
Targeting Requirements Violations of Autonomous
Driving Systems by Dynamic Evolutionary Search

Yixing Luo∗†, Xiao-Yi Zhang‡, Paolo Arcaini‡, Zhi Jin∗†, Haiyan Zhao∗†,
Fuyuki Ishikawa‡, Rongxin Wu§, Tao Xie∗†

∗Key Lab. of High-Confidence Software Technologies (Peking University), Ministry of Education, Beijing, China
†Department of Computer Science and Technology, School of EECS, Peking University, Beijing, China

‡National Institute of Informatics, Tokyo, Japan
§School of Informatics, Xiamen University, Xiamen, China

Email: {yixingluo, zhijin, zhhy.sei, taoxie}@pku.edu.cn {xiaoyi, arcaini, f-ishikawa}@nii.ac.jp
wurongxin@xmu.edu.cn

Abstract—Autonomous Driving Systems (ADSs) are complex
systems that must satisfy multiple requirements such as safety,
compliance to traffic rules, and comfortableness. However, sat-
isfying all these requirements may not always be possible due
to emerging environmental conditions. Therefore, the ADSs may
have to make trade-offs among multiple requirements during
the ongoing operation, resulting in one or more requirements
violations. For ADS engineers, it is highly important to know
which combinations of requirements violations may occur, as
different combinations can expose different types of failures.
However, there is currently no testing approach that can gen-
erate scenarios to expose different combinations of requirements
violations. To address this issue, in this paper, we introduce the
notion of requirements violation pattern to characterize a specific
combination of requirements violations. Based on this notion, we
propose a testing approach named EMOOD that can effectively
generate test scenarios to expose as many requirements violation
patterns as possible. EMOOD uses a prioritization technique to
sort all possible patterns to search for, from the most to the least
critical ones. Then, EMOOD iteratively includes an evolutionary
many-objective optimization algorithm to find different combi-
nations of requirements violations. In each iteration, the targeted
pattern is determined by a dynamic prioritization technique to
give preferences to those patterns with higher criticality and
higher likelihood to occur. We apply EMOOD to an industrial ADS
under two common traffic situations. Evaluation results show that
EMOOD outperforms three baseline approaches in generating test
scenarios by discovering more requirements violation patterns.

Index Terms—Many-Objective Optimization, Autonomous
Driving Systems, Requirements-Based Testing

I. INTRODUCTION

Autonomous Driving Systems (ADSs) are making revolu-
tionary changes in the domain of transportation. As ADSs
are complex and safety-critical systems, their testing is vital
for their wide acceptance [1]. Although on-road testing of

This work is supported in part by the National Natural Science Foundation
of China under Grant NO. 61620106007 and 61751210. Zhi Jin is the
corresponding author. X. Zhang, P. Arcaini, and F. Ishikawa are supported
by ERATO HASUO Metamathematics for Systems Design Project (No.
JPMJER1603), JST, and MIRAI Engineerable AI Project (No. JPMJMI20B8),
JST. We thank our industry partner Mazda for providing the software used
in our work and discussing principles in testing and improving complex real-
world automotive systems. The provided software is a prototype constructed
for the purpose of evaluating new testing techniques, and its quality has no
relation with the quality of Mazda products.

autonomous vehicles is necessary and widely used in industrial
ADSs such as Waymo [2] and Voyage.auto [3], existing
studies [4], [5] have shown that billions of miles provide
only limited assurance, since such time-consuming and costly
testing approach would still miss dangerous and rare situations
in the real world.

One-road testing for the ADS under test can be augmented
by existing approaches [6]–[18] of virtual testing in computer
simulations [18], [19] (in short as simulation-based testing),
e.g., generating critical test scenarios in which the autonomous
vehicle under test fails (e.g., the vehicle collides with ob-
stacles). Considering that the test scenario space is complex
and multidimensional, evolutionary search techniques [6]–[14]
are applied to explore this test scenario space. In particular,
these evolutionary search techniques aim to identify critical
test scenarios that indicate complex driving conditions under
which the ADS’ behaviors violate specific requirements, e.g.,
safety [6], [7], [10] and compliance to traffic regulations such
as lane keeping [9] and adhering to traffic light [8].

However, these existing simulation-based testing approaches
do not consider combinations of requirements violations,
which are highly important for two main reasons. First,
satisfying all the requirements may not be possible for an
ADS in practice, as unexpected events may happen in highly
open and dynamic environments, e.g., intrusion of a hidden
traffic participant or weather disturbances [20]. In response
to these unexpected events, the control software of the ADS
has to make trade-offs among requirements, likely resulting
in one or more requirements being violated. Second, different
combinations of requirements violations can expose different
types of failures. For example, the type of failure in which
the autonomous vehicle collides while running a red light
is different from the one in which the autonomous vehicle
collides while violating the lane keeping, as the different
combinations of requirements violations may provide different
insights about the cause of the collisions.

Generating scenarios that expose different combinations of
requirements violations is a challenging problem. One idea
is to enumerate all possible combinations of requirements
violations as the objective functions in the evolutionary search,

in order to identify critical test scenarios that expose dif-
ferent combinations of requirements violations. However, as
the number of the requirements increases, the number of
combinations of requirements violations grows exponentially;
thus, testing all of them could be impossible under limited
time and resources.

To address the preceding challenge, our work is based on
an insight consisting of two aspects. First, the search should
first focus on combinations of requirements violations with
higher criticality, i.e., including more violated requirements
with higher importance, as these combinations may lead to
more serious accidents for the ADS under test. Second, some
combinations of requirements violations are impossible to
occur for the ADS in reality, and the search should not focus
on them, in order to avoid wasting the search time.

Based on our insight, in this paper, we propose EMOOD,
a search-based testing approach to generating diverse test
scenarios that effectively expose different combinations of
requirements violations in the ADS testing. Similar to existing
work [6], [7], [10], we cast the problem of exposing different
combinations of requirements violations into a search-based
test-scenario generation problem. For EMOOD, we introduce
the notion of requirements violation pattern (also referred to
as pattern in the rest of the paper), i.e., a specific combination
of requirements violations that the ADS under test can exhibit
as the objective functions to search for. The notion of re-
quirements violation pattern facilitates the determination of the
ADS behaviors’ violations of requirements. EMOOD conducts
a type of dynamic evolutionary search, i.e., Evolutionary
Many-Objective Optimization (EMOO), whose objectives are
determined by Dynamic Prioritization (DP) that prioritizes the
patterns in terms of criticality and likelihood to occur.

In particular, EMOOD starts with the initial ranking (of
all the patterns) built statically based on the criticality of
each requirement, and iteratively runs the heuristic dynamic
prioritization algorithm (DP) to adjust the ranking additionally
based on the dynamically estimated likelihood of occurrence
of patterns: the more similar an unexposed violation pattern
with exposed patterns is, the more likely the pattern can occur.

This paper makes the following main contributions:

• The notion of requirements violation pattern for character-
izing different combinations of requirements violations.
• An effective approach for generating test scenarios to

expose diverse requirements violation patterns, namely,
EMOOD, which iteratively applies Evolutionary Many-
Objective Optimization (EMOO) whose objective functions
are selected by dynamic prioritization (DP).
• An initial prioritization technique (IP) for ranking patterns

based on their criticality, i.e., the importance and number
of violated requirements included in a pattern.
• A heuristic technique in DP for prioritizing patterns to

dynamically rank them based on their criticality and like-
lihood of occurrence.
• Evaluation results for showing that EMOOD can discover

diverse patterns with higher criticality, and given the same

testing budget, it is more effective than baseline approaches
that do not prioritize the patterns during the search.

II. MOTIVATION

Fig. 1(a) shows the decision process of an autonomous
driving system (ADS), as reported in previous work [4]: the
ADS is operating in a complex environment (including traffic
participants). The autonomous vehicle running the ADS is
called ego vehicle. The environment is perceived by sensors
(e.g., camera, Lidar, and radar for object detection and local-
ization). The ADS requirements are determined by different
stakeholders, such as the passengers (e.g., comfortableness)
and the authorities (e.g., safety standards [21]). Then, the ADS
makes optimal decisions based on the observed situation and
controls the vehicle through actuators, e.g., accelerating and
direction changing. Both sensor inputs and actuator outputs are
sequences of timestamped values. The ADS runs iteratively at
regular time steps. At every time step, the ADS decides the
optimal trajectory to be followed by minimizing cost functions
related to different requirements to achieve (requirements
violations are penalized in the cost function). In such a process,
the ADS needs to make trade-offs among the requirements.
The final output is the trajectory with the least overall cost
(the red line in Fig. 1(b)).

As a case study, we use an ADS with an optimization-
based path planner (provided by our industry partner) called
ADSPP , which repeatedly uses a weighted cost function
that considers various requirements to select the least costly
path. ADSPP can run in a simulator, as shown in Fig. 1(b).
Besides the navigation mission, i.e., moving from an initial
position to the destination, ADSPP considers four categories
of requirements during the planning process as follows:
• Stability (R1): the ADS should assure the stable control

and avoid dangerous actions for the vehicle [22]. R1.1: the
ADS should avoid impossible steering angles.

