; 𝜎 ← 𝜎2;

10 𝑆 ← 𝜎−1 (𝑆); 𝑜 ← 𝜎−1 (𝑜); 𝜋 ← 𝜎−1 (𝜋);
11 else
12 (H ′, 𝑐, 𝑝,H) ← the incoming edge ofH ;

13 insert (𝑐 [𝜋], 𝑟𝑝 ) at the front of 𝑆 ;
14 H ← H ′;
15 return 𝑆, 𝑜, 𝑎;

16 for each abstract heap stateH ∈ 𝑉𝑎𝑐𝑡 do
17 for each 𝑐 = (Φ, 𝑜, 𝑥) ∈ GetAbstractCalls(H ,Φ) do
18 perform symbolic execution for 𝑐 and obtain a set of

path descriptors {(𝛼𝑝 ,𝑂𝑝 , 𝑟𝑝 , 𝜏𝑝 )};
19 for each path 𝑝 do
20 if 𝑟𝑝 ≠ true then continue;
21 𝜋 ← CheckSat(𝜑H ∧ 𝛼𝑝 );
22 if 𝜋 ≠ ⊥ then
23 return Traverse(H , 𝑜, 𝑥, 𝜋);

24 return UNSAT;

are going to the predecessorH
1/2 in the next step, and we need to

“translate” the objects and variables inH into those inH
1/2. The no-

tation 𝜎 (𝑜) indicates substitution of 𝜎 (𝑜) for all object 𝑜 ∈ dom(𝜎),
and the notations 𝜎 (𝑆), 𝜎 (𝜋) are similar. IfH is a post-state via an

abstract method call (Line 12-14), we simply instantiate the abstract

call 𝑐 by 𝜋 , add it with its return value into the sequence 𝑆 , and
move to the pre-state.

5 EVALUATION
To evaluate our proposed approach, we develop a prototype and

conduct experiments to answer the following research questions:

• RQ1: Does our approach generate method call sequences

more effectively than other test generators?

• RQ2: Does our approach verify heap-based programs and

properties more effectively than other program verifiers?

• RQ3: To what extent does the strategy of state merging

improve the efficiency of exploring reachable heap states?

5.1 Experimental Setup
5.1.1 Subject Programs. We collect 14 data structure classes imple-

mented in Java as the subject programs, including 4 classes from the

SUSHI benchmark [3], 6 classes from the Sireum/Kiasan benchmark,

2 classes from SIR [2], and 2 classes from the JavaScan website [1]
2
.

All the 14 subject programs are used in the test generation experi-

ment. The subject programs in the Sireum/Kiasan benchmark have

been equipped with some class invariants; therefore, we select these

programs to be used in the bounded verification experiment.

5.1.2 Prototype Implementation. We implemented our proposed

approach in a prototype named MSeqSynth, which uses JBSE [9]

for performing symbolic execution, and the Java binding of Z3 SMT

solver [12] for checking the satisfiability of first-order constraints.

5.1.3 Configuration. We conduct three experiments to answer the

three research questions. All the experiments are executed on a

Windows 10 machine equipped with Intel Core i7-10700 CPU at

2.90GHz and 16 GB RAM. The JVM is configured with -Xmx4096m.
In the first experiment, we evaluate the effectiveness of our

approach on generating test cases (method call sequences) to cover

the program branches of the 14 subject programs, comparing with

the state-of-the-art test generator SUSHI. The frontend of SUSHI

is a symbolic-execution-based path selector, for identifying a set

of paths that should be exercised to cover program branches. Each

path corresponds to a test generation task, and is then emitted to the

backend of SUSHI – a genetic algorithm for searching a method call

sequence that satisfies the path condition. Since our approach is

designed for generating a sequence satisfying a given specification,

we integrate our approach into SUSHI as the backend, and use

the received path condition as the specification. We compare our

approach with SUSHI on the achieved branch coverage and the

average generation time.

We configure the global time budget to be 1 hour, and the time

budget for each test generation task to be 3 minutes. SUSHI’s fron-

tend requires the user to provide invariants (written in the HEX lan-

guage [9]) of the data structure classes for reducing exploration of

unreachable paths, and bounds such as maximum number of lazily-

initialized objects 𝑁init and maximum depth of the explored state

𝑁depth for avoiding infinite exploration. For the subject programs

from the SUSHI benchmark, we use the same accurate invariants

provided in the benchmark, which discard all unreachable paths.