• Safety (R2): the ADS should avoid collision with moving
or static objects along the path [22]. R2.1: the ADS should
keep a safe distance from other objects.

• Compliance (R3): the ADS should respect the traffic
regulations enforced by law in a geographical area [22].
R3.1: the velocity of the vehicle should be less than the
speed limit; R3.2: the vehicle should not run the red light;
R3.3: the vehicle should stay in the correct lane.

• Comfortableness (R4): the planned trajectory should be
comfortable for the passenger [23]. R4.1: the vehicle’s
velocity should not change too much; R4.2: the vehicle’s
acceleration should not change too much.

During the operation, ADSPP is required to respond to the
uncertain and dynamic environment, and adjust the trajectory
for the ego vehicle to follow. For example, Fig. 1(b) shows a
type of scenario in which the ego vehicle plans to turn right
into lane-1 at the intersection, while vehicle-a is crossing the
intersection from left to right. However, there are different
versions of this scenario that can lead to different behaviors
of ADSPP , and different satisfaction/violation of the require-
ments; we here consider two examples, i.e., Scenario-A and

Sensors ActuatorsControl
Software

Environment Ego Vehicle

Autonomous Driving System (ADS)

Requirements

(a) ADS decision process (adapted from [4])

lane 2
lane 1

lane 2
lane 1

vehicle a
vehicle b

vehicle c
vehicle a

vehicle b

vehicle c

ego vehicle

ego vehicle

(b) ADS at the intersection

Fig. 1: Overview of an autonomous driving system (ADS)

Scenario-B. In Scenario-A, vehicle-a proceeds at high speed,
and the ego vehicle orders an emergency braking to bring
the vehicle to a halt; however, the ego vehicle cannot stop in
time and collides with vehicle-a (i.e., violation of requirement
R2). In Scenario-B, instead, the vehicle-a proceeds slightly
slower than in Scenario-A, and, in this case, the ego vehicle
accelerates and tries to cut into the lane before vehicle-a. This
action plan requires a higher speed from the ego vehicle, to the
point to exceed the speed limit; still, the ego vehicle cannot
cut into the lane quickly enough, and collides with vehicle-
a (i.e., it violates both R2 and R3). Although the ego vehicle
collides in both scenarios, Scenario-B may be more interesting
for debugging, because the occurrence of collision could be
related to the violation of the speed limit requirement, which
can provide a different insight about the cause of the collision.
For example, if the ego vehicle decelerates to wait for vehicle-
a to pass, the collision may not happen in Scenario-B.

Testing how ADSPP handles the requirements requires
finding critical scenarios in which one or more requirements
are violated; such type of testing is particularly challenging.
Furthermore, with the increase of the number of requirements,
there could be different requirements violation combinations.
We need approaches that can (1) find critical test scenarios
for ADSPP in which one or more requirements are violated;
(2) expose all possible combinations of requirements viola-
tions for ADSPP , if these combinations can occur in reality.

III. FORMALIZATION AND PROBLEM STATEMENT

We here formalize an ADS and its environment by consid-
ering the input and configuration variables of ADSPP .

A. Autonomous Driving System

At any time instant k, the state of an object is a tuple of three
elements, i.e., sk = (pk,vk,ak). The vector pk = (x, y) is the
geometric center of the position of the object, while vk and ak

are its velocity and acceleration. The state of the ego vehicle
is sek. We define O as the set of objects interacting with the
ego vehicle, e.g., pedestrians, other vehicles; their state can be
described as sok, with o ∈ O. The trajectory of the ego vehicle
is a sequence of the vehicle’s states T = [se0, . . . , s

e
T], where

the time interval between two consecutive states is fixed as τ ,
and T is the simulation time duration.

The ego vehicle continuously interacts with the dynamic and
uncertain environments, and the ADS generates the trajectory

𝒳𝒳𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖 𝑢𝑢𝑢𝑢𝑖𝑖
{𝜎𝜎𝑖𝑖

1

0
𝑔𝑔𝑖𝑖

𝒳𝒳𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑔𝑔𝑖𝑖

1

𝑙𝑙𝑙𝑙𝑖𝑖
0𝒳𝒳𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑔𝑔𝑖𝑖

1

𝑙𝑙𝑙𝑙𝑖𝑖
0

𝑓𝑓𝑙𝑙𝑙𝑙 𝑓𝑓𝑚𝑚𝑡𝑡 𝑓𝑓𝑐𝑐𝑐𝑐

Fig. 2: Requirements violation evaluation functions

for the ego vehicle to follow. A scenario Sce describes the
environment in which the ego vehicle is operating, including
(i) a map of the road structure; (ii) information of traffic
regulations (e.g., location of traffic lights); (iii) dynamic be-
haviors of objects ([so0, . . . , s

o
T], o ∈ O); (iv) initial state of the

ego vehicle se0; (v) target destination for the ego vehicle pd;
(vi) duration of the simulation T . We assume that the driving
model of other vehicles is fixed and described by standard
kinematic equations.

The system under test is the ADS of the ego vehicle. For
simplicity, we view it as a function that, given a scenario Sce ,
produces the trajectory of the ego vehicle, i.e., T =ADS (Sce).

B. Requirements Violation Evaluation

It is challenging to verify the absolute violation/satisfaction
(false/true) of requirements directly from the behaviors of the
ADS operating in complex and changing environments [24].
In previous work [9], [10], various quantifiable metrics are
provided to indicate the dangerous behaviors of the ADS.
However, the previous work does not show how these metrics
reflect requirements violation/satisfaction results.

To fill this gap, we provide a systematic way to design
the quantifiable metrics (QMs) for requirements and their
mapping functions to the requirements evaluation results.
Given a requirements set R = {R1, . . . , Rn} for the ADS
to consider during the decision process, we introduce Xi as
the QM for each requirement Ri. Xi is defined as a function of
the trajectory of the ego vehicle and the running scenario, i.e.,
Xi = hi(T ,Sce). To evaluate the violation of requirement Ri,
we compare Xi with the threshold gi specified in the definition
of Ri; in this way, we get the evaluation result yi = f(Xi, Ri),
ranging over the Boolean domain Di. We set up three types of
evaluation functions according to the relationship between the
QM and the threshold in the requirement to indicate whether
a requirement is violated (yi = 1) or satisfied (yi = 0). Fig. 2
shows the three Boolean evaluation functions, in which lbi,
ubi, and gi are the lower bound, upper bound, and threshold
of Xi, as specified in the requirements. The function f lt(Xi)
describes the LESS THAN relationship. A requirement Ri is
satisfied if Xi ≤ gi; otherwise, the requirement is violated
and yi = 1. Similarly, fmt(Xi) describes the MORE THAN
relationship (gi ≤ Xi), and fcl(Xi) describes the AS CLOSE
AS POSSIBLE relationship (gi−σi ≤ Xi ≤ gi+σi). Note that
there can be other evaluation techniques to describe require-
ments satisfaction, such as fuzzy membership functions [25].
All the QMs of the requirements described in Section II can
be assessed from our project website [26].

Example 1. Requirement R2.1 states that the ego vehicle
should keep safe distance from other objects. QM X2.1 =
min

k∈T,o∈O
(‖pe

k − po
k‖) is the minimum Euclidean distance

between the ego vehicle and other objects including vehicles,
pedestrians, etc. X2.1 should be MORE THAN the minimum
separation εmin ; otherwise, there could be collisions. The eval-
uation function is formulated with function fmt as follows:

y2.1 =

{
0, εmin ≤ X2.1

1, otherwise

Definition 1 (Requirements Violation Pattern). Let D=D1 ×
. . .×Dn be the space of evaluation results for all requirements,
where Dj is the domain of yj . A requirements violation pat-
tern Vi = [y1, . . . , yn] ∈ D is a vector, representing a distinct
combination of requirements violation for the behavior of the
ADS under test. Given the violation pattern Vi, the initial re-
quirements setR can be split into two subsets of requirements,
i.e., the set of satisfied requirements Ri

S = {Rk|Vi[k] = 0}
and the set of violated requirements Ri

V = {Rk|Vi[k] = 1}.

For example, Vi = [1, 1, 0, 0, 0, 0, 0] represents a require-
ments violation pattern with the evaluation of seven require-
ments, where the first two are violated, and the other five
are satisfied. The set of all possible requirements violation
patterns is defined as V = {V0, . . . , Vm−1}, where m is the
total number of patterns in V . For ADSPP , we evaluate the
requirements reported in Section II, and there are 27 = 128
requirements violation patterns in V .

C. Problem Statement

For the ADS, the testing approach T targeting requirements
violations can be defined as a function 〈S,Vf 〉 = T (ADS ,R),
where S is a set of critical test scenarios exposed by T and Vf
is the set of requirements violation patterns that are covered
by S (Vf ⊆ V). It is challenging for testers to explore the
space of all possible scenarios to expose all the patterns with
limited time or computing resources. Another challenge is that
some patterns may not be achievable, and the testers should
avoid wasting time searching for these patterns. In summary,
the general problem that we aim to solve is as follows:
Given the ADS as the system under test, along with a set
of requirements R that should be achieved by the system,
design a testing approach T targeting requirements violations,
which can effectively find test scenarios to expose different
requirements violation patterns of high importance.

IV. APPROACH

A. Overview

Fig. 3 shows the workflow of EMOOD, which first applies
Initial Prioritization (IP) and then iteratively applies Evolu-
tionary Many-Objective Optimization (EMOO) and Dynamic
Prioritization (DP) to achieve efficient ADS testing. IP is
used for identifying the most critical requirements violation
patterns. EMOO is used for finding scenarios violating and
satisfying requirements, as specified by the given targeted
pattern. This targeted pattern in a search round is identified

ADS Simulator

Requirements

Test Scenario 𝑆𝑆𝑆𝑆𝑆𝑆

Requirements
Violation

Evaluation

Trajectory
𝒯𝒯

Population 𝑃𝑃

Unfound patterns 𝒱𝒱𝑡𝑡
Searched patterns 𝒱𝒱𝑒𝑒𝑒𝑒

Targeted pattern 𝒱𝒱𝑡𝑡[0]

Random Initialization

Initial Prioritization (IP)

Evolutionary Many-Objective Optimization (EMOO)
Fitness Scores 𝒳𝒳

Dynamic Prioritization (DP)

Targeted
Pattern
𝒱𝒱𝑐𝑐[0]

Criticality Ranking 𝒱𝒱𝑐𝑐

Fig. 3: Overview of the proposed approach (EMOOD)

by DP. In particular, DP aims to give preferences to those
patterns with higher criticality and likelihood to occur. The
combination of EMOO, IP, and DP makes it possible for our
approach to explore different test scenarios, thereby exposing
more types of requirements violation patterns.

More specifically, the approach works as follows. In the
beginning, in IP, given the ADS requirements and their im-
portance, we rank the requirements violation patterns based
on their criticality (see Section IV-B). The criticality ranking
list of all patterns after IP is Vc. Then, test generation starts by
employing an iterative evolutionary process. At each iteration,
the fitness functions of the searching process (i.e., EMOO) are
defined based on the targeted pattern (see Section IV-C); in
the first iteration, the targeted pattern is Vc[0]. The population
specifies values for the variables of an abstract test scenario
(i.e., a scenario in which some fields are parameterized). It
is instantiated by these values to produce a concrete test
scenario Sce that is executed with the ADS simulator. The
fitness scores X of the behaviors of ADS T in each test
scenario are computed by running the ADS simulator and
doing requirements violation evaluation.

After the execution of EMOO, we perform the dynamic
prioritization (see Section IV-D). In particular, the pattern
likelihood prioritization (see Alg. 1) is used to sort all possible
requirements violation patterns based on their likelihood to
occur. Such likelihood is estimated by considering the relation
between exposed and unexposed patterns. The occurrence
likelihood ranking of patterns Vl is merged with the criticality
ranking Vc to update the list of patterns to search for Vt, so as
to identify the most critical patterns that are likely to occur.
The first element Vt[0] of the merged list is used, in the next
iteration, as the pattern targeted by EMOO.

Using DP, the approach continually changes its fitness
functions round by round, until the given testing time or
resource budget exhausts. The whole process is described in
Section IV-E in detail. The output is a set of test scenarios that
facilitate reproducing the wrong behaviors of the ADS and the
set of requirements violation patterns that have been identified
during the testing.

B. Initial Prioritization (IP)

As it is time-consuming and economically expensive to test
whether each pattern in the set V is possible to occur, we
need to determine their order of being searched for. In the

beginning, we prioritize the patterns based on their criticality,
which is defined based on the following two ranking rules:
• P1: a pattern Vi is ranked higher than another pattern Vj if

the highest importance level of the violated requirements
in Vi is higher than that in Vj .
• P2: a pattern Vi is ranked higher than another pattern Vj

if Vi has more violated requirements in importance level
p than Vj , while Vi has the same number of violated
requirements in importance level l as Vj for ∀p < l <= q
where q is the maximum importance level.

Rule P1 is designed based on the predefined importance
levels among different categories of requirements in ADS
behaviors as defined in previous work [22] (e.g., the safety
requirement’s importance level is higher than that of the
compliance requirement). For the functionality of the sys-
tem, certain requirement Ri may be split into a set of
sub-requirements {Ri.1, ..., Ri.Mi

} to be achieved, where Mi

is the number of sub-requirements (e.g., R3 is instantiated
into {R3.1, R3.2, R3.3}). For simplicity, we assign the same
importance level to the sub-requirements belonging to the
same category, as done in ADSPP provided by our industry
partner. For ADSPP , the requirements listed in Section II
rank from the highest to the lowest one, i.e., R1 � R2 �
R3{R3.1, R3.2, R3.3} � R4{R4.1, R4.2}. Thus, according to
P1, Vi is ranked higher than (�P1) Vj if ∃Rk ∈ Ri

V ,∀Rk′ ∈
Rj

V : Rk � Rk′ .
Assume that importance level p is the highest level where

patterns Vi and Vj differ in terms of the number of violated
requirements in the same level. Rule P2 is designed based
on the assumption that in the critical scenarios in which the
trajectory generated by the ADS violates a larger number of
requirements in importance level p, the wrong decision logic
of the control software is more likely to be exposed.

We apply these two ranking rules, assuming that P1 takes
precedence over P2, as suggested by our industry partner.
Based on P1 and P2, to compare the criticality of patterns
Vi and Vj is to compare the number of violated requirements
level by level from the highest to the lowest importance levels.
Therefore, the set of all requirements violation patterns V can
be transformed into a sorted list of patterns Vc=P{1,2}(V),
ranging from the most to the least critical patterns; we name
the list criticality ranking. Note that Vc is a partial order, and
some patterns could have the same ranking. The first element
Vc[0] in V is a unit vector where all the requirements are
violated, while the last element Vc[m − 1] is the zero vector
indicating that all requirements are satisfied.

C. Evolutionary Many-Objective Optimization (EMOO)
As it is difficult to generate critical test scenarios in which

one or more requirements are violated [27], we use a search-
based testing (SBT) approach, which has been shown to be
very effective for ADS testing [6], [9], [12]. We cast the
problem of generating ADS critical test scenarios for a specific
requirements violation pattern as a many-objective optimiza-
tion problem [28], where the fitness functions are defined as
the indicators for requirements satisfaction/violation.

[1,1, … , 1,0]

[1,1, … , 1,1]

[1,1, … , 0,1]

[1,0, … , 1,1]

[0,1, … , 1,1]

[0,0, … , 0,0]

[1,0, … , 0,0]

[0,1, … , 0,0]

[0,0, … , 1,0]

[0,0, … , 0,1]

… …

ℂ. ℂ% ℂ,+% ℂ,Class

[1,1, … , 0,0]

[0,0, … , 1,1]

ℂ&

[1,1, … , 0,0]…

[0,0, … , 1,1]…

… …

ℂ,+&…

…
…

…

…
…𝑛 of 1 0 of 1

𝑛 − 1 of 1 𝑛 − 2 of 1 2 of 1 1 of 1

Fig. 4: The relationship of requirements violation patterns

For the many-objective optimization algorithm, we use the
Non-dominated Sorting Genetic Algorithm version 3 (NSGA-
III) [29], as it is good in solving problems with many ob-
jectives (four or more) [30] and so is suitable for our case.
In our work, NSGA-III generates a number of ADS critical
test scenarios by maximizing or minimizing the indicators that
characterize the violation or satisfaction of the requirements
(i.e., QMs Xi introduced in Section III-B). Here, we discuss
how we apply NSGA-III to our case.
Individuals. As explained in Section III-A, test scenarios de-
scribe the characteristics of the operating environment and the
initial state of the ego vehicle. In EMOO, we aim at generating
test scenarios. However, searching over all the possible sce-
narios is not feasible. Hence, we follow a pragmatic approach
also adopted by other work [31], [32]. Specifically, we define
an abstract scenario that specifies some fixed characteristics,
such as the road structure and the other traffic participants; in
the abstract scenario, some characteristics (e.g., initial position
and acceleration of a vehicle) are parameterized with variables
defined over some domains. In the search, an individual is an
assignment to these variables. Given an individual, a concrete
test scenario can be derived by instantiating the abstract
scenario with the values assigned to the variables in the
individual.
Fitness Functions. For a targeted requirements violation
pattern Vi ∈ V , there is a corresponding set of quantitative
fitness functions F = {F1, . . . , Fn}, whose values indicate the
QMs of the requirements. Since the requirements evaluation
is Boolean as shown in Fig. 2, Vi is an n-dimensional vector
of {0, 1}. For Vi[k]=0, the satisfaction of the Rk should be
guaranteed (Rk ∈ Ri

S), while for Vi[k] = 1, Rk is expected
to be violated (Rk ∈ Ri

V). Based on the set of satisfied
and violated requirements Ri

S and Ri
V , the set of fitness

functions F is also split into F i
S and F i

V . For Rk ∈ Ri
S , the

corresponding fitness function Fk ∈ F i
S is to improve Xk, i.e.,

trying to satisfy Rk. For Rk ∈ Ri
V , its corresponding fitness

function Fk ∈ F i
V is to worsen Xk, i.e., trying to violate Rk.