(The subject programs in SUSHI benchmark are slightly different

from the programs with the same name but in other benchmark,

because they have been instrumented with several shadow fields for

writing accurate invariants.) For the remaining subject programs,

we manually write partial invariants to discard a part of unreach-

able paths. There are two major reasons for writing partial rather

than accurate invariants for these programs: (1) it might be difficult

to write accurate invariants in the HEX language, and (2) we would

like to have a fair comparison against SUSHI by providing different

configurations of invariants. To improve the statistical significance

of experimental results, we configure as large as possible bounds

for SUSHI, 𝑁init = 5 and 𝑁depth = 50, such that the frontend of

2
Not all classes in the preceding benchmarks are collected, because at present our

prototype does not support some language features such as arrays, strings, floating

numbers, generics, and subtype polymorphism.
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The pseudo-code of our algorithm for synthesizing method call

sequences is shown in Algorithm 2. We first enumerate the active

abstract states H ∈ Vact , and symbolically execute the Boolean

function Φ with all possible arguments to obtain the (path) con-

ditions for satisfying the specification Φ (Line 16-20). Then we

check whether the conjunction of the state constraint φH and the

condition αp is satisfiable under an assignment π by invoking the

function CheckSat. The function CheckSat accepts a first-order

formula, and returns an assignment if the formula is satisfiable,

which maps all variables in the formula, including both bound vari-

ables and free variables, to their expected values
1
. After obtaining

the assignment π , we successfully find a concrete target stateH[π ]
satisfying the specification Φwith arguments o,π (x). Then we need
to synthesize a sequence of method calls that leads to the target

state. We notice that the state constraint φH contains all symbolic

arguments of the previous abstract calls leading to H (under ex-

istential quantification), and thus the assignment π contains all

assignments to these variables. As a result, we traverse the state

transformation graph backwardly to collect method calls, using the

assignment π to figure out which path to take and instantiate the

abstract method calls along this path (Line 1-15).

At each step, we check the type of the current abstract stateH .

If H is a union abstract state (Line 5-10), there are two incoming

ϵ edges and two predecessorsH1,H2. We obtain the correct pre-

decessor by checking whose state constraint (after transformed by

a bijection) is satisfied under the assignment π . Then we need to

update the method call sequence S , the object arguments o, and the
assignment π according to the bijection σ

1/2 (Line 10), because we
are going to the predecessorH

1/2 in the next step, and we need to

“translate” the objects and variables inH into those inH
1/2. The no-

tation σ (o) indicates substitution of σ (o) for all object o ∈ dom(σ ),
and the notations σ (S),σ (π ) are similar. IfH is a post-state via an

abstract method call (Line 12-14), we simply instantiate the abstract

call c by π , add it with its return value into the sequence S , and
move to the pre-state.

5 EVALUATION
To evaluate our proposed approach, we develop a prototype and

conduct experiments to answer the following research questions:

• RQ1: Does our approach generate method call sequences

more effectively than other test generators?

• RQ2: Does our approach verify heap-based programs and

properties more effectively than other program verifiers?

• RQ3: To what extent does the strategy of state merging

improve the efficiency of exploring reachable heap states?

5.1 Experimental Setup
5.1.1 Subject Programs. We collect 14 data structure classes imple-

mented in Java as the subject programs, including 4 classes from the

SUSHI benchmark [3], 6 classes from the Sireum/Kiasan benchmark,

2 classes from SIR [2], and 2 classes from the JavaScan website [1]
2
.

1
There might be a problem of name collision, and we might need to rename the bound

variables in the formula. The renaming mechanism is omitted for brevity.

2
Not all classes in the preceding benchmarks are collected, because at present our

prototype does not support some language features such as arrays, strings, floating

numbers, generics, and subtype polymorphism.

All the 14 subject programs are used in the test generation experi-

ment. The subject programs in the Sireum/Kiasan benchmark have

been equipped with some class invariants; therefore, we select these

programs to be used in the bounded verification experiment.