D. Dynamic Prioritization (DP)

In this phase, we select a pattern to be used as the target for
the next search round of EMOO. The rationale is that we want
to select a critical pattern that can occur in reality. Thus, DP
first computes a ranking of patterns based on their likelihood
of occurrence. Then, DP merges this ranking with the ranking
based on the criticality Vc.

Algorithm 1: Pattern Likelihood Prioritization
Input: Vt: patterns that have not been found;

Ved : patterns that have been searched for.
Output: Vl: likelihood rankings for patterns

1 Initialize the reward of each pattern with Eq. (1);
2 Vl ← Vt \ Ved ;
3 for Vj ∈ Vl do
4 k′ ← GetClass(Vj) ;
5 for Vi ∈ (V \ Vt) ∪ (Ved ∩ Vt) do
6 if Vi is predecessor to Vj then
7 k ← GetClass(Vi);
8 r(Vj) += γk

′−k · r(Vi)
9 Vl ← sort(Vl, r(Vl));

10 return Vl

1) Likelihood Prioritization: The intuition of occurrence
likelihood ranking for requirements violation patterns is that if
a specific requirements violation pattern has been found, there
is a high likelihood to expose similar/related violation patterns
that are less critical than the found pattern. To prioritize the
patterns, we first define the relationship between different
patterns to estimate the likelihood of their occurrence.

Definition 2. (Requirement Violation Pattern Relationship)
Given two requirements violation patterns Vk = [y1, . . . , yn]
and Vk′ = [y′1, . . . , y

′
n], if ∃i ∈ {1, . . . , n} : yi = 1 ∧ y′i =

0 ∧ (∀j ∈ {1, . . . , n} \ {i} : yj = y′j), then pattern Vk is the
predecessor of pattern Vk′ , and Vk′ is the successor of Vk.

As shown in Fig. 4, we construct a graph to describe the
relationship between different requirements violation patterns
based on Def. 2. The relationship between two patterns is
described with an arrow (→), where the left-hand side of the
arrow indicates the direct predecessor and the right-hand side
of the arrow indicates the successor. Note that a requirements
violation pattern Vi could have multiple direct predecessors,
as well as multiple successors. Therefore, the set of patterns
V is a partially ordered set according to the relationship. The
pattern with all requirements violated ([1, 1, . . . , 1, 1]), has no
predecessors, while the pattern with no requirements violated
([0, 0, . . . , 0, 0]) has no successors. All the patterns can be
classified into n+1 classes (C0, . . . ,Cn) based on the number
of violated requirements.

Alg. 1 shows the prioritization based on likelihood that
exploits the pattern relationship introduced in Def. 2. First,
we initialize a reward function for each pattern Vi as r(Vi)
(Line 1), indicating the likelihood that the pattern occurs in
reality. The higher the reward is, the higher the likelihood of
the pattern is to be found. Given the list Vt of patterns that
have not been found so far, and the list Ved of patterns that
have been treated as fitness functions to search for, the reward
for each requirement violation pattern is initialized as follows:

r(Vi) =


r+0 , Vi ∈ V \ Vt
r−0 , Vi ∈ Ved ∩ Vt
0, Vt \ Ved

(1)

For requirements violation patterns that have been found
(V \Vt), we assign a positive reward r+0 , and for patterns that

have been searched but not found (i.e., Ved ∩Vt), we define a
constant penalty as r−0 . The remaining patterns are those that
need to be searched for (i.e., Vt \ Ved), and their reward is
initialized as 0; we identify them as Vl (Line 2). The rewards
of patterns in Vl are updated as described as follows.

To calculate the rewards of patterns Vl that we need to
search for, we consider the rewards of their predecessors. The
idea is that if a predecessor Vi of a requirements violation
pattern Vj has been previously found (Vi ∈ V \ Vt), it is
likely that Vj may occur. On the other hand, if Vi has been
searched for but not found (Vi ∈ Ved ∩ Vt), the likelihood
that pattern Vj can be found is low. Based on these heuristic
rules, the algorithm works as follows. Given a pattern Vj that
has not been searched for and not been found (Line 3), the
algorithm iterates over the other patterns Vi initialized with
non-zero rewards (Line 5); for those that are predecessors of
Vj (Line 6), it updates the reward of Vj with reward r(Vi)
discounted based on the distance between Vi and Vj (Line 8).
Note that γ ∈ (0, 1), and so the factor γk

′−k decreases as
the distance increases. Finally, it prioritizes the sequence Vl
of requirements violation patterns to search for, based on the
computed rewards ranging from the highest to the lowest
(Line 9), as the higher the reward, the higher the likelihood
that this pattern is exposed in the next round. We call Vl as
(estimated) likelihood ranking.

2) Merging Criticality and Likelihood Rankings: Then, we
merge the rankings of requirements violation patterns in Vl and
Vc with a weighted sum, following a classical approach used in
multi-criteria decision-making [33]. The criticality ranking Vc
indicates the importance of the patterns, while the likelihood
ranking Vl indicates the likelihood of the occurrence of each
pattern. By combining these two ranking algorithms, we can
select (for the next round of EMOO) the patterns that are
both critical and likely to be found. The weights for these two
lists are defined as a vector [wc, wl], and the final rank of a
pattern Vi is determined by

∑
j∈{c,l} wj ·rank(Vj(Vi)), where

rank(Vj(Vi)) is the function to retrieve the rank of Vi in Vj .
The merged ranking substitutes Vt.

E. Details of EMOOD

We here describe the details of our EMOOD approach (as
shown in Fig. 3), i.e., how to combine the initial prioritization
(IP, Section IV-B), the evolutionary many-objective optimiza-
tion (EMOO, Section IV-C), and the dynamic prioritization
(DP, Section IV-D) during the testing process. Alg. 2 shows
the algorithm of EMOOD, aiming at generating test scenarios
that expose different requirements violation patterns.
EMOOD receives a set V of requirements violation patterns to

search for, the total number M of generations, and the budget
G of generations in each search round. The output of EMOOD
is a set S of test scenarios and requirements violation patterns
Vf that have been found.

Initially, the approach applies initial prioritization (see
Section IV-B) to rank the patterns by criticality (Line 1),
obtaining ranking Vc. The list of patterns to search for Vt
is initialized with Vc (Line 2). Then, at each iteration, EMOO

Algorithm 2: EMOOD
Input: V: a set of requirements violation patterns;

M : total number of generations;
G: budget of generations for each execution of EMOO.

Output: S: a set of test scenarios;
Vf : requirements violation patterns that have been found

1 Vc ← P{1,2}(V); // IP
2 Vt ← Vc,Ved ← ∅;
3 Pop ← ∅;
4 while M > 0 ∧ Vt 6= ∅ do
5 Select an initial population set P randomly;
6 F ← ObjGenerate(Vt[0]);
7 Q, g ← NSGA-III(G,P,F , stop condition); // EMOO

// g: used generations; Q: all solutions
8 M =M − g;
9 Q← Q ∪ Pop ;

10 Ved ← Ved ∪ {Vt[0]};
11 Vt ← GetUnfoundPatterns(Q,Vt);
12 Vl ← RelationRanking(Vt,Ved); // DP
13 Vt ← MergedRanking(Vl,Vc); // DP
14 S ← SceneEncoding(Pop), Vf ← Vc \ Vt;
15 return 〈S,Vf 〉

starts with a randomly selected population set P (Line 5), and
a requirement violation pattern to search for that defines the
fitness functions (Line 6): the pattern is the first element of
the list of unfound patterns Vt. EMOO performs a number
g of generations using NSGA-III [29] (Line 7) until the
stop condition is reached: either the total number G of
generations is reached or the targeted pattern has been found.
The number g of used generations is subtracted from the total
budget M of generations (Line 8). The pattern that has been
searched for is stored in set Ved (Line 10). Then, Vt is updated
by removing the patterns that have been found (the targeted
one and/or also other patterns) according to the requirements
violation evaluations of all solutions generated during search
(Line 11). Note that some of the patterns, despite having been
searched for, may not be discovered within their dedicated
search round, either because they are too difficult to discover
or they are not achievable at all.

Finally, EMOOD applies dynamic prioritization: it first uses
Alg. 1 to get the likelihood ranking Vl of the patterns
(Line 12); then, it merges the rankings Vt and Vl with a
weighted sum (Line 13). EMOOD can be stopped when the total
number M of generations is reached or all patterns have been
found, i.e., Vt 6= ∅ (Line 4). Note that, in the ADS testing, the
most time-consuming part of the search is running simulations
to compute fitness functions. EMOOD does not increase the
number of simulations compared to EMOO with the original
NSGA-III.

V. EVALUATION

To demonstrate the effectiveness of our approach, we
investigate the following research questions.
RQ1 (Pattern Detection): How is the exploration capability
of EMOOD in generating test scenarios to expose different
requirements violation patterns?
RQ2 (Pattern Criticality): How effective is EMOOD in
discovering critical requirements violation patterns?

TABLE I: Two traffic scenarios used in the experiments

Name Description #Vars.

Overtake
(SO)

The ego vehicle tries to overtake another vehicle-a
proceeding slowly, while vehicle-b is coming from
behind.

15

Turn Right
(ST)

The ego vehicle must turn right at the intersection.
Another vehicle-a is crossing from left, and vehicle-
b from right. Vehicle-c is waiting at the intersection.

12

lane 2
lane 1

lane 2
lane 1

vehicle a
vehicle b

vehicle c
vehicle a

vehicle b

vehicle c

ego vehicle

ego vehicle

(a) Overtake (SO)

lane 2
lane 1

lane 2
lane 1

vehicle a
vehicle b

vehicle c
vehicle a

vehicle b

vehicle c

ego vehicle

ego vehicle

(b) Turn Right (ST)

Fig. 5: Two abstract traffic scenarios for the experiments

A. Experimental Design and Settings

1) Traffic Scenarios: We consider two abstract traffic sce-
narios (where left-hand traffic is assumed), as shown in Table I.
Each abstract traffic scenario defines shared characteristics of
the generated test scenarios (e.g., road map, speed limit), and
specific characteristics (e.g., position, speed, acceleration of
the ego vehicle and other vehicles, duration of the traffic light)
that are left as search variables for EMOO. The ego vehicle
with ADSPP follows the requirements reported in Section II.

The two abstract traffic scenarios identify two different
driving situations that will possibly lead to different behav-
iors of ADSPP , and thus patterns of potential requirements
violations. To ensure that the simulations start from a valid
and meaningful state, we have the following two constraints
on the initial state of the simulation (also used for other ADSs
in previous work [8]): (1) there is a safe distance between the
ego vehicle and other vehicles when all the vehicles start, and
(2) the ego vehicle is far from the traffic light such that it has
sufficient time to react.
Overtake (SO): As shown in Fig. 5(a), the ego vehicle is
proceeding on lane-2, encounters vehicle-a proceeding slowly,
and tries to overtake it. Meanwhile, vehicle-b is coming from
behind the ego vehicle on the passing lane lane-1. Moreover,
vehicle-c is proceeding in the opposite direction on a different
lane. In SO, there are 15 search variables, including the initial
states (i.e., position, velocity, and acceleration) of the ego
vehicle, vehicle-a, vehicle-b, and vehicle-c, respectively, and
the location and duration of the traffic light. Table II reports
the search space for the traffic scenario SO.
Turn Right (ST): As shown in Fig. 5(b), the ego vehicle turns
right at the intersection. Meanwhile, vehicle-a is crossing from
left, vehicle-b is crossing from right, and vehicle-c is waiting
at the intersection. As shown in Table II, there are 12 search
variables: the initial states of the ego vehicle and the other
three vehicles, respectively, and the duration of the traffic light.

TABLE II: Search spaces for traffic scenarios SO and ST

Objects Variables Intervals

SO

ego vehicle pe
0[y] , ve

0 [5, 25], [5, 16]
vehicle-a pa

0 [y], v
a
0 , aa

0 [45, 65], [4, 16], [0, 3]
vehicle-b pb

0[y], v
b
0, ab

0 [0, 20], [4, 16], [0, 3]
vehicle-c pc

0[y], v
c
0, ac

0 [40, 90], [4, 16], [0, 3]
traffic light p[y], tg, ty, tr [70, 80], [5, 10], [1, 2], [2, 4]

ST

ego vehicle pe
0[y] , ve

0 [150, 190], [4, 16]
vehicle-a pa

0 [x], v
a
0 , aa

0 [-75, -25], [4, 16], [0, 3]
vehicle-b pb

0[x], v
b
0, ab

0 [25, 75], [4, 16], [0, 3]
vehicle-c pc

0[y] [225, 235]
traffic light tg, ty, tr [6, 12], [1, 2], [2, 4]

2) Baseline Approaches: To the best of our knowledge,
at the moment of writing, there do not exist any automated
testing approaches targeting requirements violation patterns.
We compare EMOOD with three approaches, including the
random test generation algorithm (the baseline of comparison
typically adopted in SBSE research [34]) and two variants of
EMOOD, to demonstrate the effectiveness of our approach in
terms of pattern detection and coverage.

• Random: it randomly generates values for variables in the
search space of SO and ST to create test scenarios and
checks which patterns are discovered.
• EMOO: application of EMOO using fitness functions target-

ing pattern Vc[0] (i.e., all requirements violated). Fitness
functions are never changed over the search process. Note
that, since Vc[0] is the most critical pattern and the ancestor
of all the patterns, other patterns can be discovered while
trying to cover it.
• EMOO-IP: the combination of initial prioritization with

updated objective functions but without the dynamic prior-
itization. In this case, each EMOO execution uses the most
critical pattern (in Vc) that has not been searched so far.

3) Configurations and Implementations: We implement the
baselines and our approach in Python, and use jMetalPy [35]
as the search framework. For Random, we use the implemen-
tation of random search in jMetalPy [35]. For the settings of
the EMOO algorithm, we adopt NSGA-III [29]. The settings
for NSGA-III are the default ones in jMetalPy: parent selec-
tion with tournament selection [36], SBX crossover operator,
polynomial mutation operator, crossover rate of 100%, and
mutation rate equal to the reciprocal of the number of search
variables. For each EMOO-based algorithm, the size of the
population is 50. The weights used when merging Vc and Vl
are [wc, wl] = [1, 1].

Each approach (EMOOD and the baselines) is used to test
the ADS for some generations. As the termination condition
G for EMOO, EMOO-IP, and EMOOD, we set 100 generations
for the first round and 50 generations for the subsequent
rounds. As global budget M , we set a total number of
400 generations across all the rounds. Hence, totally we can
evaluate 50×400=20000 scenarios. For Random, in order to
assure a fair comparison, we set 20000 fitness evaluations as
the termination condition. To take into account the random
effect during the search, we repeat each algorithm ten times.

0 100 200 300 400
Generations

0

10

20

30

40

Re

qu
irm

en
ts

V
io

la
tio

n
Pa

tte
rn

s Random
EMOO
EMOO-IP
EMOOD

(a) Overtake (SO).

0 100 200 300 400
Generations

0

10

20

30

40

Re

qu
irm

en
ts

V
io

la
tio

n
Pa

tte
rn

s Random
EMOO
EMOO-IP
EMOOD

(b) Turn Right (ST).

Fig. 6: RQ1 – Average number of discovered patterns

TABLE III: RQ1 – Statistical test results comparing the
number of patterns discovered by the approaches

Approaches Overtake (SO) Turn Right (ST)
p-value Â12 p-value Â12

EMOOD vs. Random 1.64e-4 1.00 1.22e-4 1.00
EMOOD vs. EMOO 1.73e-4 1.00 1.57e-4 1.00

EMOOD vs. EMOO-IP 1.58e-4 1.00 2.38e-4 0.99
EMOO-IP vs. Random 1.54e-4 1.00 1.19e-4 1.00
EMOO-IP vs. EMOO 1.62e-4 1.00 8.06e-4 0.94
EMOO vs. Random 6.06e-4 0.96 0.0012 0.92

The experiments are executed on servers with CPU (Intel Xeon
E5-2697A V4@2.6GHz), 32 cores, and 128 GB of memory.
The time budget for scenario simulation is set as 100 seconds.
More details of experimental results can be found online [26].

B. Results and Analysis

We next answer the two research questions and then provide
qualitative analysis.

1) Evaluation on Pattern Detection (RQ1): We investigate
the discovered requirements violation patterns by the different
approaches and how the patterns are related. Fig. 6 shows
the average number of the patterns discovered during the
allocated generations. The detailed comparisons of the patterns
discovered during the search process are shown in Fig. 7.

As shown in Fig. 6, we can find EMOOD’s average number
of discovered patterns to be 30.7 and 28.8 in SO and ST ,
respectively, outperforming the three baseline approaches, i.e.,
Random, EMOO, and EMOO-IP. For the first two baseline
approaches Random and EMOO, there is a large increase in
the number of patterns discovered within the 50th generation,
while the speed to find new patterns decreases after the 100th
generation. The reason is that both EMOO-IP and EMOOD
could change the objective functions to search for, leading
to the discovery of new patterns during the search process.
Compared with the third baseline approach EMOO-IP, EMOOD
adjusts the sequence of the targeting pattern to search for
by also considering the likelihood to occur, thus excluding
patterns that cannot occur and saving the search time. Hence,
in SO and in ST , EMOOD could find, respectively, 4.7 and 3.2
patterns more than EMOO-IP.

We also observe that Random performs better in ST than
in SO, as ST has a smaller search space. Thus, the gaps in the

EMOO (34) EMOO-IP (32)

`
`
，

％

1
3．

2

（

．̀
,
'

lo

Ò

0
。

｀
丿lo

Ò

0
。

｀
丿lo

Ò

0
。

）

lo

ò

0
。

、冒，＇lo

è

0
。

11
(25.6%)

`
`
,

％

2
7．

µ

、，＇％
6
41

（

｀
丿lo

Ò

0
。

Random (19)

％

1
3．

2

、
`
，lo

è
0
。

4
(9.3%)

．̀
,
'

lo

ò

0
。

EMOOD (42)

(a) Overtake (SO).