5.1.2 Prototype Implementation. We implemented our proposed

approach in a prototype named MSeqSynth, which uses JBSE [9]

for performing symbolic execution, and the Java binding of Z3 SMT

solver [12] for checking the satisfiability of first-order constraints.

5.1.3 Configuration. We conduct three experiments to answer the

three research questions. All the experiments are executed on a

Windows 10 machine equipped with Intel Core i7-10700 CPU at

2.90GHz and 16 GB RAM. The JVM is configured with -Xmx4096m.
In the first experiment, we evaluate the effectiveness of our

approach on generating test cases (method call sequences) to cover

the program branches of the 14 subject programs, comparing with

the state-of-the-art test generator SUSHI. The frontend of SUSHI

is a symbolic-execution-based path selector, for identifying a set

of paths that should be exercised to cover program branches. Each

path corresponds to a test generation task, and is then emitted to the

backend of SUSHI – a genetic algorithm for searching a method call

sequence that satisfies the path condition. Since our approach is

designed for generating a sequence satisfying a given specification,

we integrate our approach into SUSHI as the backend, and use

the received path condition as the specification. We compare our

approach with SUSHI on the achieved branch coverage and the

average generation time.

We configure the global time budget to be 1 hour, and the time

budget for each test generation task to be 3 minutes. SUSHI’s fron-

tend requires the user to provide invariants (written in the HEX lan-

guage [9]) of the data structure classes for reducing exploration of

unreachable paths, and bounds such as maximum number of lazily-

initialized objects Ninit and maximum depth of the explored state

Ndepth for avoiding infinite exploration. For the subject programs

from the SUSHI benchmark, we use the same accurate invariants

provided in the benchmark, which discard all unreachable paths.

(The subject programs in SUSHI benchmark are slightly different

from the programs with the same name but in other benchmark,

because they have been instrumented with several shadow fields for

writing accurate invariants.) For the remaining subject programs,

we manually write partial invariants to discard a part of unreach-

able paths. There are two major reasons for writing partial rather

than accurate invariants for these programs: (1) it might be difficult

to write accurate invariants in the HEX language, and (2) we would

like to have a fair comparison against SUSHI by providing different

configurations of invariants. To improve the statistical significance

of experimental results, we configure as large as possible bounds

for SUSHI, Ninit = 5 and Ndepth = 50, such that the frontend of

SUSHI could explore many paths and produce many test generation

tasks, but does not straightforwardly run out of the time budget. To

configure our approach, we need to specify a maximum sequence

length maxL and a finite heap scope hs. In this experiment on test

generation, we set maxL = +∞ meaning no limit on the sequence

length, but set an extra time budget for state exploration to be 30

minutes. The heap scope hs is specified as follows. For the inter-

nal classes (e.g. AvlNode), which are manipulated inside the data

structure classes and do not appear in the parameters of the public
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methods, we set the maximum number of heap objects of these

classes to be Nobj = 6. For other classes, we set the maximum num-

ber of heap objects to be the maximum number of parameters of

these classes in all methods’ parameter lists.

In the second experiment, we evaluate the effectiveness of our

approach on verifying heap-based programs and properties. Be-

cause the existing program verifiers do not exactly address our

problem – whether all heap states reachable from calling public

methods satisfy a given property, we construct a baseline SEseq that
extends symbolic execution to (partially) address our problem by

writing driver programs for each target class, which is inspired by

Visser et al. [33]. The driver program constructs a receiver object of

the target class, and non-deterministically executes all sequences

of method calls on the receiver object. The baseline SEseq then per-

forms symbolic execution on the driver program to check whether

all possible paths (within the user-specified scope) leading to heap

states satisfying the property. We select JPF [32] as the underly-

ing symbolic executor for SEseq, because JPF supports APIs for

non-deterministic execution.

Because the driver program constructs only the receiver object,

it does not support any method with object arguments, we select

the 3 classes whose methods do not contain object arguments from

the Sireum/Kiasan benchmark, and use the 7 invariants written

in these classes as the properties to be verified. We configure the

time budget for verifying each property to be 30 minutes. The heap

scope hs is also set to 1 to be consistent with the baseline, and the

maximum sequence length maxL is configured with two different

values (7 and 8). The driver programs are written to also explore

all method sequences within maxL.
In the third experiment, we evaluate the efficiency improve-

ment of our state matching strategy for exploring reachable heap

states. We compare the two versions of our approach, one with

state merging and one without state merging (remove Line 6-15 of

the Algorithm 1), on the elapsed time of state exploration for the

14 subject classes. We use the same heap scope specified in the first

experiment, three different maximum sequence lengths (5, 6, and

7), and configure the time budget to be 30 minutes.