EMOO (34) EMOO-IP (32)

｀
丿lo

Ò

0
。

｀
丿lo

Ò

0
。 、冒，＇loò

0
。

1
(2.4%)

｀
丿lo

Ò

0
。

1
(2.4%)

）

lo

ò

0
。

4
(9.5%)

、，＇％
5
911(

｀
丿lo

Ò

0
。

1
(2.4%)

Random (27)

、｀，lo

e

0
。 、̀

，lo

è
0
。

4
(9.5%)

EMOOD (41)

(b) Turn Right (ST).

Fig. 7: RQ1–Comparison of discovered patterns

TABLE IV: RQ1-Time cost of the testing process

Time Cost
(hours)

Overtake (SO) Turn Right (ST)
Rand. EMOO EMOO-IP EMOOD Rand. EMOO EMOO-IP EMOOD

Simulation 16.85 14.64 14.25 14.66 13.33 10.11 10.83 10.77
Computation - 0.14 0.16 0.19 - 0.14 0.15 0.18

Total 16.85 14.78 14.41 14.85 13.33 10.25 10.98 10.95
∗ In the simulator, ADSPP is terminated once collisions are detected.

average number of the discovered patterns between the four
approaches are smaller in ST than SO.

We next perform a statistical test on the final results of the
approaches across the ten runs. Following a guideline [37],
we use the Wilcoxon signed rank test [38] and the Vargha-
Delaney’s Â12 effect size [39]. Table III reports the results
of the statistical test obtained when comparing the number of
the patterns discovered by Random, EMOO, EMOO-IP, and
EMOOD for SO and ST . As shown in the table, the p-values
of the results between EMOOD and the baseline approaches
are all lower than 0.05, and the Â12 statistics show a large
effect size (close or equal to 1). Hence, the number of the
patterns discovered by EMOOD is significantly higher than
those discovered by the baseline approaches; moreover, we
also notice that each technique of the approach (i.e., IP, DP,
and EMOO) significantly improves over the approach without
that technique.

Moreover, we want to know whether EMOOD’s higher ef-
fectiveness is due to its capability to discover more patterns
(which do not necessarily subsume patterns discovered by
the baseline approaches) or its capability to subsume all the
patterns discovered by the baseline approaches plus some other
patterns. We compare all the discovered patterns in the ten
runs for the four approaches, as shown in Fig. 7. We find that,
across ten runs, EMOOD could aggregately discover 42 and
41 patterns in SO and ST , respectively. In addition, EMOOD
could discover 6 and 5 extra patterns (not discovered by any
baseline approach), accounting for 14% and 11.9% of the total
number of discovered patterns in SO and ST , respectively.
Thus, EMOOD’s higher effectiveness lies in its capability to
discover extra patterns compared with the baseline approaches.

Finally, to check whether the effectiveness of EMOOD comes
at the cost of computation time, we compare the whole execu-
tion time of EMOOD and the baseline approaches. Considering
that the simulation time of each test scenario could be large,
we parallelize the simulation of the generated test scenarios

Fig. 8: RQ2–The sum of criticality of discovered patterns

using 30 threads. Table IV reports, for each approach, the time
cost of the test simulations, the computation time (excluding
the simulation time during fitness evaluation), and the total
time cost. ADSPP will be terminated in the simulation after
violating some requirements, especially for Safety(R2.1), if
the ego vehicle’s behaviors are abnormal. We observe that
the time costs of EMOO, EMOO-IP, and EMOOD are less
than Random, because these three approaches could generate
more scenarios with violations of R2.1, and these scenarios
are terminated earlier. Moreover, we observe that the most
expensive part of the approaches is due to the simulations.

Answer to RQ1: Each phase (EMOO, IP, and DP) of
EMOOD provides a significant contribution in discovering
requirements violation patterns. Indeed, the approaches of
Random, EMOO, EMOO-IP, and EMOOD are in the order
of increasing effectiveness, indicating that the EMOO,
IP, and DP techniques all provide a relevant contribution
to EMOOD’s overall effectiveness. Additionally, EMOOD’s
effectiveness does not come at the cost of time.

2) Evaluation on Criticality (RQ2): We analyze the crit-
icality of requirements violation patterns discovered by each
approach; to this aim, we propose a metric for assessing the
criticality. As explained in Section IV-B, the initial ranking
Vc ranks the patterns based on their criticality. Therefore,
we quantify the criticality of each pattern by its rank in Vc,
i.e., K(Vi) = 1 − rank(Vc(Vi))

|Vc| . The sum of the criticality of
discovered patterns can be calculated as

∑
Vi∈Vf K(Vi). Fig. 8

shows the results for the sum of the criticality of discovered
patterns. We find that EMOOD achieves the highest sum for
the criticality of discovered patterns, being 8.75 and 9.23 on
average for SO and ST , respectively.

We also compare the results in Fig. 8, for each pair of
approaches for SO and ST , using the same statistical tests
used in RQ1. We report the results online [26] due to space
limit. Using significance level α=0.01, we observe that EMOOD
is always significantly better than the baseline approaches;
EMOO-IP is always better than Random, and better than
EMOO in SO; EMOO is better than Random in SO; in the
other cases, there is no significant difference.

Table V provides a detailed analysis by showing the aver-

TABLE V: RQ2–Number of discovered patterns by rankings
in Vc

Pattern
Rankings

Overtake (SO) Turn Right (ST)
Rand. EMOO EMOO-IP EMOOD Rand. EMOO EMOO-IP EMOOD

1-32 0.1 0.1 1.0 1.9 2.0 2.2 2.1 3.1
33-64 0.4 1.4 2.1 3.2 5.1 4.8 5.6 6.3
65-96 2.7 5.3 9.2 11.3 5.0 5.3 6.6 7.5

97-128 8.6 12.0 13.7 14.3 9.1 10.5 11.3 11.9
Total 11.8 18.8 26.0 30.7 21.2 22.8 25.6 28.8

(a) Over speed limit (b) Encounter with vehicle-a

(c) Exceed curvature limit (d) Collision with vehicle-b

Fig. 9: A scenario with 4 requirements violations in ST

age number of the patterns discovered by each approach in
each scenario by ranks in Vc. Compared with the baseline
approaches, EMOOD identifies more patterns with higher ranks
(i.e., ranks from 1 to 32), while the gap decreases for the
patterns with lower ranks (i.e., ranks from 97 to 128). In
more complex scenarios such as SO, the gaps between the
number of discovered patterns are more obvious between
different approaches because complex scenarios might have
more challenging states that are difficult to reach. We also find
that the results of violation criticality are consistent with the
results of pattern detection in RQ1. In simpler scenarios such
as ST , the difference between the baseline approaches and
EMOOD is lower, showing that EMOOD is particularly useful in
finding critical patterns in large search spaces.

Answer to RQ2: Random testing is limited in finding
critical requirements violation patterns in complex sce-
narios, while as the combination of EMOO, IP, and DP,
EMOOD is more effective than the baseline approaches.

3) Requirements Violation Pattern Analysis: We next an-
alyze a concrete test scenario to better understand what the
generated critical test scenarios look like and what are the
behaviors and requirements evaluation results of the ego
vehicle with ADSPP in this scenario.

We next consider some results found by EMOOD in ST . As
shown in Fig. 7(b), EMOOD discovers 5 patterns not discovered
by the baseline approaches; Fig. 9 reports the scenario expos-
ing the most critical one among these patterns. In this concrete
scenario, the behavior of the ego vehicle violates the majority
of the requirements, i.e., V = [1, 1, 1, 0, 0, 0, 1], indicating the
violation of {R1.1, R2.1, R3.1, R4.2}. This pattern also ranks

first in all of the discovered patterns in ST . Fig. 9(a) shows the
start of the scenario in which the ego vehicle is accelerating
and moving into lane-3 to turn right at the intersection quickly.
In this process, the speed of the ego vehicle reaches 16.82m/s,
exceeding the speed limit (16.67m/s) a little, as shown in
Fig. 9(a). Reacting to the violation of the speed limit, the ego
vehicle reduces the speed when it reaches the intersection and
encounters vehicle-a crossing from left to right in the lane-
1 at the moment shown in Fig. 9(b). To avoid the potential
collision with vehicle-a, the ego vehicle decelerates a lot and
turns its direction to right. However, this dangerous action
causes its curvature rate to reach 0.4, which exceeds the limit
of Klimit = 0.2. Fig. 9(c) shows the moment in which the
ego vehicle reaches the maximal curvature rate at the speed of
0.56m/s, while there is another vehicle-b crossing from right
to left. Finally, the ego vehicle fails to figure out a feasible
trajectory and ends with a collision with vehicle-b as shown
in Fig. 9(d). The change rate of acceleration of this trajectory
is 0.39, exceeding the threshold ra = 0.3.

We next show how the patterns discovered by EMOOD are
useful in an industrial setting, i.e., whether they provide the
engineers of our industrial partner useful insights regarding
the faults of ADSPP . Considering the previous example, we
find that, at the start of the scenario, the ego vehicle first
accelerates to cross the intersection, and then decelerates when
encountering with vehicle-a. However, it is too late for the
ego vehicle to change its direction and brake. We estimate
that this series of requirements violations in this scenario can
be due to that the ego vehicle is not sensitive to exceeding
the speed limit. Based on this result, we modify ADSPP by
penalizing the selection of paths that require the violation of
the speed limit; we run the same scenario with the modified
ADSPP , and find that the ego vehicle does not violate the
speed limit and, at the intersection, changes its direction into
lane-2 until vehicle-b has passed, and then changes into lane-
1. The ego vehicle ends with no requirement violated: the
maximal speed is 15.9m/s, the maximal curvature rate is 0.13,
the acceleration change rate is 0.19, and no collision occurs.
Such type of information is useful for engineers of our industry
partner to re-engineer ADSPP .