5.2 RQ1: Effectiveness on Test Generation
Table 1 shows the results of the first experiment for answering RQ1.

As shown in the table, the overall elapsed time of our approach is

less (or equal) than SUSHI on all the subject programs, even if we

count in the time for offline exploration of reachable states. After

offline exploration, the average generation time of our approach

for each test generation task is more than 100X faster than SUSHI,

especially on the tasks that cannot be solved, because SUSHI cannot

determine the inexistence of a solution but mostly only reports a

timeout. Due to the same reason, on several complex data structures

such as Avl, RBT, AATree in the Kiasan benchmark, and Binom in
the JavaScan website, the number of tasks (Nsolve +Nfail) processed

by our approach is much more than SUSHI; therefore, our approach

achieves higher branch coverages on these subject classes. There is

one subject program CList that SUSHI outperforms our approach,

because the uncovered branches require constructing a list with

length more than 20, which is out of the heap scope that we con-

figure. The total branches covered by our approach on all subjects

(1094) is 20% more than those covered by SUSHI (913). Finally, we

answer RQ1 by stating that our approach is overall more effi-
cient than SUSHI and could generatemore test cases to cover
more program branches.

5.3 RQ2: Effectiveness on Bounded Verification
Table 2 shows the results of the second experiment for answering

RQ2. As shown in the table, the verification time of our approach

is shorter than the baseline SEseq. When the maximum sequence

length is configured to be 8, SEseq fails to verify any property in

a 30-minute time budget; however, our approach could still verify

4 properties of the subject class Avl and BST. Finally, we answer
RQ2 by stating that in our problem setting, our approach can
verify heap-based programs and properties more efficiently
than the baseline implemented with a symbolic execution
engine.

5.4 RQ3: Improvement by State Merging
Table 3 shows the results of the third experiment for answering

RQ3. As shown in the table, the elapsed time of state exploration

with state merging is much shorter than it without state merging,

especially when the maximum sequence length maxL is large. We

answer RQ3 by stating that the strategy of state matching sig-
nificantly improves the efficiency of exploring all reachable
heap states within a user-specified scope.

6 LIMITATIONS AND DISCUSSION
There are two major limitations of our approach as we will discuss

in this section.

Limitations about applicability. As stated in Section 4, our ap-

proach needs to perform symbolic execution on data structure

methods, for computing the abstract post-states into which an ab-

stract pre-state would be transformed after executing an abstract

call. Therefore, our approach inherently have the limitations of sym-

bolic execution, e.g., path explosion, unsolvable path conditions,

and interactions with the outside environment; these limitations

make our approach hard to apply to complicated and large scale

projects.

Limitations about configuration. Our approach requires an ex-

plicit configuration of a heap scope and a maximum sequence

length, for bounding the state space to explore. In the one hand,

this configuration enables users to explicitly control the scope and

length of the generated sequences, so that they could obtain rel-

atively small test cases to debug their programs. But in the other

hand, it might be tricky to provide an appropriate configuration: too

small configuration might lead to failure in generating an expected

sequence, while too large configuration might lead to high time and

memory consumption because the number of reachable (abstract)

heap states becomes large. In future work, we plan to alleviate this

limitation by making our procedure of state exploration incremen-

tal and on-demand, and the configuration self-adjusted instead of

set by users.
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Table 1: Comparative evaluation of MSeqSynth and SUSHI.