C. Threats to Validity

The threats to external validity primarily include the degree
to which the subject ADSs, their faults, and abstract test
scenarios are representative of true practice. Our evaluation
is conducted with only one system ADSPP provided by our
industry partner. Moreover, the evaluation results are based on
only two common scenarios, i.e., SO and ST , These threats
could be reduced by more experiments on wider types of
ADSs and more abstract scenarios in future work. The threats
to internal validity are instrumentation effects that can bias
our results. Faults in our prototype and the search framework
jMetalPy might cause such effects. To reduce these threats,
we manually inspected the intermediate results of applying
our approach.

VI. RELATED WORK

Search-Based Testing. Search-based testing (SBT) for test
generation is an active area in ADS testing. The idea is to
use optimization to efficiently generate critical test scenar-
ios in which the autonomous vehicle under test fails (e.g.,
collision). Abdessalem et al. [6] use multi-objective search
with a surrogate model [7] and learnable evolution algorithm
to test an Advanced Driver Assistance System (such system
supports levels 1-2 of automation [40]). For the testing of
ADSs with higher-level automation and a more dedicated
decision-making process, Calò et al. [10] propose an approach
to generate avoidable collision scenarios in which a differently
configured ADS would not lead to collisions. Gambi et al. [9]
generate, through procedural content generation and search-
based testing, challenging scenarios in which the vehicle
under test departs the lane, while Li et al. [12] introduce
AV-FUZZER, a framework based on fuzzing to find safety
violations of the ADS under test. In contrast to our work,
none of these preceding approaches considers the problem of
multiple requirements violations, but consider the generation
of critical scenarios for only one specific ADS requirement,
such as safety. Furthermore, EMOOD identifies critical test
scenarios covering different requirements violation patterns.
Many-objective Optimization in SBT. Many-objective
search [30] is increasingly used to address the need for
many objectives to represent different decision criteria in-
volved in software engineering tasks. The usage of many-
objective search presents an important challenge, since the
high-dimensional Pareto fronts demand more time and mem-
ory resources to be generated. For object-oriented systems,
Panichella et al. [41] design a highly scalable many-objective
genetic algorithm (MOSA) for the many-objective branch
coverage problem. Their later work [42] proposes DynaMOSA
to dynamically focus on not-covered objectives according to
branch, statement, and mutant coverage to generate tests;
DynaMOSA is now the default algorithm in EvoSuite [43], an
automatic test generation framework. However, the preceding
existing work on many-objective optimization in search-based
testing is slightly different from our approach, as we execute
many rounds of EMOO, using different patterns as objectives
to search for, and our prioritization aims at selecting the target
patterns. Namely, based on a new insight of the relationship
between requirements violation patterns, we design DP to au-
tomatically select the most likely-to-occur and critical patterns
to search for at the beginning of each EMOO execution.
Coverage Criteria. Since it is infeasible to test ADSs under
all possible conditions due to the large test scenario space
(other vehicles, road structure, etc.), some work [44] proposes
coverage criteria for ADS testing. Hauer et al. [16] define
categories of different scenarios that should be covered. To
test any possible behaviors of the ADS under test, Laurent et
al. [13] use weight coverage to cover different configurations
of a path planner, while Tian et al. [45] use neuron cover-
age to guide the generation of tests for neural networks in
autonomous vehicles. However, neither scenario coverage nor

driving behavior coverage criteria can guarantee that unsafe
behaviors of the ADS are tested in terms of requirements vio-
lations, and so they cannot guarantee to expose all the possible
requirements violation patterns. In contrast, EMOOD targets
requirements violation patterns to identify diverse critical test
scenarios for the ADS. Therefore, through the coverage of
different requirements violation patterns, unsafe behaviors of
the ADS are more likely to be exposed, so that ADS engineers
can build a resilient ADS in extreme or stressful scenarios.
Requirements-Based Testing. Requirements-based testing for
autonomous systems aims at system conformance with all
identified requirements [46]. As ADSs are complex cyber-
physical systems that are challenging to test and debug,
requirements-based testing approaches have been proposed to
check the requirements satisfaction during the development
process to decrease the resources needed to design the sys-
tems [23]. To generate tests to expose requirements violations,
two mainstream approaches, i.e., model checking and model
testing, have been proposed for cyber-physical systems [47].
Model checking approaches [4] attempt to find failures when
they exist or prove the absence of failures through formal
verification. However, because formal verification considers
all possible executions, it often has difficulty in scaling to
complex systems with a large space of system states [27],
[47]. Model testing approaches [23], [48] identify and specify
requirements for the system behaviors and generate test sce-
narios that violate the requirements specifications. However,
these approaches do not target different combinations of
requirements violations, whereas EMOOD can help effectively
discover the most critical and likely-to-occur requirements
violation patterns.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed EMOOD, an automated
testing approach for ADSs, that targets requirements violation
patterns. EMOOD builds on Evolutionary Many-Objective Op-
timization (EMOO), which is guided by Initial Prioritization
(IP) and Dynamical Prioritization (DP) of requirements viola-
tion patterns to identify the violation pattern to search for dur-
ing each iteration. Our evaluation results on an industrial ADS
have shown that EMOOD outperforms the baseline random
testing and evolutionary search, and generates test scenarios
that expose more violation patterns with higher criticality.

Our current approach requires to specify, as input, an ab-
stract scenario over which the search is performed. Different
abstract scenarios may or may not allow to cover specific
requirements violation patterns. Such manual selection of
abstract scenarios requires rich domain knowledge and may
limit the approach’s effectiveness. In future work, we plan to
investigate tool automation to identify abstract scenarios; some
work [16] has been proposed to identify the scenario types that
should be considered for ADS testing, and we plan to leverage
such work to specify our initial abstract scenarios.

REFERENCES

[1] U. Topcu, N. Bliss, N. Cooke, M. L. Cummings, A. Llorens, H. E.
Shrobe, and L. Zuck, “Assured autonomy: Path toward living with
autonomous systems we can trust,” CoRR, vol. abs/2010.14443, 2020.

[2] Waymo, “On the Road to Fully Self-Driving: Waymo Safety Report,”
2018. [Online]. Available: https://waymo.com/safety/

[3] Voyage, “Open Autonomous Safety,” 2019. [Online]. Available:
https://github.com/voyage/open-autonomous-safety

[4] I. Majzik, O. Semeráth, C. Hajdu, K. Marussy, Z. Szatmári, Z. Micskei,
A. Vörös, A. A. Babikian, and D. Varró, “Towards system-level testing
with coverage guarantees for autonomous vehicles,” in Proc. 22nd IEEE
International Conference on Model Driven Engineering Languages and
Systems (MODELS), 2019, pp. 89–94, doi: 10.1109/MODELS.2019.00-
12.

[5] N. Kalra and S. M. Paddock, Driving to Safety: How Many Miles of
Driving Would It Take to Demonstrate Autonomous Vehicle Reliability?
RAND Corporation, 2016.

[6] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search and
neural networks,” in Proc. 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2016, pp. 63–74, doi:
10.1145/2970276.2970311.

[7] ——, “Testing vision-based control systems using learnable evolu-
tionary algorithms,” in Proc. 40th IEEE/ACM International Confer-
ence on Software Engineering (ICSE), 2018, pp. 1016–1026, doi:
10.1145/3180155.3180160.

[8] R. Ben Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and T. Stifter,
“Testing autonomous cars for feature interaction failures using many-
objective search,” in Proc. 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2018, pp. 143–154, doi:
10.1145/3238147.3238192.

[9] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-
driving cars with search-based procedural content generation,” in Proc.
28th ACM International Symposium on Software Testing and Analysis
(ISSTA), 2019, pp. 318–328, doi: 10.1145/3293882.3330566.

[10] A. Calò, P. Arcaini, S. Ali, F. Hauer, and F. Ishikawa, “Gener-
ating avoidable collision scenarios for testing autonomous driving
systems,” in Proc. 13th IEEE International Conference on Software
Testing, Validation and Verification (ICST), 2020, pp. 375–386, doi:
10.1109/ICST46399.2020.00045.

[11] ——, “Simultaneously searching and solving multiple avoidable col-
lisions for testing autonomous driving systems,” in Proc. 22nd ACM
Genetic and Evolutionary Computation Conference (GECCO), 2020, pp.
1055–1063, doi: 10.1145/3377930.3389827.

[12] G. Li, Y. Li, S. Jha, T. Tsai, M. B. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. K. Iyer, “AV-FUZZER: finding safety violations in autonomous
driving systems,” in Proc. 31st IEEE International Symposium on Soft-
ware Reliability Engineering (ISSRE), 2020, pp. 25–36, doi: 10.1109/IS-
SRE5003.2020.00012.