MSeqSynth SUSHI
Subject |M| Ball Tall Texplore Nsolve Nfail Tsolve Tfail Bcov Tall Nsolve Nfail Tsolve Tfail Bcov

SUSHI Avl 7 59 51.5 30 15 0 0.02 - 59 120.8 15 0 6 - 59

RBT 10 191 399.4 300 34 0 0.22 - 191 3600* 30 14 35.1 175.5 162

DList 38 136 486 328 49 0 0.05 - 136 3600* 41 16 11.9 >180 111

CList 7 80 147 62 11 43 0.02 1.42 78 500.7 11 2 19.3 129.2 80
Kiasan Avl 7 55 64.1 36 15 203 0.01 <0.01 55 3600* 10 20 5.6 >180 29

RBT 10 180 438.7 295 35 983 0.08 0.04 175 3600* 20 21 16.2 >180 101

BST 8 51 68.2 49 14 0 0.01 - 51 100.1 14 0 5.6 - 51

AATree 8 58 3600* 1800* 16 563 0.02 2.95 56 3600* 12 18 5.6 >180 40

Leftist 7 31 339.1 317 10 5 0.01 0.73 31 1000 10 5 5.5 >180 31

Stack 8 17 28.3 12 10 0 0.01 - 17 67 10 0 5.5 - 17

SIR DList 22 81 206 151 33 3 0.03 0.01 81 1018 33 3 8.4 >180 81

SList 13 41 199.2 167 13 1 0.01 <0.01 41 302.7 13 1 5.5 >180 41

JavaScan Skew 6 25 43.2 29 8 0 0.01 - 25 54.6 8 0 5.5 - 25

Binom 9 114 3600* 1298 16 1419 0.05 0.02 98 3600* 14 16 5.6 >180 85

For each subject program, we report the number of public methods ( |M |) and the number of all program branches to cover (Ball). The number of test generation tasks that are

successfully solved or failed to solve is respectively reported as Nsolve or Nfail . Note Nfail contains the tasks that are unsolvable. The average generation time for the solved tasks or

failed tasks is reported as Tsolve or Tfail . The elapsed time of MSeqSynth for (possibly offline) state exploration is Texplore . The overall elapsed time for each subject program is Tall ,
and the number of covered program branches is Bcov . All the time statistics are reported in seconds. An asterisk (*) indicates the execution timed out.

Table 2: Comparative evaluation of MSeqSynth and SEseq.

maxL = 7 maxL = 8

Subject Property Tsynth TSE Tsynth TSE
Avl balanced 60.5 258 66.8 N/A

ordered 31.1 260 39.5 N/A

wellFormed 44.4 255 52.2 N/A

BST ordered 39.1 1743 61.1 N/A

AATree ordered 790.8 1630 N/A N/A

wellLevel 775.7 890 N/A N/A

wellFormed 1162 1637 N/A N/A

The verification time of MSeqSynth and SEseq for each property is reported as Tsynth
and TSE in seconds (N/A means out of time budget or memory exhausted). Tsynth
includes the state exploration time.

7 RELATEDWORK
7.1 Test Generation
Various automatic test generation approaches have been proposed

for heap-based programs. These approaches can be broadly classi-

fied into two categories: direct construction [4, 7, 9, 21, 26, 32] and

sequence generation [8, 11, 16, 17, 23, 25, 28].

Direct construction approaches, such as specific symbolic execu-

tors [4, 9, 32] and specification-based test generators [7, 21, 26],

construct heap states by directly assigning values to the fields of

heap objects. These approaches either model the whole heap and

convert the problem as a constraint solving problem, or enumerate

the heap structure in some way and use constraint solving to fill the

primitive values. As discussed in the introduction, these approaches

have two major limitations: breaking encapsulation and possibly

producing invalid inputs; these limitations can be addressed by

sequence generation approaches.

Sequence generation approaches indirectly produce desired in-

put heap states by generating and executing a sequence of calls

Table 3: Experimental results for evaluating the efficiency
improvement of the state merging strategy.

maxL = 5 maxL = 6 maxL = 7

Subject Tmerge Tnot Tmerge Tnot Tmerge Tnot
Avl 13 27 13 748 18 N/A

RBT 88 N/A 90 N/A 98 N/A

DList 141 N/A 178 N/A 251 N/A

CList 16 633 22 N/A 29 N/A

Avl 18 26 18 638 20 N/A

RBT 47 N/A 48 N/A 54 N/A

BST 11 31 12 1253 18 N/A

AATree 69 107 126 N/A 733 N/A

Leftist 9 15 9 611 13 N/A

Stack 9 17 9 246 9 N/A

DList 60 N/A 77 N/A 116 N/A

SList 25 400 35 N/A 56 N/A

Skew 7 8 8 20 9 190

Binom 143 189 148 N/A 176 N/A

Tmerge is the elapsed time of state exploration with state merging, and Tnot is the
elapsed time without state merging, all in seconds (N/A means out of time budget or

memory exhausted).

to the public methods in the classes under test. Some approaches

use random sampling [11, 25] or heuristic search [16, 23]. For ex-

ample, JCrasher [11] randomly traverses a pre-built type graph to

generate type-correct test inputs. Randoop [25] builds the method

call sequence incrementally by maintaining an object pool and

randomly selecting objects from the pool to form the next call. Evo-

Suite [16] exploits a Genetic Algorithm (GA) to search for a set of

method call sequences that maximize a chosen coverage criterion

(e.g., branch coverage). EvoObj [23] facilitates EvoSuite by creating

test templates that leave only some slots for GA to mutate their

values. However, these preceding approaches are not applicable
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in our work’s target setting (i.e., generating specific test inputs

for satisfying the given specification), and typically fall short in

covering corner cases of coverage targets.

Given that random sampling and heuristic search tend to gen-

erate ineffective method call sequences, Xie et al. [34] and Visser

et al. [33] propose to generate only method sequences that lead to

either a different heap structure or a different path condition not

subsumed by already explored path conditions. To achieve this goal,

their approaches also enumerate heap states in a way similar to our

approach. However, there are two main important differences: (1)

these approaches deal with a single receiver object, and cannot gen-

erate sequences that involve public methods from multiple classes

or public methods with non-primitive parameters, and (2) since

their approaches’ goal is to explore different path conditions, these

approaches do not merge states, whereas state merging is critical

to the effectiveness of our approach as shown in our evaluation.

Sharing the same goal as our approach, Seeker [28] and SUSHI [8]

aim to generate method call sequences that produce heap states that

satisfy a specific condition. Seeker [28] first uses a static analysis

to build a skeleton of the call sequence with missing primitive

values, and then fill the primitive values using dynamic symbolic

execution. Due to the imprecision of static analysis, Seeker often

fails to build a desirable skeleton. Therefore, Seeker cannot be used

for the bounded verification task, and for the test generation task,

Seeker is outperformed by SUSHI [8], a previous state-of-the-art

approach. SUSHI uses a genetic search algorithm to find a method

call sequence. As stated earlier, the genetic search often fails when

there is a complex constraint between primitive values. Thus, SUSHI

also cannot be used for the bounded verification task, and for the

test generation task, SUSHI is outperformed by our approach as

shown in our evaluation.

7.2 Bounded Verification
There are various existing approaches [10, 13, 14, 19, 20, 32] for

verifying a heap-based program against the given properties within

a user-specified finite bound. The approaches proposed by Dennis

et al. [13] and Dolby et al. [14] encode the program in a relational

logic and use a relational constraint solver to find specification

violations. JayHorn [19, 20] is a verification tool for Java programs.

It uses the Soot [31] Java optimization framework as a front-end,

and generates a set of constrained Horn clauses to encode the

verification condition, and sends the Horn clauses to a Horn engine

for solving. JayHorn is particularly useful for verifying programs

with unbounded data structures and unbounded iteration due to its

way of encoding the heap, but it can also be configured to deal with

bounded verification tasks. JPF [32] and JBMC [10] are symbolic-

execution-based verifiers, which symbolically explore the program

within the user-specified bound, and check whether there exists

a program path leading to a state violating the given properties.

However, in contrast to our approach, these approaches do not

focus on verifying the program behaviors under only valid input

states reachable from calling public API methods, and they cannot

generate an API call sequence that instantiates an input state and

results in property violations.

8 CONCLUSION
In this paper, we have proposed an efficient algorithm for synthesiz-

ing method call sequences, by combining enumerative techniques

and symbolic techniques. The synthesis algorithm includes an of-

fline procedure for exploring all reachable heap states within a

user-specified scope and building the state transformation graph,

and an online procedure for extracting a method call sequence from

the state transformation graph, such that the method call sequence

satisfies the given specification. To improve the efficiency of offline

state exploration, we introduce the notion of abstract heap state

and the strategy of state merging. The evaluation results show that

our synthesis algorithm performs efficiently in both test generation

tasks and bounded verification tasks.
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