[13] T. Laurent, P. Arcaini, F. Ishikawa, and A. Ventresque, “Achieving
weight coverage for an autonomous driving system with search-based
test generation,” in Proc. 25th IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS), 2020, pp. 93–102,
doi: 10.1109/ICECCS51672.2020.00018.

[14] P. Arcaini, X.-Y. Zhang, and F. Ishikawa, “Targeting patterns
of driving characteristics in testing autonomous driving systems,”
in Proc. 14th IEEE International Conference on Software Test-
ing, Verification and Validation (ICST), 2021, pp. 295–305, doi:
10.1109/ICST49551.2021.00042.

[15] Y. Li, J. Tao, and F. Wotawa, “Ontology-based test generation for
automated and autonomous driving functions,” Information and Software
Technology, vol. 117, 2020, doi: 10.1016/j.infsof.2019.106200.

[16] F. Hauer, T. Schmidt, B. Holzmüller, and A. Pretschner, “Did we test
all scenarios for automated and autonomous driving systems?” in Proc.
22nd IEEE Intelligent Transportation Systems Conference (ITSC), 2019,
pp. 2950–2955, doi: 10.1109/ITSC.2019.8917326.

[17] C. Zhang, Y. Liu, D. Zhao, and Y. Su, “Roadview: A traffic scene
simulator for autonomous vehicle simulation testing,” in Proc. 17th
International IEEE Conference on Intelligent Transportation Systems
(ITSC), 2014, pp. 1160–1165, doi: 10.1109/ITSC.2014.6957844.

[18] D. Zhao and H. Peng, “From the lab to the street: Solving the challenge
of accelerating automated vehicle testing,” CoRR, vol. abs/1707.04792,
2017.

[19] A. Belbachir, J.-C. Smal, J.-M. Blosseville, and D. Gruyer, “Simulation-
driven validation of advanced driving-assistance systems,” Procedia-
Social and Behavioral Sciences, vol. 48, pp. 1205–1214, 2012.

[20] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” CoRR, vol. abs/1708.06374, 2017.

[21] ISO, “Road vehicles – Functional safety,” 2011. [Online]. Available:
https://www.iso.org/standard/68383.html

[22] K. Czarnecki, “Automated driving system (ads) high–level quality
requirements analysis– driving behavior safety,” Waterloo Intelligent
Systems Engineering Lab (WISE) Report, University of Waterloo, 2018.

[23] C. E. Tuncali, G. Fainekos, D. Prokhorov, H. Ito, and J. Kapinski,
“Requirements-driven test generation for autonomous vehicles with ma-
chine learning components,” IEEE Transactions on Intelligent Vehicles,
vol. 5, no. 2, pp. 265–280, 2019, doi: 10.1109/TIV.2019.2955903.

[24] J. Morse, D. Araiza-Illan, K. Eder, J. Lawry, and A. Richards, “A
fuzzy approach to qualification in design exploration for autonomous
robots and systems,” in Proc. 26th IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), 2017, pp. 1–6, doi: 10.1109/FUZZ-
IEEE.2017.8015456.

[25] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for requirements-
driven adaptation,” in Proc. 18th IEEE International Requirements Engi-
neering Conference (RE), 2010, pp. 125–134, doi: 10.1109/RE.2010.25.

[26] EMOOD, “Project website for “Targeting Requirements Violations
of Autonomous Driving Systems by Dynamic Evolutionary Search”,”
2021. [Online]. Available: https://sites.google.com/view/emoodproj/

[27] A. Corso, R. J. Moss, M. Koren, R. Lee, and M. J. Kochenderfer,
“A survey of algorithms for black-box safety validation,” CoRR, vol.
abs/2005.02979, 2020.

[28] S. Chand and M. Wagner, “Evolutionary many-objective optimization:
A quick-start guide,” Surveys in Operations Research and Management
Science, vol. 20, no. 2, pp. 35–42, 2015.

[29] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2013, doi:
10.1109/TEVC.2013.2281535.

[30] A. Ramirez, J. R. Romero, and S. Ventura, “A survey of many-
objective optimisation in search-based software engineering,” Jour-
nal of Systems and Software, vol. 149, pp. 382–395, 2019, doi:
10.1016/j.jss.2018.12.015.

[31] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh,
M. Vazquez-Chanlatte, and S. A. Seshia, “VerifAI: A toolkit for the
formal design and analysis of artificial intelligence-based systems,” in
Proc. 31st International Conference on Computer-Aided Verification
(CAV), 2019, pp. 432–442, doi: 10.1007/978-3-030-25540-4 25.

[32] F. Klück, M. Zimmermann, F. Wotawa, and M. Nica, “Performance
comparison of two search-based testing strategies for ADAS system
validation,” in Proc. 31st IFIP International Conference on Testing
Software and Systems (ICTSS), 2019, pp. 140–156, doi: 10.1007/978-3-
030-31280-0 9.

[33] T. G. Dietterich, “Ensemble methods in machine learning,” in Proc. 1st
International Workshop on Multiple Classifier Systems Multiple (MCS),
2000, pp. 1–15, doi: 10.1007/3-540-45014-9 1.

[34] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engi-
neering: Trends, techniques and applications,” ACM Computing Surveys,
vol. 45, no. 1, pp. 11:1–11:61, 2012, doi: 10.1145/2379776.2379787.

[35] A. Benitez-Hidalgo, A. J. Nebro, J. Garcia-Nieto, I. Oregi, and
J. Del Ser, “jMetalPy: A Python framework for multi-objective opti-
mization with metaheuristics,” Swarm and Evolutionary Computation,
vol. 51, 2019, doi: 10.1016/j.swevo.2019.100598.

[36] B. L. Miller, D. E. Goldberg et al., “Genetic algorithms, tournament
selection, and the effects of noise,” Complex systems, vol. 9, no. 3, pp.
193–212, 1995.

[37] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proc. 33rd
IEEE/ACM International Conference on Software Engineering (ICSE),
2011, pp. 1–10, doi: 10.1145/1985793.1985795.

[38] J. A. Capon, Elementary Statistics for the Social Sciences: Study Guide.
Wadsworth Publishing Company Belmont, 1991.

[39] A. Vargha and H. D. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000, doi: 10.3102/10769986025002101.

https://waymo.com/safety/
https://github.com/voyage/open-autonomous-safety
https://www.iso.org/standard/68383.html
https://sites.google.com/view/emoodproj/

[40] SAE, “Taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles,” 2018. [Online].
Available: https://www.sae.org/standards/content/j3016 201806/

[41] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch
coverage as a many-objective optimization problem,” in Proc. 8th
IEEE International Conference on Software Testing, Verification and
Validation (ICST), 2015, pp. 1–10, doi: 10.1109/ICST.2015.7102604.

[42] ——, “Automated test case generation as a many-objective optimisation
problem with dynamic selection of the targets,” IEEE Transactions
on Software Engineering, vol. 44, no. 2, pp. 122–158, 2017, doi:
10.1109/TSE.2017.2663435.

[43] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation
for object-oriented software,” in Proc. 19th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2011, pp. 416–419,
doi: 10.1145/2025113.2025179.

[44] Z. Tahir and R. Alexander, “Coverage based testing for V&V
and safety assurance of self-driving autonomous vehicle: A system-
atic literature review,” in Proc. 2nd IEEE International Conference
On Artificial Intelligence Testing (AITest), 2020, pp. 23–30, doi:

10.1109/AITEST49225.2020.00011.
[45] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing of

deep-neural-network-driven autonomous cars,” in Proc. 40th IEEE/ACM
International Conference on Software Engineering (ICSE), 2018, pp.
303–314, doi: 10.1145/3180155.3180220.

[46] R. Alexander, H. Hawkins, and A. Rae, Situation coverage – a coverage
criterion for testing autonomous robots. Department of Computer
Science, University of York, 2015, vol. Report number YCS-2015-496.

[47] S. Nejati, K. Gaaloul, C. Menghi, L. C. Briand, S. Foster, and D. Wolfe,
“Evaluating model testing and model checking for finding requirements
violations in Simulink models,” in Proc. 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2019, pp. 1015–
1025, doi: 10.1145/3338906.3340444.

[48] C. Gladisch, T. Heinz, C. Heinzemann, J. Oehlerking, A. von Vi-
etinghoff, and T. Pfitzer, “Experience paper: search-based testing in
automated driving control applications,” in Proc. 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), 2019,
pp. 26–37, doi: 10.1109/ASE.2019.00013.

https://www.sae.org/standards/content/j3016_201806/

	Introduction
	Motivation
	Formalization and Problem Statement
	Autonomous Driving System
	Requirements Violation Evaluation
	Problem Statement

	Approach
	Overview
	Initial Prioritization (IP)
	Evolutionary Many-Objective Optimization (EMOO)
	Dynamic Prioritization (DP)
	Likelihood Prioritization
	Merging Criticality and Likelihood Rankings

	Details of EMOOD

	Evaluation
	Experimental Design and Settings
	Traffic Scenarios
	Baseline Approaches
	Configurations and Implementations

	Results and Analysis
	Evaluation on Pattern Detection (RQ1)
	Evaluation on Criticality (RQ2)
	Requirements Violation Pattern Analysis

	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

